
International Journal of Applied Mathematics
————————————————————–
Volume 30 No. 5 2017, 351-373
ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)
doi: http://dx.doi.org/10.12732/ijam.v30i5.1

A POSTERIORI ERROR ESTIMATION FOR A DUAL MIXED

FINITE ELEMENT METHOD FOR QUASI–NEWTONIAN

FLOWS WHOSE VISCOSITY OBEYS A POWER LAW OR

CARREAU LAW

Mohamed Farhloul1 §, Abdelmalek Zine2
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1. Introduction

Governed by the classical Stokes problem, the Newtonian fluid flows are a
reasonable approximation of the more realistic non–Newtonian fluids (quasi–
Newtonian or Viscoelastic). In the case of quasi–Newtonian fluids, the viscosity
is a function of strain rate tensor, temperature, time, etc. For a steady and
creeping flow of an incompressible quasi-Newtonian fluid, the most used formu-
lation, see Bird et al. [4], is based on the strain rate tensor. In that case, for Ω
a bounded domain of IR2 with a Lipschitz boundary Γ and a given mass forces
f defined on Ω, the combination of the constitutive an conservation equations
leads to the following nonlinear Stokes problem:

{

−div
(

2µ(|d(u)|)d(u)
)

+∇p = f in Ω,

div u = 0 in Ω,
(1)

where u and p, the unknowns of the problem, are the velocity and pressure,
respectively. d(u) = 1

2

(

∇u+(∇u)t
)

is the strain rate tensor, and |d(u)|2 =
∑2

i,j=1 d(u)
2
ij .

For µ0 > 0 a reference viscosity and r a fluid characteristic real parameter
verifying 1 < r < ∞, the viscosity function µ(·), depending on |d(u)|, is usually
given by one of the two following famous models:

µ(x) = µ0 x
r−2, ∀x ∈ IR+, for the power law model, or

µ(x) = µ0

(

1 + x2
)(r−2)/2

, ∀x ∈ IR+, for the Carreau model.

Finally, system (1) is supplemented by a set of boundary conditions.

The generalized Stokes problem (1) and its approximation by standard finite
elements was first studied in Baranger and Najib [1]. Extensions and improve-
ments of the error bounds have been obtained in Sandri [19] and Barrett and
Liu [2, 3].

In these works, only the primal variables velocity and pressure are taken
into account. But, for various reasons, one may need information on other
(dual) variables such as velocity gradients ∇u, strain rate tensor d(u), and
stress tensor σ = 2µ(|d(u)|)d(u). For these reasons, it is necessary to build
appropriate mixed formulations.

On the other hand, in connection with the use of the gradient tensor ∇u
which corresponds to the Ladyzhenskaya model [17]:

µ(|∇u|) = (µ0 + µ1 |∇u|)
r−2 , µ0 ≥ 0, µ1 > 0, r > 1,
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a large amount of work is available in the literature. Among these works, there
may be mentioned Manouzi and Farhloul [18], Farhloul and Zine [10], Gatica
et al. [15, 16] and Ervin et al. [9]. The major drawback of formulations
using the gradient lies in the fact that we can not deal with natural boundary
conditions. To overcome this drawback related to the boundary conditions, we
have introduced and analyzed a dual–mixed finite element method for quasi-
Newtonian fluid flow obeying to the power law, in Farhloul and Zine [11, 12]. A
priori error estimates for the finite element approximation were proved in the
first paper, while a posteriori error estimation was provided in the second work.
In both papers, our analysis is based on the fact that the equation describing
the extra–stress tensor in terms of the rate of strain tensor is invertible and
give the rate of strain tensor as a function of the stress tensor. In a recent
work Farhloul–Zine [13], we developed a mixed formulation to overcome this
constraint of inversibility of the viscosity law. The main advantage of this
formulation is that it makes it possible to consider differently viscosity functions
obeying the power law or Carreau Law.

The aim of this work is to give an a posteriori error estimates for the mixed
formulation developed in [13]. In the next Section 2 we recall the mixed for-
mulation developed in [13] and then we give the a posteriori error estimates
in Section 3. This will be done by extending our investigations by avoiding
the assumption of expressing the rate of strain tensor as function of the stress
tensor. We may be then able to deal with both problems associated with power
law and Carreau model.

2. Dual–Mixed Formulation

In order to obtain a dual–mixed formulation of (1), first the problem (1) is
formulated as follows:







−div
(

σ − p I
)

= f in Ω,
div u = 0 in Ω,
u = 0 on Γ,

(2)

and then, we introduce two new variables

t = d(u), the strain rate tensor, (3)

A(t) = 2µ (|t|) t = σ, the stress tensor. (4)

Let 1 < r < ∞ and r′ being the conjugate number of r, i.e. 1
r + 1

r′ = 1.

