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Abstract: We extend the definition of h-blossoming for polynomials in one
variable to the polynomials in two variables, and we use this bivariate (hq, ha)-
blossoming to study various properties, identities, and algorithms associated
with (hq, he)-Bézier surfaces. We construct a recursive (hi, he)-midpoint sub-
division algorithm for the (hq, hy)-Bézier surfaces and we prove its geometric
rate of convergence.
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1. Introduction and Summary

The classical Bernstein polynomials, named after Sergei Natanovich Bernstein,
were introduced in 1912, while Bézier curves and surfaces were studied by Paul
de Casteljau and Pierre Bézier in late 1950’s and early 1960’s. One impor-
tant property of Bézier curves and surfaces is that they could be computed
using recursive evaluation algorithms based on certain structural properties of
Bernstein basis functions. The classical Bernstein basis functions, Bernstein
polynomials, and Bézier curves and surfaces are used in various areas of nu-
merical analysis, computational geometry, computer aided geometric design,
approximation theory, and other fields.
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The quantum g-analogues of Bernstein basis functions were introduced and
studied by Phillips et al. in [6]-[10], while the h-analogous were studied by
Stancu in [16, 17], Goldman in [1, 2], and Goldman and Barry in [3]. The
theory of quantum ¢- and h-Bézier curves, in the context of quantum ¢- and
h-blossoming for polynomials in one variable, was introduced by Simeonov et
al. in [14, 15]. The importance and usefulness of quantum ¢- and h-blossoming
is the quantum blossoming representation of quantum ¢- and h-Bézier curves,
surfaces, and splines, which gives efficient algorithms for recursive evaluation,
degree evaluation, subdivision, and other properties (for example, see [11]-
[13] by Simeonov and Goldman). Some of these properties, algorithms and
identities were also derived using the standard mathematical induction and
other elementary techniques in [4] by Jegdié¢, Larson, and Simeonov. Recently,
Jegdi¢, Simeonov, and Zafiris used the tensor product and generalized concept
of g-blossoming for polynomials in one variable introduced in [15] to define g¢-
blossoming for polynomials in two variables leading to the study of g-Bézier
surfaces in [5].

The main goal of this paper is to extend the definition of A-blossoming
for polynomials in one variable to (hq, hg)-blossoming for polynomials in two
variables, and to use it to generalize identities and algorithms for h-Bernstein
polynomials in one variable from [14] to the case of polynomials of two variables
and to study (h1, he)-Bézier surfaces.

The paper is organized as follows. In Section 2 we define the bivariate
(h1, he)-Bernstein basis functions and (hi, he)-Bézier surfaces. We obtain an
analogue of the de Casteljau evaluation algorithm based on the recurrence rela-
tions for (hj, ha)-Bernstein basis functions. In Section 3 we define the (hq, ha)-
blossoming and in Theorem 5 we prove that there exists a unique (hq,hs)-
blossom for any polynomial of two variables. Section 4 deals with recursive
evaluation algorithms (Theorems 6 and 7) and in Theorem 8 we prove that ev-
ery polynomial surface is an (hy, he)-Bézier surface. We obtain several results
analogous to the univariate h-blossoming such as: that (hq, hy)-Bernstein basis
functions form a basis for polynomials, uniqueness of (hy,hs)-Bézier control
points, dual functional property of the (hi, ha)-blossom, Marsden’s identity in
bivariate (hq, ha)-case, and representation of constant and linear functions. We
conclude the paper with Section 5 in which we present a midpoint subdivision
algorithm for (hi, hy)-Bézier surfaces and we prove its convergence (Theorems
16 and 17). We illustrate this algorithm on several examples of (hi, he)-Bézier
surfaces using Mathematica.
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2. Definition of (hi, hy)-Bernstein Basis Functions
and (hy, he)-Bézier Surfaces

In this section we introduce the definition of (1, he)-Bernstein basis functions in
two variables and the definition of (hi, ho)-Bézier surfaces. Using the recurrence
relations for bivariate (hi, he)-Bernstein basis functions we derive the (hq, ha)-
de Casteljau evaluation algorithm.

