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Abstract: In this paper we apply Ax-Schanuel’s Theorem to the ultraproduct
of the p−adic fields in order to prove a weak form of the p-adic Lindemann-
Weierstrass conjecture for almost all primes.
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1. Introduction

Let Qp be the field of p-adic numbers, for p a prime number. Given an algebraic

closure Q
alg
p of Qp, it naturally comes equipped with a norm |.|p, uniquely

extending the usual norm on Qp. Recall that the standard normalization for
|.|p is |p|p = p−1.

Denote by Cp the completion of Qalg
p with respect to the norm |.|p. Then,

Cp is also algebraically closed. It is called a complex p-adic field.
The p-adic exponential map is defined as:

expp : Ep → C×
p , x 7→

∞
∑

n=0

xn

n!
,

where Ep is the set Ep = {x ∈ Cp : |x|p < p
−

1

p−1} (the domain of convergence
of the defining power series of the exponential).

While in the case of complex exponentiation many transcendence results are
already known, most of these do not have a counterpart in the p-adic setting.
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Most notable among these results is the Lindemann-Weierstrass conjecture (a
theorem in the complex case!), which can be stated as follows:

Conjecture 1.1. (L-W) Let x1, ..., xn ∈ Ep be algebraic numbers over Q

and let Q(expp(x)) denotes the field Q(expp(x1), ..., expp(xn)). If x1, ..., xn are
Q- linearly independent, then

tdQQ(expp(x)) = n.

In this paper, we apply the ultraproduct construction and basic model the-
ory in order to obtain some results in the above direction.

We embed Cp as a valued subfield in the p−adic Malcev-Neumann field Lp.

The main theorem can be obtained by applying Ax-Schanuel’s theorem, [1],
to a non-principal ultraproduct of Cp, and it reads as:

Theorem 1.1. Let p ∈ P, α ∈ Q ∩ (1, 2), n,N ∈ N and let x1,p, ..., xn,p ∈
Cp →֒ Lp be p−adic algebraic numbers over Q with ordp(xi,p) = 0 and

Supp(xi,p) ⊆ 1
NZ[1p ]. Consider the elements zi,p := p

1

p−αxi,p, i = 1, 2, .., n.
For almost all p ∈ P, if z1,p, ..., zn,p are Q-linearly independent, then

tdQQ(expp(zp)) = n.

Theorem 1.1 will be proved in Section 5 after several preliminary sections.

2. Background

It is well-known that the field Cp is the completion (with respect to the norm
|.|p) of an algebraic closure of Qp, the field of p-adic numbers. One may consider
instead the additive valuation ordp defined on Cp. This valuation is defined
through the relation:

|z|p = p−ordp(z).

Recall that a derivation over a (commutative) field K is a map D : K → K
satisfying additivity (D(x+ y) = Dx+Dy) and Leibniz rule (D(xy) = xDy +
yDx). The field of constants for D is the set of x ∈ K for which Dx = 0. Using
additivity and Leibniz rule, one can see that C is indeed a subfield of K.

In [8], Ax-Schanuel’s theorem was restated as follows:
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Theorem 2.1. Let K be a field of characteristic zero endowed by a
derivation D with the constant field C and let y1, . . . , yn, z1, . . . , zn ∈ K× be
such that Dyk = Dzk

zk
for k = 1, . . . , n.

If tdCC(y1, . . . , yn, z1, . . . , zn) ≤ n, then
n
∑

i=1
miyi ∈ C for somem1, . . . ,mn ∈

Q not all zero.

3. The fields KU and kU ((t
Γ))

We firstly recall some basics concerning the field of generalized power series,
[9].

Let k be a field and Γ be a totally ordered Abelian group. A generalized
series with coefficients in k and exponents in Γ is a map a : Γ −→ k denoted
by a =

∑

γ∈Γ aγt
γ with its support Supp(a) = {γ ∈ Γ : aγ 6= 0} well-ordered.

We denote by k((tΓ)) the set of generalized power series which is actually
a field endowed by componentwise sum and convolution product.

The field k((tΓ)) is endowed by a valuation

ord : (k((tΓ)))× −→ Γ

a 7−→ min(Supp(a)).

The valuation ring is the elements in k((tΓ)) with positive exponents, while
its maximal ideal is the elements a in k((tΓ)) with min(Supp(a)) > 0 and the
residue field is k. It is well-known that if Γ is divisible and k is algebraically
closed, then k((tΓ)) is also algebraically closed.