Suppose f ∈ [Lr′(Ω)]2. Let ω = ω(u) = 1
2(∇u−(∇u)t) be the vorticity tensor.
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Then, for all (τ , q) ∈ [Lr′(Ω)]2×2 ×Lr′
0 (Ω), such that div

(

τ − q I
)

∈ [Lr′(Ω)]2,
and for all u ∈ [W 1,r(Ω)]2 such that div u = 0, it is easy to see that

(t, τ ) = (d(u), τ ) = −(div(τ − q I),u)− (ω, τ ),

where, from now on, ( · , · ) denotes the duality pairing between Lp(Ω) and
Lq(Ω), 1 < p < ∞, q the conjugate of p, and

Lr′
0 (Ω) =

{

q ∈ Lr′(Ω);

∫

Ω
q dx = 0

}

.

In order to derive the mixed formulation of (2), we define the following spaces:

T = [Lr(Ω)]2×2 ,

Σ =
{

(τ , q) ∈ [Lr′(Ω)]2×2 × Lr′
0 (Ω); div(τ − q I) ∈ [Lr′(Ω)]2

}

,

M =
{

(v,η) ∈ [Lr(Ω)]2 × [Lr(Ω)]2×2; η + ηt = 0
}

,

equipped with the following norms:

‖ s ‖T = ‖s‖0,r,Ω =

(
∫

Ω
|s|r
)

1

r

,

‖(τ , q)‖Σ =
(

‖τ‖r
′

0,r′,Ω + ‖q‖r
′

0,r′,Ω + ‖div(τ − q I)‖r
′

0,r′,Ω

)
1

r′

,

‖(v,η)‖M =
(

‖v‖r0,r,Ω + ‖η‖r0,r,Ω

)
1

r

.

The dual–mixed formulation of problem (2) reads as follows: Find t ∈ T ,
(σ, p) ∈ Σ and (u,ω) ∈M such that, ∀ s ∈ T , ∀(τ , q) ∈ Σ and ∀(v,η) ∈M ,







(A(t), s)− (σ, s) = 0,
(t, τ ) + (div(τ − q I),u) + (τ ,ω) = 0,
(div(σ − p I),v) + (σ,η) + (f ,v) = 0.

(5)

Remark 1. From the last equation of (5),

(div(σ − p I),v) + (σ,η) + (f ,v) = 0, ∀(v,η) ∈M ,

one gets
(σ,η) = 0, ∀η ∈ [Lr(Ω)]2×2 such that η + ηt = 0.

This corresponds to the symmetry relaxation of the stress tensor σ by a La-
grange multiplier.
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Remark 2. As stated above, the use of the rate of strain tensor en-
ables to handle different types of boundary conditions, such as mixed boundary
conditions. More precisely, assuming that we consider the following boundary
conditions:







u = 0 on ΓD and

(2µ(|d(u)|)d(u)− p I) n = 0 on ΓN ,

where Γ = ΓD ∪ ΓN , ΓD 6= ∅ and n is the unit outward normal vector field
along the boundary of Ω. Then, the only change to be made is to replace the
space Σ by the following one:

Σ =
{

(τ , q) ∈ [Lr′(Ω)]2×2 × Lr′
0 (Ω); div(τ − q I) ∈ [Lr′(Ω)]2;

(τ − q I)n = 0 on ΓN} .

However, for the sake of clearness, we developed in [13] the analysis in the case
of Dirichlet boundary conditions only.

Remark 3. Recall that the operator A is defined by

∀ t ∈ T , A(t) = 2µ(|t|) t,

µ, the viscosity function, being given by either power or Carreau law.

The existence, uniqueness and stability of
(

t,σ
∼

,u
∼

)

∈ T ×Σ×M , where

σ
∼

= (σ, p) and u
∼

= (u,ω), solution to the problem (5) are obtained in [13].

However, we recall here two inf–sup conditions in the continuous framework.
These conditions are used for a posteriori estimates.

Lemma 4. There exists a positive constant β such that

inf
v
∼

∈M
sup
τ
∼

∈Σ

(div(τ − q I),v) + (τ ,η)

‖τ
∼

‖Σ ‖v
∼

‖M
≥ β. (6)

Lemma 5. Let

Z∗ =

{

τ
∼

= (τ , q) ∈ Σ; (div(τ −q I),v) = 0, ∀ v ∈ [Lr(Ω)]2
}

.

Then, there exists a positive constant β∗ such that

inf
τ
∼

∈Z
∗

sup
s∈T

(s, τ )

‖ s ‖T ‖τ
∼

‖Σ
≥ β∗.
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Proof. The proof of this result is similar to the one of Lemma 3.6 in [13].

The following result giving the existence, uniqueness and stability is also
established in [13].

Theorem 6. Problem (5) admits a unique solution (t,σ
∼

,u
∼

) ∈ T ×Σ×M

satisfying the following stability condition,

‖ t ‖T + ‖σ
∼

‖Σ + ‖u
∼

‖M ≤ C(f),

where C(f) is a positive constant depending on f .

Let us now recall the discrete problem. We assume that the boundary Γ
of the domain Ω is polygonal. We first give some finite element notations.
Let h > 0 and Th a triangulation of Ω into triangles. We assume that the
triangulation Th is regular in the sense of Ciarlet [6]. Let K ∈ Th be an element
of the triangulation, we denote by bK the bubble function defined by

bK(x) = λ1(x)λ2(x)λ3(x), ∀x ∈ K,

λi, i = 1, · · · , 3, being the barycentric co-ordinates with respect to the element
K. For k ∈ IN , let Pk(K) denote the space of polynomials of degree less than
or equal to k on K, and

R(K) =
[

P1(K)
]2

⊕ IR curl bK ,

where curl bK = (∂bK∂x2
, −∂bK

∂x1
).