We recall the definition of the h-Bernstein basis functions over an interval
[a, ]

9

k=1 —a-+1 n—k—1 i
By (t; [a,b]; h) = <Z> Iico (t Hj_—olle}ai Z}S) t+ih)

where k = 0,...,n and the values of the parameter h for which b = a — ih for
some ¢ =0,...,n — 1 are excluded.

Definition 1. The bivariate (hj, he)-Bernstein basis functions of degree
m in ¢t and n in s over [a,b] X [¢, d] are given by

Byi" (t,s:[a,b] % [e,d]s hu, he) == By (t; [a, b]; ha) By (s; [e, d]; ha),
where £k = 0,...,m and [ = 0,...,n, and the values of hy and ho for which

b= a—ihy (forsomei=0,...,m—1)and d = ¢c—jhs (for some j =0,...,n—1)
are excluded.

Using the fact that h-Bernstein basis functions satisfy the translation and
scale invariance properties, we obtain these properties in the bivariate case:

B,Z?l’n(t-i—a,s—kﬁ;[a—i—a,b—ka] X [c+ B,d+ B]; hy, hs)

= B/Z,lin(tass [a,b] X [¢,d]; hi,ha), for every «, 3 € R, (1)
By (at, Bs; [aa, ab] x [Be, Bd]; ahy, Bha)
= BZ?in(ta s;[a,b] x [e,d]; h1, he), for every a, B € R\ {0}. (2)

From now on, to shorten the notation in the formulae, we write R and h
instead of [a,b] X [c,d] and (hq, he), respectively.

Using the recurrence relations for h-Bernstein basis functions, we obtain
the following recurrence relations for the bivariate case:

Bg:g(t, $;R; ﬁ) =1,
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andifk=1,...,m—1landl=1,...,n—1, we have

BZ?Z’”(t, siR:h) 3)
t—a+(k—1h s—c+ (1 —Dhy m 1,1 B
- By M (s R b
b—a+(m—1hyd—c+ (n—1)hy k-LI-1 (t,s;R;h)
b—t+(m—k—1h s—c+(=Dhy m 101 B}

B (s Rk
b—a—l—(m—l)h1 d—c+(n_1)h2 k-1 (78a ) )
t—a+(k—1h1d—s+n—101—Dhy 11 .

Bt ss Ry b
b—a+(m—1hy d—c+(n—1)hy ~F-U (t,s;R; h)
b—t+(m—k—1h1d—s+(n—1—1)hs
b—a+(m—1)h d—c+(n—1)hs

Bzﬁbfl’"fl(t, siRih).

Definition 2. The (h1, ha)-Bézier surface of degree m in t and n in s over
a rectangle R with control points P; j, where ¢ = 0,...,m and j =0,...,n, is
defined by

ZZP B (t, 1R h),  (t,s) €R.

1=0 j=0

Using the recurrence relation (3) we obtain the (hj, ha)-de Casteljau evalu-
ation algorithm:

e define P,S’lo(t,s) =Py, for k=0,...,mand [ =0,...,n,

eifu=1,...,mand v=1,...,n, define recursively

Pﬁ’v(ts)
b—t+ (m— k—u)hld—s—l—(n—l—’v)fupu 1u—1
b—a-+ (m—u)h d—c+ (n—wv)hy
N t—a+ khy d—s+(n—l—v)h2pu1v1
b—a+(m—uh d—c+(n—v)hy FHld
b—t+(m—k—u)hy s—c+lho R ITI
b—a+ (m—u)hy d—c+(n—v)hy BIFL
t—a—l—kh1 S—C+lh2 U*LU*l(t 8)
b—a+ (m—u)hid—c+ (n—uv)hy FHLHFLTE

(t,5)

(t,5)

for k=0,....m—uandl=0,...,n—wv.
The induction on m and n shows that Pyy"(t,s) = P(t,s).
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3. Definition and Properties of (h, h2)-Blossoming

In this section we define an (hy, hy)-blossom, for a given polynomial of two
variables, and we prove its existence and uniqueness.

