A NOTE ON p-ADIC LINDEMANN-WEIERSTRASS

Abstract

In this paper we apply Ax-Schanuel's Theorem to the ultraproduct of the $p-$adic fields in order to prove a weak form of the $p$-adic Lindemann-Weierstrass conjecture for almost all primes.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 32
Issue: 1
Year: 2019

DOI: 10.12732/ijam.v32i1.12

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] J. Ax, On Schanuel’s conjectures, Annals of Mathematics, 2nd Ser., 3, No 2 (Mar. 1971), 252-268.
  2. [2] J. Antonio and A. Prestel, Valued Fields, Springer Monographs in Mathematics, 2005.
  3. [3] A. Bleybel, A note on complex p-adic exponential fields, p-Adic Numbers, Ultrametric Analysis and Applications, 10, No 4 (2018), 267275.
  4. [4] C.C. Chang and H.J. Keisler, Model Theory, North-Holland Publishing Co, Amsterdam, 1973.
  5. [5] F.Q. Gouvea, p-Adic Numbers: An Introduction, Springer-Verlag, Berlin-Heidelberg-New York, 2nd Ed., 2000.
  6. [6] N. Jacobson, Basic Algebra 1, Yale University, 2nd Ed., 1985.
  7. [7] I. Kaplansky, Maximal fields with valuations, Duke Math. J. 9 (1942), 303-321.
  8. [8] S. Kuhlmann, M. Matusinski, and A. Shkop, A note on Schanuels conjectures for exponential logarithmic power series fields, Arch. Math. (Basel) 100, No 5 (2013), 431436.
  9. [9] M. Matusinski, On generalized series fields and exponential-logarithmic series fields with derivations, ArXiv Preprint, arXiv:1209.4559v3 [math.AC], 25 Oct. 2013.
  10. [10] B. Poonen, Maximally complete fields, L’Enseignement Mathmatique, 39 (1993), 87-106.
  11. [11] W.H. Schikhof, Ultrametric Calculus, Cambridge University Press, Cambridge, 1984.