Poonen, [10], constructed a new type of generalized power series fields in
order to obtain a maximal valued field of mixed characteristic. More precisely,
he proved among the valued fields whose value group is Q (considered to be
divisible), the residue class field is the algebraic closure Fp of Fp (considered to
be algebraically closed) and the restriction of the valuation to Q is the p−adic
valuation, there exists a filed, denoted by Lp, that has the following properties:

1) Lp is maximal, i.e, for each valued field R with these properties, there
exists a value-preserving embedding from R to Lp.

2) Lp is algebraically closed and spherically complete (equivalently, Lp is
pseudo-complete).

3) Lp consists of the elements of the form

x =
∑

g∈Q

αgp
g,
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where {αg} is the set of representatives of Fp and the set Supp(x) = {g ∈
Q;αg 6= 0} is well-ordered subset in Q. In particular, there exists a value-
preserving embedding from Cp to Lp. Furthermore, Poonen [10] (Corollary 8),
characterized the algebraic closure Qp of Qp as follows: if α ∈ Qp, then there
exist N,m ∈ N such that Supp(α) ⊆ 1

NZ[1p ] and the residue classes of the
coefficients in the expansion of α are in Fpm .

Let P be the set of all prime numbers, and let U be a non-principle ultrafilter
on P.

In [3], it was shown that the field KU :=
∏

p∈PCp/U forms a valued field.
The valuation map on this field is defined as follows:

val : K×

U
−→ Γ

[(xp)p∈P] 7−→ [(ordp(xp))p∈P],

where Γ :=
∏

p∈PQ/U and the residue field is
∏

p∈P Fp/U . Also, it was shown
that KU admits an exponential map E defined as follows:

E : KU −→ K×

U

[(xp)p∈P] 7−→ [(EXPp(xp))p∈P],

where EXPp is some extension of the usual exponential map expp to Cp, [11].
The embedding Cp →֒ Lp induces an embedding

∏

p∈PCp/U →֒
∏

p∈P Lp/U .
Using the same argument, we find that the field
∏

p∈P Lp/U admits a valuation with the value group
∏

p∈PQ/U and the residue

field
∏

p∈P Fp/U , [2] (p.173). Hence, both
∏

p∈P Lp/U and its residue field have
characteristic zero. Applying Kaplansky Theorem, [7], to the field

∏

p∈P Lp/U ,
we find that there exists a value-preserving embedding

σ :
∏

p∈P

Lp/U →֒ kU ((t
Γ)), (3.1)

where kU is
∏

p∈P Fp/U and Γ is
∏

p∈PQ/U .

4. Statement of Lindemann-Weierstrass Property

Let (K, v, exp,D) be a differential valued exponential field, [8], with the domain
E of the exponential function and the constant field C. Let x1, .., xn ∈ C and
t ∈ K − C be such that tx1, ...., txn ∈ E. Using the same argument in [6] (p.
278), and making obvious changes in appropriate places, one can obtain the
following equivalent statements:
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Proposition 4.1. Keep the notation as above. Then, the following are
equivalent:
(a) If tx1, ...., txn are Q-linearly independent, then the elements

exp(tx1), ..., exp(txn) are algebraically independent over C.
(b) If tx1, ...., txn are mutually distinct, then the set

{1, exp(tx1), ..., exp(txn)} is linearly independent over C.

We will show that the statement (a) is true if the domain of exp is contained
in M (the maximal ideal of the valuation ring of K).

In fact, Statement (a) can be rephrased as follows:

If exp(tx1), ..., exp(txn) are algebraically dependent over C, then the ele-
ments tx1, ..., txn are Q-linearly dependent.

In this case, we have

tdC(tx1, ..., txn, exp(tx1), ..., exp(txn)) ≤ 1 + (n− 1) = n.

Using Ax Theorem (namely Theorem 2.1), we find that the elements tx1, ..., txn
are linearly dependent modulo the constant field C. Therefore, there exist
rationals m1, ...,mn ∈ Q (not all zero) such that m1tx1 + ...+mntxn ∈ C. By
multiplying by a suitable integer, we can assume that the coefficients mi are
rational integers (where we have used the fact that C contains Q). Since txi ∈
M, it follows that m1tx1 + ...+mntxn ∈ M. Therefore, m1tx1 + ...+mntxn =
0 (because M ∩ C = {0}). Hence, the elements tx1, ..., txn are Q−linearly
dependent. Thus, we obtain the following:

Theorem 4.1. Let (K, v,D, exp) be a differential valued exponential field
with the domain E ⊆ M of exp and the constant field C. Let x1, ..., xn ∈ C
and let t ∈ K − C be such that tx1, ..., txn ∈ E. If 1, exp(tx1), ..., exp(txn) are
linearly dependent over C, then not all of the elements x1, ..., xn are distinct.