Definition 3. Let P(t,s) be a polynomial of degree m in ¢ and n in s.
The (hi, he)-blossom of P(t,s) is a polynomial

p(ut, -y Ui VL, ., Un h)

which satisfies the following (hi, he)-blossoming axioms:
e symmetry: for every two permutations o1 and o9 of the sets {1,...,m}
and {1,...,n}, respectively,

-

p(ula sy Ums U1, - 7vn;h) :p(u01(1)7 <. 7uo'1(m);v02(1)7 <. 7v02(n);ﬁ)7

o multi-affine:

—

plut, ..., (1 —a)ug + azg, ..., Um; V1, ..., Un; h)
= (1 —a)p(ut, ..., Uky. ., Up;V1,..., 05 h)
Fap(Ut, ..oy Zhy ooy Ui ULy ..y Ups h)

and .
p(ul, ..y Um;vi, ..., (1 = B)og + Pwg, ... vn h)
=(1 —B)p(ul,...,um;vl,...,vk,...,vn;ﬁ)
—|—,8p(u1,...,um;vl,...,wk,...,vn;ﬁ),
e (hy, hy)-diagonal:

p(t,t —hy,...,t —(m—1)h1;8,8 —ho...,s — (n—1)hg; h) = P(t,s).

Example 4. Consider P(t,s) as a cubic polynomial in t and quadratic in

5.
o If P(t,s) = 1, then p(u1,ug, us; vy, vo; ﬁ) =1.
o If P(t,s) = t, then p(u1,us, uz;v1,v2; h) = (uy + up +uz)/3 + hy.
o If P(t,s) = s, then p(ui, ua,uz; v1,v2; h) = (v1 +v2)/2 + ha/2.
o If P(t,s) = t?, then
o + + 2 4
p(u1, uz, us;v1,v2; h) = e UQSUS L g(ul +uz + ug)hy + §h%-
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e If P(t,s) =ts, then

T u1 +ug +u v+ h
p(ur, ug, uz;v1,v5 h) = (M —|—h1) <¥ + _2) .

3 2 2
Let . .
Qm,n(tv 5, E) = H(t - (Z - 1)h1) H(S - (] - 1)h2)'
=1 j=1

We use partial derivatives of ®,, ,, to define

B 1 aernf(kJrl)
q)m,n;k,l(t7 s;h) = (m — k)'(n —)! am,ktan,ls(bm,n

—

(t,s;h),

-

where k =0,...,m and [ =0,...,n. Note that ®,, ,,. (¢, s; h) is a polynomial
of degree k in ¢t and [ in s, and that {(pm,n;k,l(tas;ﬁ)}’ k=0,....m, | =

0,...,n, is a basis for polynomials P(t,s) of degree m in ¢ and n in s. Let
Om:o(u1,...,uy) =1 and
Ok (U1, - Upy) 1= Z Uiy - Uy, k=1,...,m

1<it <...<ip<m

denote the elementary symmetric functions in m variables, and let
Ot (Ul ooy Umi V1, -y Un) = O (UL, -« o Um) Pt (V1 -2, Up)-

Theorem 5. For every polynomial P(t,s) of degree m in t and n in s,
there exists a unique (hy, ha)-blossom.

Proof. Let P(t,s) be a polynomial of degree m in t and n in s. Then we
write

n n
P(t,s) = Z Z k1 Pk (t; 83 R)
k=0 1=0
and the polynomial
p(ul,...,um;vl,...,vn;ﬁ)

m n
= g Zcm Okt (Ul - ooy U VL, -2, Up)

k=0 [=0
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is an (hy, he)-blossom of P(t,s). To prove uniqueness, we assume that there are
two (hy,hg)-blossoms p = p(u1,...,Un;V1,...,Up;h) and r := 7(Ug, ..., Up;