To write the discrete mixed formulation, we introduce the following finite
dimensional spaces:

T h =
{

sh ∈ T ; sh|K ∈ R(K), ∀K ∈ Th
}

,

Σh =
{

τh
∼

= (τ h, qh) ∈ Σ; τ h|K ∈ [R(K)]2,

qh|K ∈ P1(K), ∀K ∈ Th
}

,

Mh =
{

vh
∼

= (vh,ηh) ∈M ; vh|K ∈
[

P0(K)
]2
,ηh = θh χ,

θh|K ∈ P1(K),∀K ∈ Th
}

,



A POSTERIORI ERROR ESTIMATION FOR A DUAL MIXED... 357

where

χ =

[

0 −1
1 0

]

.

The discrete mixed formulation of problem (5) is given by the following: Find
th ∈ T h, σh

∼

∈ Σh and uh
∼

∈ Mh such that, ∀ sh ∈ T h, ∀τh
∼

= (τ h, qh) ∈ Σh

and ∀vh
∼

= (vh,ηh) ∈Mh,







(A(th), sh)− (σh, sh) = 0,
(th, τ h) + (div(τ h − qh I),uh) + (τ h,ωh) = 0,
(div(σh − ph I),vh) + (σh,ηh) + (f ,vh) = 0.

(7)

The analysis of the above discrete problem (7), as well as the a priori

estimates of discrete errors, are given in Farhloul–Zine [13]. We recall here
some of theses results.

Lemma 7. Let

Zh =

{

τ h
∼

∈ Σh; (div(τ h − qh I),vh) + (τ h,ηh) = 0,∀vh
∼

∈Mh

}

.

Then, there exists a positive constant C, independent of h, such that

∀τh
∼

∈ Zh, ‖qh‖0,r′,Ω ≤ C ‖τ h‖0,r′,Ω . (8)

We have, as for the continuous problem, the existence, uniqueness and
stability of the discrete solution. More precisely, the following theorem holds.

Theorem 8. Problem (7) admits a unique solution

(th,σh
∼

,uh
∼

) ∈ T h×Σh×Mh

satisfying the following stability condition,

‖ th ‖T + ‖σh
∼

‖Σ + ‖uh
∼

‖M ≤ C(f),

where C(f) is a positive constant depending on f and independent of h.
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3. A posteriori Error Estimates

Let (t,σ
∼
,u
∼
) =

(

t, (σ, p), (u,ω)
)

∈ T ×Σ×M and

(th,σh
∼

,uh
∼

) =
(

th, (σh, ph), (uh,ωh)
)

∈ T h×Σh×Mh

be the solutions of (5) and (7), respectively. On T ,Σ and M , one define the
residuals R1, R2 and R3 by, ∀ s ∈ T , ∀ τ

∼

= (τ , q) ∈ Σ and ∀ v
∼

= (v,η) ∈M ,

< R1, s > = (A(th), s)− (σh, s), (9)

< R2, τ
∼

> = (th, τ ) + (div(τ − q I),uh) + (τ ,ωh), (10)

< R3, v
∼

> = (div(σh − ph I),v) + (σh,η) + (f ,v). (11)

We denote by R1∗,R2∗ and R3∗ the dual norms of R1,R2 and R3, respectively.

R1∗ = sup
s∈T

| < R1, s > |

‖ s ‖T
,

R2∗ = sup
τ
∼
∈Σ

| < R2, τ
∼
> |

‖ τ
∼

‖Σ
,

and

R3∗ = sup
v
∼
∈M

| < R3, v
∼

> |

‖ v
∼
‖M

.

In the sequel, our goal is to obtain upper bounds of the errors ‖ t− th ‖T ,
‖σ

∼

−σh
∼

‖Σ and ‖u
∼

−uh
∼

‖M as functions of the above dual norms R1∗,R2∗ and

R3∗ whose expressions involve only the data of the problem and the available
computed quantities th,σh

∼

and uh
∼

. And then, we give upper bounds to the

estimators R1∗,R2∗ and R3∗.
As we will see later, these results depend on the parameter r. We have then

to distinguish two cases:

1 < r < 2 and r ≥ 2.

First, let us give the following estimate of
(

A(th) − A(t), th− t
)

in terms of
R1∗,R2∗ and R3∗.
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Proposition 9. There exists a constant C independent of h such that

(

A(th)−A(t), th− t
)

≤ C
{

(R1∗ +R3∗) ‖ th− t ‖T

+R2∗ ‖f − P 0
hf‖0,r′,Ω + (R1∗ +R3∗)R2∗

+R2∗ sups∈T

(

A(t)−A(th),s
)

‖s ‖T

}

,

(12)

where P 0
hf is the L2–projection of f onto

[

∏

K∈Th
P0(K)

]2
.

Proof. From the first equation of (5), one gets, ∀ s ∈ T ,

(

A(th)−A(t), s
)

= (A(th), s)− (σ, s)

= (A(th), s)− (σh, s) + (σh, s)− (σ, s)

= 〈R1, s〉+ (σh − σ, s) .

