We extend the definition of -blossoming for polynomials in one variable to the polynomials in two variables, and we use this bivariate -blossoming to study various properties, identities, and algorithms associated with -Bézier surfaces. We construct a recursive -midpoint subdivision algorithm for the -Bézier surfaces and we prove its geometric rate of convergence.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] R. Goldman, Pólya's urn model and computer aided geometric design, SIAM J. Alg. Disc. Meth., 6 (1985), 1-28.
[2] R. Goldman, Pyramid Algorithms: A Dynamic Programming Approach to Curves and Surfaces for Geometric Modeling, Morgan Kaufman Publishers, Academic Press (2002).
[3] R. Goldman, P. Barry, Shape parameter deletion for Pólya curves, Numer. Algorithms, 1 (1991), 121-137.
[4] I. Jegdić, J. Larson, P. Simeonov, Algorithms and identities for (q, h)-Bernstein polynomials and (q, h)-Bézier curves - a non-blossoming approach, Anal. Theory Appl., 32 (2016), 373-386.
[5] I. Jegdić, P. Simeonov, V. Zafiris, Quantum q-Bézier surfaces based on bivariate q-blossoming, Preprint.
[6] H. Oruç, G.M. Phillips, A generalization of the Bernstein polynomials, Proc. Edinb. Math. Soc., 42 (1999), 403-413.
[7] H. Oruç, G.M. Phillips, q-Bernstein polynomials and Bézier curves, J. Comput. Appl. Math., 151 (2003), 1-12.
[8] G.M. Phillips, A de Casteljau algorithm for generalized Bernstein polynomials, BIT, 37 (1997), 232-236.
[9] G.M. Phillips, Bernstein polynomials based on q-integers, Ann. Numer. Math., 4 (1997), 511-518.
[10] G.M. Phillips, A survey on the q-Bernstein polynomials, IMA J. Numer. Anal., 30 (2010), 277-288.
[11] P. Simeonov, R. Goldman, Formulas and algorithms for quantum differentiation of quantum Bernstein bases and quantum Bézier curves based on quantum blossoming, Graph. Models, 74 (2012), 326-334.
[12] P. Simeonov, R. Goldman, Quantum B-Splines, BIT, 53(1) (2013), 193-223.
[13] P. Simeonov, R. Goldman, Quantum Bernstein bases and quantum Bézier curves, J. Comput. Appl. Math., 288 (2015), 284-303.
[14] P. Simeonov, V. Zafiris, R. Goldman, h-blossoming: a new approach to algorithms and identities for h-Bernstein bases and h-Bézier curves, CAGD, 28 (2011), 549-565.
[15] P. Simeonov, V. Zafiris, R. Goldman, q-blossoming: a new approach to algorithms and Identities for q-Bernstein bases and q-ézier curves, J. Appr. Theory, 164, No 1 (2012), 77-104.
[16] D. Stancu, Approximations of functions by a new class of linear polynomial operators, Rev. Roumanie Math. Pures Appl., 13 (1968), 1173-1194.
[17] D. Stancu, Generalized Bernstein approximating operators, Itinerant Seminar on Functional Equations, Approximations and Convexity, Cluj-Napoca (1984), 185-192.