U1,...,0p;h). Since every symmetric multi-affine polynomial has a unique rep-
resentation in terms of elementary symmetric functions, we have

m n
PZE E A 1Pkl (UL - o U3 VL, -y V),

k=0 1=0
m n
r= Z Z bk,l@m,n;kz,l(ula ceey UM U1, - 7/Un)7
k=0 [=0
for some constants ap; and by;, K = 0,...,m and [ = 0,...,n. Using the

(h1, ha)-diagonal property we have
t,...;t—(m—1Dhy;s,....s — (n—1)hg; h)
n
k1 Pk 1 (F, 55 1),
0

P(t,s)=p

—~

Il
TM:

l

—

P(t,s)=r(t,...,t —(m —1)hy;s,...,s — (n—1)hg; h)
=3 b @rmialt, sih).
k=0 1=0
Hence ay; = b for all k =0,...,mand [ =0,...,n. ]

4. (hy, hy)-Evaluation Algorithms

We construct (hy, hg)-recursive evaluation algorithms and we prove that every
polynomial in two variables is an (hq, hy)-Bézier surface. We also prove the
dual functional property of the (hq, ho)-blossom and we present an analogue of
the Marsden Identity.

Theorem 6. Let P(t,s) be a polynomial of degree m in t and n in s with
(h1, ha)-blossom p(uy, ..., Up;v1,. ..,V h). Define

Q) =pla—ihy,...,a— (m—1)hy,bb—hy,....b— (i — 1)hy;

C—jhg,...,c—(TL—1)h2,d,d—h2,...,d—(j—l)hg;h),
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i=0,....,m,7=0,...,n,and for k =0,...,m—1,1=0,...,n— 1, define
recursively

k+1,1+1 . o
Q’i,j (Ul,...,Uk+1,’l)1,...,’l)l+1,h)

= (1= apa)(1 = Bi) QY (ua, ... wgivn,... uis h)
+ak‘l( IBl,])Qz+1j(u17"'7uk;vl7"'7/Ul;ﬁ)

+ (1 — Oék,i)ﬁl,jQi,jH(ul, e U VL, - v h)
k.l . e
+ B Qi jra(ua, - uks v, - v h),

1=0,....m—k—1and j=0,...,n—1—1. Here,

Uk+1 —a-+ (2+k)h1 V41 — C— (]+l)h2
Vhi b—a+ kh and i, d—c+ I
Then for each k =0,...,m and [ =0,...,n, we have
le(ul,...,uk;vl,...,vl;ﬁ) =

pla— (k+i)hi,...,a— (m—1)hy,b,....,0— (i —1)hy,u,...,ux;
c— (4 j)has....c—(n—"Dha,d,....d— (G — Dhg,v1,...,03h),

1=0,....m—k, 5=0,...,n—k. In particular,

- -

gf(’)n(ul,...,um;vl,...,vn;h) =p(uty -y U V1, .o, U h).
Proof. The result follows by induction on k£ and I. O

Theorem 7. Let P(t,s) be a polynomial of degree m in t and n in s with
(h1, he)-blossom p(ui, ..., Um;V1,...,Un; H) There exist n!m! affine invariant,
recursive evaluation algorithms for P(t,s) defined recursively as follows. Let
01,09 be permutations of {1,...,m} and {1,...,n}, respectively. Define

P =p(a—ihy,...,a— (m—1)hy,b,b—hy,....b— (i — 1)hi;
C_jh27"'7c_(n_l)h27d7d_h27“'7d_(j_l)h%ﬁ)a

1=0,....,m,7=0,....,n,and fork=0,.... m—1andl=0,...,n—1, define

recursively

PR ) i= (1= ) (1= 01,) P (2, 8) + a1 — 81) P (Es)

! k,l
+ (1 Yk Z)(Sl,] z]+1( ) + Yk 15173 z+1 ]Jrl(t 8)



ALGORITHMS AND IDENTITIES FOR BIVARIATE... 329

1=0,....m—k—1and j=0,...,n—1—1, where

_t—a—(Jl(k+1)—1—’i—k)h1

Thi = b—a+ kh
and
5 ‘_S—C—(Ug(l—i-l)—l—j—l)ha
i d—c+lhy '
Then for k=0,...,m and [ =0,...,n, we have