Thus,
(

A(th)−A(t), s
)

=
〈

R1, s
〉

+ (σh − σ, s) , ∀ s ∈ T . (13)

From the second equation of (5), one gets, ∀ τ
∼
∈ Σ,

(th− t, τ ) + (div(τ −q I),uh−u) + (τ ,ωh − ω) =
〈

R2, τ
∼

〉

. (14)

Using the last equation of (5), we obtain, ∀ v
∼

∈ M ,

(div[(σh − ph I)− (σ − p I)],v) + (σh − σ,η)) = 〈R3, v
∼
〉. (15)

Now, taking τ
∼
= σh

∼

−σ
∼

in (14) and v
∼
= uh

∼

−u
∼
in (15), we obtain

(th− t,σh − σ) + (div[(σh − ph I)− (σ − p I)],uh − u)

+ (σh − σ,ωh − ω) = 〈R2,σh
∼

−σ
∼

〉

and,

(div[(σh − ph I)− (σ − p I)],uh − u) + (σh − σ,ωh −ω)

= 〈R3,uh
∼

−u
∼

〉.

These two last equations imply

(th− t,σh − σ) = 〈R2,σh
∼

−σ
∼
〉 − 〈R3,uh

∼

−u
∼
〉.
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Finally, substituting s, by s = th− t, in (13) and using the above last equation,
we get

(

A(th)−A(t), th− t
)

=
〈

R1, th− t
〉

+〈R2,σh
∼

−σ
∼

〉 − 〈R3,uh
∼

−u
∼

〉. (16)

By the inf–sup condition (6) and (14), it follows

β‖uh
∼

−u
∼

‖M ≤ sup
τ
∼
∈Σ

(div(τ − q I),uh − u) + (τ ,ωh − ω)

‖ τ
∼

‖Σ

≤ sup
τ
∼
∈Σ

< R2, τ
∼

>

‖ τ
∼

‖Σ
+ sup
τ
∼
∈Σ

|(th− t, τ )|

‖ τ
∼

‖Σ
.

Thus,

‖uh
∼

−u
∼
‖M ≤ C

(

R2∗ + ‖th− t‖T

)

. (17)

Now, using the third equation of (5) and the third equation of (7), one gets,
∀v ∈ [Lr(Ω)]2,

(div[(σh − ph I)− (σ − p I)],v) +
(

P 0
hf − f ,v

)

=
(

div(σh − ph I) + P 0
hf ,v

)

= 0.
(18)

On the other hand, since P 0
hf − f ∈ [Lr′

0 (Ω)]
2, there exists (see Galdi [14])

ξ ∈ {τ ∈ [Lr′(Ω)]2×2; div τ ∈ [Lr′(Ω)]2}

such that div ξ = P 0
hf−f in Ω and ‖ξ‖0,r′,Ω+‖div ξ‖0,r′,Ω ≤ C‖P 0

hf−f‖0,r′,Ω.

Thus, from these last relations and (18), we get

(

div
[

(σh − ph I) + ξ − (σ − p I)
]

,v
)

= 0, ∀v ∈ [Lr(Ω)]2.

Hence, using the above mentioned inf–sup condition in Lemma 5, we obtain

β∗‖ (σh − σ + ξ, ph − p) ‖Σ ≤ sup
s∈T

(s,σh − σ + ξ)

‖ s ‖T

≤ sup
s∈T

(s,σh − σ)

‖ s ‖T
+ sup
s∈T

(s, ξ)

‖ s ‖T
.
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This last inequality together with (13), lead to

‖(σh − σ + ξ, ph − p)‖Σ ≤ C
(

R1∗ +

sups∈T
(A(th)−A(t),s)

‖s ‖T
+ ‖f − P 0

hf‖0,r′,Ω
)

.
(19)

On the other hand,

‖σh
∼

−σ
∼

‖Σ = ‖ (σh − σ, ph − p) ‖Σ ≤ ‖ (σh − σ + ξ, ph − p) ‖Σ

+‖ (ξ, 0) ‖Σ

and

‖ (ξ, 0) ‖Σ =
(

‖ξ‖r
′

0,r′,Ω + ‖div ξ‖r
′

0,r′,Ω

)1/r′

≤ C‖P 0
hf − f‖0,r′,Ω.

Then, from (19), we get

‖σh
∼

−σ
∼
‖Σ ≤ C

(

R1∗ +‖P 0
hf − f‖0,r′,Ω

+sups∈T
(A(th)−A(t),s)

‖s ‖T

)

.
(20)

Finally, using (16), (17) and (20), we get

(

A(th)−A(t), th− t
)

≤ R1∗ ‖ th− t ‖T +R2∗ ‖σh
∼

−σ
∼

‖Σ

+R3∗ ‖uh
∼

−u
∼
‖M

≤ C {R1∗ ‖ th− t ‖T +R2∗ R1∗

+R2∗ ‖P
0
hf − f‖0,r′,Ω

+R2∗ sup
s∈T

(

A(th)−A(t), s
)

‖ s ‖T

+R3∗ R2∗ +R3∗ ‖ th− t ‖T } .

