In this paper, we establish the local well-posedness results in sub-critical and critical cases for the pure power-type nonlinear fractional Schrödinger and wave equations on , namely
and
where
and
is the Fourier multiplier by . For the nonlinear fractional Schrödinger equation, we extend the previous results in [#!HongSire!#] for . These results cover the well-known results for Schrödinger equation given in [#!CazenaveWeissler!#]. In the case
, we show the local well-posedness in the sub-critical case for in contrast to when , and when of [#!HongSire!#]. These results also generalize the ones of [#!ChoHwangKwonLee!#] when and of [#!GuoHuo13!#] when , where the authors considered the cubic fractional Schrödinger equation with
. To our knowledge, the nonlinear fractional wave equation does not seem to have been much considered, up to [#!Wang!#] on the scattering operator with an even integer and [#!ChenFanZhang14!#], [#!ChenFanZhang15!#] in the context of the damped fractional wave equation.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] H. Bahouri, J. Y. Chemin, R. Danchin, Fourier Analysis and Non-linear Partial Differential Equations, Ser. of Comprehensive Studies in Mathematics 343, Springer (2011).
[2] J. Bergh, J. Lofstom, Interpolation Spaces, Springer, New York (1976).
[3] N. Burq, P. Gerard, N. Tzvetkov, Strichartz inequalities and the nonlinear Schr¨odinger equation on compact manifolds, Amer. J. Math., 126 (2004), 569-605.
[4] T. Cazenave, F. B. Weissler, The Cauchy problem for the critical nonlinear Schr¨odinger equation in Hs, Nonlinear Anal., 14 (1990), 807-836.
[5] T. Cazenave, Semilinear Schr¨odinger Equations, Courant Lecture Notes in Math. 10, Courant Institute of Mathematical Sciences, AMS (2003).
[6] J. Chen, D. Fan, C. Zhang, Space-time estimates on damped fractional wave equations, Abstr. Appl. Anal., 2014 (2014), Art. ID 428909.
[7] J. Chen, D. Fan, C. Zhang, Estimates for damped fractional wave equations and applications, Electron. J. Differ. Equ. Conf., 2015 (2015), No 162, 1- 14.
[8] W. Chen, S. Holm, Physical interpretation of fractional diffusion-wave equation via lossy media obeying frequency power law, Physics Review, arXiv:math-ph/0303040 (2003).
[9] C.H. Cho, Y. Koh, I. Seo, On inhomogeneous Strichartz estimates for fractional Schr¨odinger equations and theirs applications, Discrete Contin. Dyn. Syst., 36, No 4 (2016), 1905-1926.
[10] Y. Cho, H. Hajaiej, G. Hwang, T. Ozawa, On the Cauchy problem of fractional Schr¨odinger equation with Hartree type nonlinearity, Funkcial. Ekvac., 56, No 2 (2013), 193-224.
[11] Y. Cho, G. Hwang, S. Kwon, S. Lee, Well-posedness and ill-posedness for the cubic fractional Schr¨odinger equations, Discrete Contin. Dyn. Syst., 35, No 7 (2015), 2863-2880.
[12] Y. Cho, T. Ozawa, S. Xia, Remarks on some dispersive estimates, Commun. Pure Appl. Anal., 10, No 4 (2011), 1121-1128.
[13] M. Christ, I. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal., 100, No 1 (1991), 87-109.
[14] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Global wellposedness and scattering for the energy-critical nonlinear Schr¨odinger equation in R3, Ann. of Math., 167, No 3 (2008), 767-865.
[15] J. Ginibre, G. Velo, On the global Cauchy problem for some nonlinear Schr¨odinger equations, Ann. Inst. H. Poincar´e Anal. Non Lin´eaire 2 (1984), 309-323.
[16] J. Ginibre, G. Velo, The global Cauchy problem for the nonlinear Klein- Gordon equation, Math. Z., 189 (1985), 487-505.
[17] B. Guo, Z. Huo, Global well-posedness for the fractional nonlinear Schr¨odinger equation, Comm. Partial Differential Equations 36, No 2 (2011), 247-255.
[18] B. Guo, Z. Huo, Well-posedness for the nonlinear fractional Schr¨odinger equation and inviscid limit behavior of solution for the fractional Ginzburg- Landau equation, Fract. Calc. Appl. Anal., 16, No 1 (2013), 226-242; DOI: 10.2478/s13540-013-0014-y.
[19] B. Guo, B. Wang, The global Cauchy problem and scattering of solutions for nonlinear Schr¨odinger equations in Hs, Differential Integral Equations 15, No 9 (2002), 1073-1083.
[20] Z. Guo, Y. Wang, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schr¨odinger and wave equations, J. Anal. Math., 124, No 1 (2014), 1-38.
[21] L. Grafakos, S. Oh, The Kato-Ponce inequality, Comm. Partial Differential Equations 39, No 6 (2014), 1128-1157.
[22] Y. Hong, Y. Sire, On fractional Schr¨odinger equations in Sobolev spaces, Commun. Pure Appl. Anal., 14, No 6 (2015), 2265-2282.
[23] A.D. Ionescu, F. Pusateri, Nonlinear fractional Schr¨odinger equations in one dimension, J. Func. Anal., 266 (2014), 139-176.
[24] T. Kato, On nonlinear Schr¨odinger equations. II. Hs-solutions and unconditional well-posedness, J. Anal. Math., 67 (1995), 281-306.
[25] M. Keel, T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120, No 5 (1998), 955-980.
[26] N. Laskin, Fractional quantum mechanics and L´evy path integrals, Phys. Lett A 268 (2000), 298-305.
[27] N. Laskin, Fractional Schr¨odinger equation, Phys. Rev. E 66 (2002), 056108.
[28] H. Lindblad, C-D. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal., 130 (1995), 357-426.
[29] C.H. Miao, Global strong solutions for nonlinear higher order Schr¨odinger equations, Acta. Math. Appl. Sinica 19 (1996), 211-221.
[30] B. Pausader, Global well-posedness for energy critical fourth-order Schr¨odinger equations in the radial case, Dyn. Partial Differential Equations, 4, No 3 (2007), 197-225.
[31] B. Pausader, Scattering and the Levandosky-Strauss conjecture for fourthorder nonlinear wave equations, J. Diff. Equa., 241 (2007), 237-278.
[32] G. Staffilani, The Initial Value Problem for Some Dispersive Differential Equations, Dissertation, University of Chicago (1995).
[33] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Math. Series 30, Princeton University Press (1970).
[34] T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Regional Conference Series in Mathematics 106, AMS (2006).
[35] M. Taylor, Tool for PDE Pseudodifferential Operators, Paradifferential Operators and Layer Potentials, Mathematical Surveys and Monographs 81, AMS (2000).
[36] H. Triebel, Theory of Function Spaces, Birkh¨auser, Basel (1983).
[37] B. Wang, Nonlinear scattering theory for a class of wave equations in Hs, J. Math. Anal. Appl., 296, No 1 (2004), 74-96.