Pt s) =p(a— (k+i)ha,....a— (m—1)hy,b,....b— (i — 1)hy,
t— (01(1) - 1)h17'--7t_ (Jl(k) - 1)h17
C_(l+j)h27"'7c_(n_l)h27d7"'7d_(j_1)h27

-

5= (02(1) = Dha, -5 — (oa(1) — 1)ha; ), (1)
1=0,....m—kandj=0,...,n—1[. In particular,
P(Td”(t, s) =p(t — (o1(1) = 1)h1,...,t — (o1(m) — 1)hq;

—

s —(02(1) = 1)ha,...,s — (o2(n) — 1)ho; h)
=P(t,s).

Proof. This result follows from the previous theorem by substituting u; =
t—(o1(i) = 1)hy and v; = s — (02(j) = 1)ho,i=0,...,mand j=1,...,n. O

Theorem 8. Let P(t,s) be a polynomial of degree m in t and n in s with
(h1, ha)-blossom p(uy, ..., Up;v1,...,0;h). Then

P(t,s)=> > pla—ihy,...,a—(m—=1)hy,b,....b— (i —1)hy;

i=0 j=0
¢—jhg,....c—(n—1hg,d,...,d— (j — 1)hg; h)
x B; 7 (t, sy Ry D). (5)

Proof. We proceed by induction on m and n. Note that (5) is true if
m =n = 0, since Bg’g(t, $;R; ﬁ) = 1. Assume that (5) is true for all bivariate
polynomials of degreé at most m — 1 in ¢ and at most n — 1 in s. Let P(¢,s) be
a polynomial of degree m in ¢t and n in s. By the previous theorem we have

P(t,s) = Py"(t,s) = (1 — Ym—1,0)(1 — 6u-1,0) Py "' (¢, 5)
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+ Ym— 10(1_571 IO)Pm L= l(tas)
+ (1 — Ym—1,0)0n— 10P5nl bl s)
+ Ym-1,00n-10P] 1 bt s).

Furthermore, using (4) with the identity permutations yields

Po " (ts) =pla — (m — Dhy t,t — hy, ...t — (m — 2)hy;
c—(n—1)h2,s,5—h2,...,s—(n—2)h2;f_£),
Pl N (t, s) =p(b, byt — P, ..t — (m— 2)h;
c—(n—l)hg,s,s—hg,...,s—(n—2)h2;f_i),
PN s) =pla — (m — Dhytt — hy, ..t — (m = 2)hy;
d,s,s—hg,...,s—(n—2)h2;ﬁ),
PNt s) =p(b byt — Pyt — (m— 2)h;
d,s,s—hg,...,s—(n—2)h2;ﬁ),

Notice that the (hi, hs)-blossoms of P:}fl’"fl(t, s), 4,5 =0,1, are

-

p070(ul, ey U —150U1, . .. ,’Un_l;h)

=pla— (m—1Dhy,u1,...,upm—1;¢— (n— 1)ho,v1,...,0n-1;h),

-

pLo(ul, ey U —150U1, . .. ,’Un_l;h)
=p(b,ui,...,um—1;¢— (n— 1)ha,v1,...,0p-1;h),
p071(ul, ey U —150U1, ... ,’Un_l;h)

-

:p(a - (m - 1)h1,U1,. .. ,Um_l;d,vl, s 7vn—1;h)7
Pra(Us, ..y U 1301, - Up1; h)
=pb,ur, ..., um—1;d,v1,...,05-1;h).