This ends the proof of the previous proposition.

As it was mentioned above, the upper bounds of the errors depend on the
parameter r > 1. On the other hand, to distinguish the two models, we set:
δ = 0 for power law and δ = 1 for Carreau law.

We first consider the case where the parameter r verify 1 < r < 2.
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Theorem 10. Let (t,σ
∼

,u
∼

) and (th,σh
∼

,uh
∼

) be the solution of problems

(5) and (7), respectively. Suppose that 1 < r < 2, then there exists a constant
C independent of h such that

‖ t− th ‖T ≤ C

(

3
∑

i=1

Ri∗+R
r/2
2∗ +‖f − P 0

hf‖0,r′,Ω

)

, (21)

‖σ
∼
−σh

∼

‖Σ ≤ C
(

R1∗ +
∑3

i=1R
2/r′

i∗ +R
r/r′

2∗

+‖f − P 0
hf‖0,r′,Ω + ‖f − P 0

hf‖
2/r′

0,r′,Ω

)

,
(22)

‖u
∼

−uh
∼

‖M ≤ C

(

3
∑

i=1

Ri∗+R
r/2
2∗ +‖f − P 0

hf‖0,r′,Ω

)

. (23)

Proof. Owing to Lemma 3.1 and Lemma 3.3 in Farhloul–Zine [13], we have

(

A(th)−A(t), th− t
)

≥ C

{

‖ th− t ‖
2
0,r,Ω

δ + ‖ th ‖
2−r
0,r,Ω + ‖ t ‖2−r

0,r,Ω

+

∫

Ω
|A(th)−A(t)| |th− t| dx

}

,

and

‖A(th)−A(t)‖0,r′,Ω ≤ C

[
∫

Ω
|A(th)−A(t)| |th− t| dx

]1/r′

. (24)

Then, we get from (12),

‖ th− t ‖
2
T

δ + ‖ th ‖
2−r
T + ‖ t ‖2−r

T

+

∫

Ω
|A(th)−A(t)| |th− t| dx

≤ C
{

(R1∗ +R3∗)‖ th− t ‖T +R2∗ ‖f − P 0
hf‖0,r′,Ω

+ (R1∗ +R3∗)R2∗ +R2∗ sup
s∈T

(A(t)−A(th), s)

‖ s ‖T

}

.

On the other hand, using stability conditions (see Farhloul–Zine [13]),

‖ t ‖T ≤ C(f) and ‖ th ‖T ≤ C(f),

and (24), we get

‖ th− t ‖
2
T +

∫

Ω
|A(th)−A(t)| |th− t| dx
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≤ C
{

(R1∗ +R3∗)‖ t− th ‖T +R2∗ ‖f − P 0
hf‖0,r′,Ω

+R2∗(R1∗ +R3∗) +R2∗

[

∫

Ω
|A(th)−A(t)| |th− t| dx

]1/r′
}

.

Now, using the Young inequality, we obtain, ∀ ε > 0 and ∀ ε > 0,

‖ th− t ‖
2
T +

∫

Ω
|A(th)−A(t)| |th− t| dx

≤ C
{

ε−1(R1∗ +R3∗)
2 + ε‖ t− th ‖

2
T

+R2∗ ‖f − P 0
hf‖0,r′,Ω +R2∗(R1∗ +R3∗)

+(ε)−r Rr
2∗ +(ε)r

′

∫

Ω
|A(t)−A(th)| |t− th| dx

}

.

Thus, for an adequate choice of ε and ε, we get

‖ th− t ‖
2
T +

∫

Ω
|A(th)−A(t)| |th− t| dx ≤ C

{

(R1∗ +R3∗)
2

+R2∗ ‖f − P 0
hf‖0,r′,Ω +R2∗(R1∗ +R3∗) +Rr

2∗

}

.

This implies, in particular, the expected result in equation (21), namely:

‖ t− th ‖T ≤ C
(

3
∑

i=1

Ri∗ +R
r/2
2∗ +‖f − P 0

hf‖0,r′,Ω
)

,

and
∫

Ω |A(th)−A(t)| |t− th| dx

≤ C
(

∑3
i=1R

2
i∗ +Rr

2∗ +‖f − P 0
hf‖

2
0,r′,Ω

)

.
(25)

Finally, to obtain the expected estimate (22), it suffices to use the inequalities
(20), (24) and (25). And the estimate (23) is a direct consequence of (17) and
(21).

After the study of the case 1 < r < 2, we will now consider the case r ≥ 2.