5. The Main Results

Recall that Lindemann-Weierstrass Conjecture can be restated as follows: Let
x1,p, ..., xn,p be p− adic algebraic numbers over Q in the domain of expp. If
1, expp(x1,p), ..., expp(xn,p) are linearly dependent over Q, then not all of the
elements x1,p, ..., xn,p are distinct, see [6] (p. 278) (the proof in the p-adic
setting still works with some slight modifications).
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In [3], the field kU ((t
Γ)) (for any non-principle ultrafilter U on P) has been

made into a differential valued exponential field where the constant field is kU
and the exponential map exp is defined as follows:

exp :kU ((t
Γ>0)) −→ kU ((t

Γ))

ǫ 7−→
∞
∑

n=0

ǫn

n!
.

Furthermore, it was proved in [3] (Theorem 3.1), that if x = [(xp)p∈P] ∈ KU

with ordp(xp) >
1

p−1 , then

σ(E(x)) = exp(σ(x)). (5.1)

We need the following lemmas:

Lemma 5.1. Consider Γ =
∏

p∈PQ/U as a Q-vector space (which is possi-

ble sinceQ is a subfield in
∏

p∈PQ/U). Let Γ′ = {r.b; r ∈ Q, b ∈ 1
N

∏

p∈P Z[
1
p ]/U}.

Then, Γ′ forms Q-vector subspace which is strictly contained in Γ.

Proof. It is clear that Γ′ forms a Q-vector subspace. For each p ∈ P, let
p′ := min{q ∈ P : q > p}. Since N is fixed, it follows that the element [( 1

p′ )p∈P]

is not in Γ′.

Using the same argument in [3], we prove the following:

Lemma 5.2. Let Γ∗ be the complement of Γ′ as a Q-vector subspace in Γ
and let K := kU ((t

Γ′

)). Then, the generalized power series field K((tΓ
∗

)) forms
a differential valued exponential field with the constant field K.

Proof. Since Γ∗ is Q-vector subspace in Γ, it follows that Γ∗ is an Abelian
group. Also, we have Γ totally ordered. This implies that Γ∗ (which is a subset
in Γ) is also totally ordered. So, Γ∗ forms a totally ordered Abelian group.

Let ∆ be the set of archimedian classes of Γ∗. Consider the element α∗ =
[( 1

p′ )p∈P] (defined in the previous lemma). Then, α∗ is an infinitesimal positive
element in Γ∗. Let Φ be the archimedian class of α∗. Therefore, the map

σ∗ : ∆ −→ ∆

δ 7−→ Φ.δ



A NOTE ON p-ADIC LINDEMANN-WEIERSTRASS 137

is a right-shift map and preserves the order on ∆. Using the same argument in
[8] (Example 6, Case 1), one can define a series derivation D′ on K((tΓ

∗

)) in
which the constant field is K.

We can endow K((tΓ
∗

)) by the exponentiation exp′, defined on K((tΓ
∗>0))

by the series exp′(ǫ) :=
∑

∞

n=0
ǫn

n! ,∀ǫ ∈ K((tΓ
∗>0)). Since D′ is a series deriva-

tion, it follows that D′(ǫ) = D′(exp′(ǫ))
exp′(ǫ) ,∀ǫ ∈ K((tΓ

∗>0)). It is clear that exp′ is

the restriction of exp to Γ>0∩Γ∗. Thus, (K((tΓ
∗

)), exp′,D′) forms a differential
valued exponential field where the constant field is K. Hence, each element of
the form

∑

γ αγt
γ , γ ∈ Γ′, αγ ∈ kU is considered a constant element in the field

K((tΓ
∗

)).

As an application of Kaplansky Theorem, we prove the following

Claim. Let a be an arbitrary non-zero element in
∏

p∈PQ/U ⊆ KU . Then,
σ(a) ∈ K. That is, σ(a) is a constant element in the differential valued expo-
nential field K((tΓ

∗

)).

Proof. We have (Q, ordp) forming a valued field with the value group Z and
the residue field Fp. Hence,

∏

p∈PQ/U is a valued field with the value group
∏

p∈P Z/U and the residue field
∏

p∈P Fp/U . Using Kaplansky Theorem, we

find that
∏

p∈PQ/U is embedded in
∏

p∈P Fp/U((t
∏

p∈P
Z/U )). So, Supp(σ(a)) ⊆

∏

p∈P Z/U . It is clear that
∏

p∈P Z/U ⊆ Γ′. Therefore, σ(a) takes the form
∑

γ αγt
γ , γ ∈ Γ′, αγ ∈ kU . Hence, σ(a) ∈ kU ((t

Γ′

)) = K.

