A POSTERIORI ERROR ESTIMATION FOR A DUAL MIXED
FINITE ELEMENT METHOD FOR QUASI-NEWTONIAN
FLOWS WHOSE VISCOSITY OBEYS A POWER LAW OR
CARREAU LAW

Abstract

A dual mixed finite element method, for quasi-Newtonian fluid flow obeying the power law or the Carreau law, is constructed and analyzed in Farhloul-Zine [13]. This mixed formulation possesses good local (i.e., at element level) conservation properties (conservation of the momentum and the mass) as in the finite volume methods. In Farhloul-Zine [12], we developed an a posteriori error analysis for a non-Newtonian fluid flow problems. The analysis is based on the fact that the equation describing the extra-stress tensor in terms of the rate of strain tensor is invertible and may give the rate of strain tensor as a function of the stress tensor. To free ourselves from this constraint of inversion of laws, and as a generalization of the obtained results in [12], we propose in this work an a posteriori error analysis to this mixed formulation.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 30
Issue: 5
Year: 2017

DOI: 10.12732/ijam.v30i5.1

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] J. Baranger and K. Najib, Analyse num´erique des ´ecoulements quasinewtoniens dont la viscosit´e ob´eit `a la loi puissance ou la loi de Carreau, Numer. Math., 58 (1990), 35-49.
  2. [2] J.W. Barrett and W.B. Liu, Finite element error analysis of a quasiNewtonian flow obeying the Carre
  3. au or power law, Numer. Math., 64 (1993), 433-453.
  4. [3] J.W. Barrett andW.B. Liu, Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow, Numer. Math., 68 (1994), 437-456.
  5. [4] R.B. Bird, Robert C. Armstrong and Ole Hassager, Eds., Dynamics of Polymeric Liquids. Volume I : Fluid Mechanics, John Wiley & Sons, Inc., New York, 2nd ed., 1987.
  6. [5] F. Brezzi, J. Douglas, and L.D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47 (1985), 217-235.
  7. [6] P.G. Ciarlet, The Finite Element Methods for Elliptic Problems, North Holland, 1978.
  8. [7] P. Cl´ement, Approximation by finite element functions using local regularization, RAIRO Anal. Numer., 2 (1975), 77-84.
  9. [8] E. Creus´e, M. Farhloul, and L. Paquet, A posteriori error estimation for the dual mixed finite element method for the p-Laplacian in a polygonal domain, Comput. Methods Appl. Mech. Engrg., 196 (2007), 2570-2582.
  10. [9] V.J. Ervin, J.S. Howell, I. Stanculescu, A dual-mixed approximation method for a three-field model of a nonlinear generalized Stokes problem, Comput. Methods Appl. Mech. Engrg., 197 (2008), 2886-2900.
  11. [10] M. Farhloul, A.M. Zine, A mixed finite element method for a Ladyzhenskaya model, Comput. Methods Appl. Mech. Engrg., 191 (2002), 4497-4510.
  12. [11] M. Farhloul and A.M. Zine, A mixed finite element method for a quasiNewtonian fluid flow, Numer. Methods Partial Differential Eq., 20 (2004), 803-819.
  13. [12] M. Farhloul, A.M. Zine, A posteriori error estimation for a dual mixed finite element approximation of non-Newtonian fluid flow problems, Int. J. Numer. Anal. Model., 5 (2008), 320-330.
  14. [13] M. Farhloul and A.M. Zine, A dual-mixed finite element method for quasi-Newtonian flows whose viscosity obeys a power law or the Carreau law, Math. Comput. Simulation 141 (2017), 83-95.
  15. [14] G.P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. I, Springer-Verlag, Berlin, 1994.
  16. [15] G.N. Gatica, M. Gonzalez, S. Meddahi, A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. Part I: a priori error analysis, Comput. Methods Appl. Mech. Engrg., 193 (2004), 881-892.
  17. [16] G.N. Gatica, M. Gonzalez, S. Meddahi, A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. Part II: a posteriori error analysis, Comput. Methods Appl. Mech. Engrg., 193 (2004), 893-911.
  18. [17] O.A. Ladyzhenskaya, New equations for the description of the viscous incompressible fluids and solvability in the large of the boundary value problems for them, Boundary Value Problems of Mathematical Physics V, Providence, RI: American Mathematical Society, 1970.
  19. [18] H. Manouzi and M. Farhloul, Mixed finite element analysis of a non-linear three-fields Stokes model, IMA J. Numer. Anal., 21 (2001), 143-164.
  20. [19] D. Sandri, Sur l’approximation num´erique des ´ecoulements quasi-Newtoniens dont la viscosit´e suit la loi puissance ou la loi de Carreau, M2AN, 27 (1993), 131-155.
  21. [20] R. Verf¨urth, A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley and Teubner, 1996.