Theorem 11. Let (t,σ
∼
,u
∼
) and (th,σh

∼

,uh
∼

) be the solution of problems

(5) and (7), respectively. Suppose that r ≥ 2, then there exists a constant C

independent of h such that

‖ t− th ‖T ≤ C
(

∑3
i=1R

r′/r
i∗ +R2∗ +R

2/r
2∗

+‖f − P 0
hf‖0,r′,Ω

)

,
(26)
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‖σ
∼

−σh
∼

‖Σ ≤ C
(

R
r′/2
1∗ +R

r′/2
3∗ +

∑3
i=1 Ri∗

+‖f − P 0
hf‖0,r′,Ω

)

,
(27)

‖u
∼

−uh
∼

‖M ≤ C
(

∑3
i=1 R

r′/r
i∗ +R2∗ +R

2/r
2∗

+‖f − P 0
hf‖0,r′,Ω

)

.
(28)

Proof. Using Lemma 3.2 in Farhloul–Zine [13], we get

(

A(th)−A(t), th− t
)

≥ C
(

‖ th− t ‖
r
0,r,Ω

+

∫

Ω

(

δ + |th|
r−2 + |t|r−2

)

|th− t|
2 dx

)

and

‖A(th)−A(t)‖0,r′,Ω (29)

≤ C

[
∫

Ω

(

δ + |th|
r−2 + |t|r−2

)

|th− t|
2 dx

]1/2

×
[

δ + ‖th‖
(r−2)/2
0,r,Ω + ‖t‖

(r−2)/2
0,r,Ω

]

.

To simplify the notations, we set

Λ = ‖ t− th ‖
r
T +

∫

Ω

(

δ + |th|
r−2 + |t|r−2

)

|t− th|
2 dx.

Then, from (12), we have

Λ ≤ C
{

(R1∗ +R3∗)(‖ th− t ‖T +R2∗) +R2∗ ‖f − P 0
hf‖0,r′,Ω

+R2∗ ‖A(th)−A(t)‖0,r′,Ω
}

.

And then, from (29), we get

Λ ≤ C
{

(R1∗ +R3∗)(‖ th− t ‖T +R2∗) +R2∗ ‖f − P 0
hf‖0,r′,Ω

+R2∗

[
∫

Ω

(

δ + |th|
r−2 + |t|r−2

)

|th− t|
2 dx

]1/2

×
(

δ + ‖th‖
(r−2)/2
T + ‖t‖

(r−2)/2
T

)}

.
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And again, using Young’s inequality with two parameters ε and ε, we get

Λ ≤ C
{

εr‖ th− t ‖
r
T + ε−r′(R1∗+R3∗)

r′ +R2∗ ‖f − P 0
hf‖0,r′,Ω

+ (R1∗ +R3∗)R2∗ +ε

∫

Ω

(

δ + |th|
r−2 + |t|r−2

)

|th− t|
2 dx

+ (ε)−1 R2
2∗

(

δ + ‖th‖
(r−2)/2
T + ‖t‖

(r−2)/2
T

)2 }

.

Thus, using the stability conditions ‖t‖T ≤ C(f) and ‖th‖T ≤ C(f), we obtain

Λ ≤ C
{

(R1∗ +R3∗)
r′ +R2∗ ‖f − P 0

hf‖0,r′,Ω

+(R1∗ +R3∗)R2∗ +R2
2∗

}

.
(30)

This last inequality leads in particular to

‖ t− th ‖
r
T ≤ C

{

(R1∗ +R3∗)
r′ +Rr′

2∗ +‖f − P 0
hf‖

r
0,r′,Ω +Rr

2∗ +R2
2∗

}

.

And then,

‖ t− th ‖T ≤ C
{

3
∑

i=1

R
r′/r
i∗ +R2∗ +R

2/r
2∗ +‖f − P 0

hf‖0,r′,Ω

}

,

which is precisely the expected estimate (26).

On the other hand, from (30), we deduce the following estimate

∫

Ω

(

δ + |th|
r−2 + |t|r−2

)

|t− th|
2 dx ≤ C

{

(R1∗ +R3∗)
r′

+(R1∗ +R3∗)
2 +R2

2∗ +‖f − P 0
hf‖

2
0,r′,Ω

}

,

and then, using (20), (29) and the fact that ‖ t ‖T and ‖ th ‖T are bounded, we
get

‖σ
∼
−σh

∼

‖Σ ≤ C
{

3
∑

i=1

Ri∗+R
r′/2
1∗ +R

r′/2
3∗ +‖f − P 0

hf‖0,r′,Ω
}

,

which is the expected estimate (27).

Finally, the estimation (28) is a consequence of the estimates (17) and
(26).
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Finally, the previous results show that to have the a posteriori error esti-
mates of our problem, it suffices to estimate Ri∗, i = 1, 2, 3. To this end, we
first precise some notations: for a tensor field τ ∈ IR2×2 and for a vector field
v = (v1, v2) ∈ IR2,

• tr(τ ) = τ11 + τ22, as(τ ) = τ21 − τ12,

• rot(τ ) =
(

∂τ12
∂x1

− ∂τ11
∂x2

, ∂τ22∂x1
− ∂τ21

∂x2

)

,

• Curl(v) =

(

∂v1
∂x2

− ∂v1
∂x1

∂v2
∂x2

− ∂v2
∂x1

)

,

• and
[[

g
]]

E
stands for the jump of function g across an edge E.

We also recall the following Helmholtz decomposition of a tensor field in Σ.

Proposition 12. Let τ
∼

∈ Σ. Then there exist z ∈
[

W 2,r′(Ω)
]2

and

ψ ∈
[

W 1,r′(Ω)
]2

such that

τ − q I = ∇z + Curlψ, (31)

with the estimate
‖z‖2,r′,Ω + ‖ψ‖1,r′,Ω ≤ C ‖ τ

∼

‖Σ. (32)

Proof. To prove this result it is sufficient to apply Theorem 1.1 of Creusé
et al. [8] to each row of the tensor τ −q I, i.e. the two vector fields (τ11−q, τ12)
and (τ21, τ22 − q).