Keeping the notation of the previous lemmas, we prove the main theorem
as follows:

5.1. Proof of Theorem 1.1

Proof. Assume the theorem is not true. This implies the existence of an

infinite subset S ⊆ P such that for each p ∈ S the elements 1, expp(p
1

p−α y1,p), ...,

expp(p
1

p−α yn,p) satisfy a linear dependence relation over Q of the form:

a0,p + a1,p expp(p
1

p−α y1,p) + ...+ an,p expp(p
1

p−α yn,p) = 0

and the elements y1,p, ..., yn,p are mutually distinct. Let U be a non-principle
ultrafilter on P such that S ∈ U . Using the construction above, we consider the
fields KU →֒ kU ((t

Γ)) and define the elements:

x1 = [(x1,p)p∈P], ..., xn = [(xn,p)p∈P], r = [(p
1

p−α )p∈P] ∈ KU →֒ kU ((t
Γ)),
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where xi,p = yi,p if p ∈ S. Otherwise, let xi,p be arbitrary algebraic numbers
over Q of order zero and Supp(xi,p) ⊆

1
NZ[1p ]. Using the same argument in the

previous claim, we find that

Supp(σ(xi)) ⊆
1

N

∏

p∈P

Z[1/p]/U (since N is fixed). (5.2)

Consider the Q− vector subspaces Γ′ and Γ∗ in Γ as defined in the previous
Lemmas. So, Γ = Γ′ ⊕ Γ∗. Consider the field K = kU ((t

Γ′

)). Using Lemma
5.2, we find that K((tΓ

∗

)) forms a differential valued exponential field with the
constant field K. From (5.2), we find that Supp(σ(xi)) ⊆ Γ′. So, each element
σ(xi) can be written in the form σ(xi) =

∑

γ aγt
γ , where γ ∈ Γ′ and aγ ∈ kU .

Hence, σ(xi) ∈ K,∀i = 1, 2, .., n. For each p ∈ P, we have ordp(p
1

p−α ) = 1
p−α .

Let p runs over P. Then, val(r) = [( 1
p−α)p∈P]. Using the embedding σ and

noting that it preserves the valuation, we find that

ord(σ(r)) = val(r) =
[( 1

p− α

)

p∈P

]

/∈ Γ′.

So, σ(r) /∈ K. Therefore, σ(rxi) ∈ K((tΓ
∗>0)),∀i = 1, .., n since ord(σ(rxi)) =

val(rxi) = [( 1
p−α)p∈P] > 0. Hence, exp′(σ(rxi)) is well-defined and we have

exp(σ(rxi)) = exp′(σ(rxi)). (5.3)

Using o Theorem, we get a linear relation over
∏

p∈PQ/U of the form:

a0 + a1E(rx1) + ...+ anE(rxn) = 0.

Using (3.1), (5.1) and (5.3), we obtain the following

σ(a0) + σ(a1) exp
′(σ(rx1)) + .... + σ(an) exp

′(σ(rxn)) = 0.

From the previous claim, we deduce that the coefficients σ(ai), i = 0, 1, .., n are
in K. Thus, the elements 1, exp′(σ(rx1)), ...., exp

′(σ(rxn)) are linearly depen-
dent over the constant field K. Applying Theorem 4.1 to the differential valued
exponential field K((tΓ

∗

)), we find that the elements σ(x1), ..., σ(xn) are not all
distinct. Since σ is injective, it follows that not all of the elements x1, ..., xn
are distinct. Using o Theorem, it implies that there exists a member S1 ∈ U
such that the elements x1,p, ..., xn,p are not all distinct for all p ∈ S1. Since U
is a filter, it follows that S ∩ S1 6= ∅ (in fact, this intersection is infinite since
U is free ). Thus, for each p ∈ S ∩ S1 we have x1,p, ..., xn,p which are mutually
distinct (since p ∈ S). On the other hand, x1,p, ..., xn,p are not all distinct (since
p ∈ S1). This contradiction proves the theorem.
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Corollary 5.1. Let p ∈ P and x1,p, ..., xn,p be rational integers which are
relatively prime to p. Then, for almost all p, any linear dependence relation
over Q of the elements

1, expp(p
1

p−αx1,p), ...., expp(p
1

p−αxn,p)

implies that not all of the elements x1,p, ..., xn,p are distinct.

Proof. Since x1,p, ..., xn,p ∈ Z, then the number N , defined in Theorem 1.1,
is 1. Also, since (xi,p, p) = 1, it follows that ordp(xi,p) = 0. Applying Theorem
1.1, we prove the corollary.

Remark. Theorem 1.1 still holds true if we take the elements x1,p, ..., xn,p
from Qp (or any unramified finite extension of Qp).
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