Therefore, by applying the 1nduct10n hypothesis to P, =Lt s) on [a—ihy, b—

ih1] X [c — jha,d — jha], i,7 = 0,1, we get
m—1n—1
P(%_l’n ! pla— (m—1)hy,a —ihy,...,a — (m —2)hy,
=0 j=0

b,b—hl,...,b—(’i—l)hl;c—(n—l)hg, —jhg,...,c—(n—Q)hg,
d,d—hy,....d—(j— 1hg;hi, ha) x BNt 8 R; h),
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—1n—1

Pl e, s) = plb,a— (i +1)hi,...,a— (m—1)hy,
0

i=0 j=
b—hl,...,b—ihl;c—(n—1)h2,c—jh2,...,c—(n—2)h2,
d,...,d—(j = Vhoiha, ho) x BNt sla — ha,b— I x [e,d]; B),

m—1n—1

PIT e s) = )0 pla— (m = Dhy,a—ihy,...,a— (m— 2)hy,

=0 j=0
b,b—hl,...,b—(i—l)hl;d,c—(j+1)h2,...,c—(n—1)h2,
d—hy,...,d— jhy;hy hy) x B V"Nt s5[a,b] x [c — ha,d — hal; h),
and

m—1n—1

P s) = ) 0 p(bya— (i+1ha,. .. a— (m— 1)hy,

i=0 j=0
b—hl,...,b—ihl;d,c—(j+1)h2,...,c—(n—1)h2,
d—hg,...,d— jha;hi, he)

x BNt 85[0 = hayb — ha] X e = ha,d — Dol ).
By (4), we obtain

m—1n—1
P (g 5) = ZPOOBmlnl(tsRh)
=0 j5=0
By (4) and (1), we have
A ()
m—1n—1
=N P BIT Y s [a — ha b — ha] x [e,d]; h)
=0 j=0
n—

PZ(LOL]BW Ln— l(t + hi,8;R; H)

s
O
h
O

Similarly,

m—1ln—

1
PO BT T (¢, s 4 hyi R B)

1
1,n—1
Py s)
=0 j=0
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m—1n—1
le’lfl,n 1 ZP+1J+1 B™~ 1,n— 1(t+h1,8—|—h2,7?, h)
=0 j=0
Hence,
m—1n—1
P( ) (1_7771 10 1_nlO ZZPOOBW b 1(7aRh)
=0 j=0
m—1n—1
+ P)/m—l,O(l - 571—1,0) Z ZPSF(L]BW Ln— l(t + hl,y;R; h)
i=0 j=0

m—1n—1

+ (L= Ym-1.0)0n-10 Y O PO BTN (E s + hos R; R)

=0 j=0
m—1n—1

+ Ym—1,00n— 1OZZPOO

i1 By BNt 4 by, s+ has Ry ).
=0 j=0

We rewrite this expression as

P(tv ‘9) = (1 - ’mel,O)(l — Op—1 O)

ZPOOBm 1,n— lts

ZPOOBm 1,n— l(t 8)

+ Ym-1,0(1 = 6n—1,0)
0,0
Z P 0B

n—
m 1,n 1(t+h1,8)—|—ZPOOBm 1,n—1
+ (1 = Ym-1,0)0n-1,0

m—1,5 (t+h175)

m—1
Z Py By T s+ ho) + > PY)BI A Tt s + Do)
=1

+ Ym—1,00n-1,0 <ZPOOBm Ln—l

i—1,n—1 (t+h175+h2)
=1

n—
+ZPOOB:; %y L (t+ hi, s+ hy)
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m—1n—1
+ (1= Ym-10)(1 = 0n10) D > PIIBIT T, 5)
=1 j=1
m—1n—1
+ Ym-1,0(1 = dn—1,0 ZZ OOBZmll]” Yt + ha,s)
=1 j=1
m—1n—1
+ (1= Ym-10)0n-10 Y > PUPBI " (t s + hy)
=1 j=1

m—1n—1
+ 7m—1,05n—1,0 Z Z PZ(’]]’OBZWZI}]’TjIl (t +hi,s+ h2) )
i=1 j=1

(6)

where the domain for all of the above (hi,hs)-Bernstein polynomials is the
rectangle R = [a,b] X [¢,d]. Note that

B t—a 1— _b—t+(m—1)h1
Fm-1,0 = b—a+ (m—1)hy’ Tm-10 = b—a+(m—1)h
and
5 B s—c¢ 15 ~d—s+(n—1)hy
T g e (n—1Dhy’ T e (n— Dhy
First we remark that in (6) the coefficient of P(()) ’g is
(1= m-1.0)(1 = 8n1,0) By " (t,5) = By (8, 9).