Lemma 13. For every τ
∼

∈ Σ, we have

< R2, τ
∼

> =
∑

K∈Th
(th+ωh,∇z −Πh(∇z))

+
∑

K∈Th
(tr(th)), q)

+
∑

K∈Th
(rot(th+ωh),ψ − Icl(ψ))

−
∑

E∈Eh
<
[[

(th+ωh)t
]]

E
,ψ − Icl(ψ) >E,

(33)

where

• (z,ψ) ∈ [W 2,r′(Ω)]2 × [W 1,r′(Ω)]2 denotes the Helmholtz decomposition
of τ

∼

∈ Σ,
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• Icl(ψ) is the Clément interpolant of ψ (see Clément [7]),

• Eh denotes the set of all edges of the triangulation Th,

•
[[

(th+ωh)t
]]

E
denotes the tangential jump of th+ωh across the edge E,

• Πh(∇z) is the Brezzi-Douglas-Marini interpolant of the lowest degree of
∇z (see Brezzi et al. [5]).

Proof. By (10), we get for every τ
∼

∈ Σ,

< R2, τ
∼
>= (th+ωh, τ ) + (div(τ − q I),uh).

Then, using the Helmholtz decomposition (31), we get

< R2, τ
∼

> = (th+ωh,∇z) + (th+ωh, q I)

+ (th+ωh, Curlψ) + (div(∇z),uh).
(34)

On the other hand, using the properties of Πh(∇z), the Brezzi–Douglas–Marini
interpolant, we get

(div(Πh(∇z)),vh) = (div(∇z),vh), ∀vh ∈
[

∏

K∈Th

P0(K)
]2
.

Thus, using this last relation and the fact that tr(ωh) = 0, the equation (34)
may be rewritten as follows:

< R2, τ
∼
> = (th+ωh,∇z) + (tr(th), q)

+ (th+ωh, Curlψ) + (div(Πh(∇z)),uh).
(35)

Taking successively

τh
∼

= (Πh(∇z), 0) ∈ Σh and τh
∼

= (Curl(Icl(ψ)), 0) ∈ Σh

in the second equation of the discrete problem (7), we obtain

(th+ωh,Πh(∇z)) + (div(Πh(∇z)),uh) = 0

and

(th+ωh, Curl(Icl(ψ))) = 0.
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Injecting these two last relations in the right-hand side of (35), we get

< R2, τ
∼

> = (th+ωh,∇z −Πh(∇z)) + (tr(th), q)

+ (th+ωh, Curl(ψ − Icl(ψ))).

Thus, using Green’s formula, we obtain

< R2, τ
∼

>=(th+ωh,∇z −Πh(∇z)) + (tr(th), q)

+
∑

K∈Th

[(rot(th+ωh),ψ − Icl(ψ))]

−
∑

K∈Th

[〈

(th+ωh)t,ψ − Icl(ψ)
〉

∂K

]

=
∑

K∈Th

[

(th+ωh,∇z −Πh(∇z)) + (tr(th), q)
]

+
∑

K∈Th

[

(rot(th+ωh),ψ − Icl(ψ))
]

−
∑

E∈Eh

<
[[

(th+ωh)t
]]

E
,ψ − Icl(ψ) >E .

Remark 14. The summation
∑

E∈Eh

<
[[

(th+ωh)t
]]

E
,ψ − Icl(ψ) >E

appearing in the right-hand side of formula (33) contains the terms

<
[[

(th+ωh)t
]]

E
,ψ − Icl(ψ) >E,

where E is an edge of the triangulation Th contained in the boundary of Ω; in
this case it must be understood that (th+ωh)t is 0 outside of Ω.

We are now able to give upper bounds of R1∗,R2∗ and R3∗. These upper
bounds will be functions of the error indicators η1, η2 and η3. More precisely,
we have the following results.

Theorem 15. There exists a constant C independent of h such that

R1∗ ≤
(

∑

K∈Th

η1(K)r
′

)1/r′

, (36)
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R2∗ ≤ C
(

∑

K∈Th

η2(K)r
)1/r

, (37)

R3∗ ≤ C
(

∑

K∈Th

η3(K)r
′

)1/r′

, (38)

where η1(K), η2(K) and η3(K) are the local estimators given by

η1(K)r
′

= ‖A(th)− σh‖
r′

0,r′,K ,

η2(K)r = hrK
[

‖ th+ωh‖
r
0,r,K + ‖ rot(th+ωh)‖

r
0,r,K

]

+ ‖tr(th)‖
r
0,r,K +

∑

E∈∂K

hE‖
[[

th+ωh)t
]]

E
‖r0,r,E,

η3(K)r
′

= ‖f − P 0
hf‖

r′

0,r′,K + ‖as(σh)‖
r′

0,r′,K.

Proof. It follows from (9) that for every s ∈ T ,

|< R1, s >| ≤
(

∑

K∈Th

‖A(th)− σh‖
r′

0,r′,K

)1/r′

‖ s ‖0,r,Ω

and then,

sup
s∈T

|< R1, s >|

‖ s ‖T
≤
(

∑

K∈Th

‖A(th)− σh‖
r′

0,r′,K

)1/r′

.

Which is precisely the estimate (36). To show the estimate (37), we will use
(33) obtained in Lemma 13. This inequality leads, for every τ

∼

∈ Σ, to

| < R2, τ
∼
> | ≤

∑

K∈Th
‖ th+ωh‖0,r,K‖∇z −Πh(∇z)‖0,r′,K

+
∑

K∈Th
‖tr(th)‖0,r,K‖q‖0,r′,K

+
∑

K∈Th
‖ rot(th+ωh)‖0,r,K‖ψ − Icl(ψ)‖0,r′,K

+
∑

E∈Eh

∥

∥

[[

(th+ωh)t
]]

E

∥

∥

0,r,E
‖ψ − Icl(ψ)‖0,r′,E.

(39)

Now, by Lemma 3.1 in Verfürth [20], we have

‖ψ − Icl(ψ)‖0,r′,K ≤ ChK |ψ|1,r′,ωK

and

‖ψ − Icl(ψ)‖0,r′,E ≤ Ch
1/r
E |ψ|1,r′,ωE

,
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where ωK denotes the union of K with all the triangles from the triangulation
Th adjacent to the triangle K, ωE denotes the union of at most two triangles
of Th admitting E as a common edge and | · |1,r′,ω, the semi-norm of W 1,r′(ω).

Thus, using these two last estimates and the fact that

‖∇z −Πh(∇z)‖0,r′,K ≤ ChK |∇z|1,r′,K ,

the above inequality (39) yields

| < R2, τ
∼

> | ≤ C
∑

K∈Th

hK‖ th+ωh‖0,r,K |∇z|1,r′,K

+ C
∑

K∈Th

‖tr(th)‖0,r,K‖q‖0,r′,K

+ C
∑

K∈Th

hK‖ rot(th+ωh)‖0,r,K |ψ|1,r′,ωK

+ C
∑

E∈Eh

h
1/r
E ‖

[[

(th+ωh)t
]]

E
‖0,r,E |ψ|1,r′,ωE

≤ C(
∑

K∈Th

hrK‖ th+ωh‖
r
0,r,K)1/r|∇z|1,r′,Ω

+ C(
∑

K∈Th

‖tr(th)‖
r
0,r,K)1/r‖q‖0,r′,Ω

+ C(
∑

K∈Th

hrK‖ rot(th+ωh)‖
r
0,r,K)1/r|ψ|1,r′,Ω

+ C(
∑

E∈Eh

hE
∥

∥

[[

(th+ωh)t
]]

E

∥

∥

r

0,r,E
)1/r|ψ|1,r′,Ω

and so

| < R2, τ
∼

> | ≤ C
{

∑

K∈Th

(hrK‖ th+ωh‖
r
0,r,K + ‖tr(th)‖

r
0,r,K

+ hrK‖ rot(th+ωh)‖
r
0,r,K +

∑

E⊂∂K

hE‖
[[

(th+ωh)t
]]

E
‖r0,r,E)

}1/r

×
{

|∇z|r
′

1,r′,Ω + ‖q‖r
′

0,r′,Ω + |ψ|r
′

1,r′,Ω

}1/r′

.

Therefore, using (32), we obtain

| < R2, τ
∼

> | ≤ C
(

∑

K∈Th

η2(K)r
)1/r

‖ τ
∼

‖Σ
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and (37) follows immediately.
It remains to prove (38). By (11), we have for every v

∼

∈M ,

| < R3, v
∼

> | ≤
(

∑

K∈Th

‖div(σh − ph I) + f‖
r′

0,r′,K

)1/r′

‖v‖0,r,Ω

+ C
(

∑

K∈Th

‖as(σh)‖
r′

0,r′,K

)1/r′

‖η‖0,r,Ω

≤ C
(

∑

K∈Th

‖div(σh − ph I) + f‖
r′

0,r′,K

+ ‖as(σh)‖
r′

0,r′,K

)1/r′

(‖v‖r0,r,Ω + ‖η‖r0,r,Ω)
1/r.

On the other hand, following the second equation of the discrete problem (7),
we have

div(σh − ph I) = −P 0
hf .

Therefore, for every v
∼

∈M ,

| < R3, v
∼
> | ≤ C(

∑

K∈Th

‖f − P 0
hf‖

r′

0,r′,K + ‖as(σh)‖
r′

0,r′,K)1/r
′

‖ v
∼
‖M

which implies R3∗ ≤ Cη3, and the proof is completed.

4. Conclusion

In this work, we have developed and analyzed a new a posteriori error esti-
mator for a dual mixed finite element approximation of non-Newtonian fluid
flow problems. Our mixed method allows to treat, in a unified approach, both
the power law and the Carreau law. The estimator justifies an adaptive finite
element scheme which refines a given grid only in regions where the error is
relatively large. Furthermore, this estimator generalizes the one that we have
obtained in the particular case of power law (see, Farhloul and Zine [12]).
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