Similarly, the coefficients of P , pY 0 and Py, are Byy"'(t,s), By (t,s) and
Brn(t, s), respectively.

. . .. 0 —
Next we consider the expression containing { n-l

07 o .
Po,j j=1> 11 (6):

n—
(1 = Ym-1,0)(1 = 0n—1,0) Z P(E{’JQB(%_I’”_I(@ s)

+ (1 = Ym-1,0)0n— 102

1

1, —1
]+1 m n (

t,s+ ha)

n

(]

Py (1= ym10)B(¢)

1

—_— .

% {1 = 0010 By (5) + 61,087 (s 4 ha) |
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By a straightforward calculation we show that (1 — y,—10) By ' (t) = BJ(t)
and (1 — 8,1 O)anl( )+ 5n,170B;-’:11(8 + h2) = B} (s). Hence the expression
containing {Fy’; ~in (6) is

n—1

0,0 o,
> Poi By (ts).
j=1
Similarly, the expressions containing {PO O}Z 1 {POT? mt and {PO 0 — | are
m—1 m—1
S O PWBI"(ts), > PYBI(t,s), and ZPO OB, s),
i=1 i=1

respectively. Finally, we consider the remaining four lines in (6):

m—1n—1
DD P =1 0) BTN + Ym-10BP T (4 )}
i=1 j=1
x {1 = 601,0)BI () + Bu10BIT (s + o) }
m—1n—1 m—1n—1
- Py BIOB] ()= D D PBI" ¢ 9).
i=1 j=1 i=1 j=1

Therefore,

O

Corollary 9. The (h1, hy)-Bernstein basis functions of degree m in t and
n in s on a rectangle R form a basis for the polynomials of degree m in t and
n in s.

Corollary 10. The (hy, he)-Bézier control points of an (hy, hy)-Bézier
surface on a rectangle R are unique.

Theorem 11. Let P(t,s) be an (hy, hy)-Bézier surface of degree m in t
and n in s on a rectangle R with (hy, he)-blossom p(uy, ..., Um;v1,..., U h).
Then the (hy, he)-Bézier control points of P(t,s) are given by

f’i,j :p(a—ihl,...,a—(m—l)hl,b,b—hl,...,b—(i—l)hl;
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c—jha,....c—(n—1Dhy,d,d—ha,....d— (j — 1)ha; h),

wherei=0,...,mand j =0,...,n
Proof. This result follows from Theorem 8 and Corollary 10. O

Theorem 12. Let P(t,s) be an (hy, hy)-Bézier surface of degree m in
t and n in s on a rectangle R with control points {F;;}, i = 0,...,m and
j=0....n Let {P"}, k=0,....m 1 =0,...nandi=0,...m-F
j=0,...,n—1, be the nodes in the (h1, ha)-evaluation algorithm for P(t,s) for
the identity permutations. Then

l

Pt 5) ZZRWHqu(tﬂhl,s+3h2772 h).
r=0 ¢g=0

Proof. From Theorems 6 and 7 we have that the (hy, ha)-blossom of Pilfj’-l(t, s)

. k,l 7
is @;j(u1,...,up;v1,..., vz h). Furthermore, we have

kol
Pt s) =D QU (A—rhy,...,A— (k—1)hy,

r=0 ¢q=0
B,B—hl,.. ,B ( )hl,c—qhg,...,c—(l—l)hg,

D,D —hy,...,D — (g — 1)ha; h) x BEL(t, s;[A, B] x [C, D); )
k l
= Z ZBJrr,jJrqu]f,}f(t +ihy, s + jha; R; ),
r=0 q=0

using the property (1) and the intervals [A, B] = [a —ih1,b—ih;] and [C, D] =
[c = jha,d — jha]. -

Using Propositions 5.1, 5.2 and 5.9 from [14], we state their analogues in
two variables.

Proposition 13. (Marsden’s Identity)

[T T2 (2 — ¢+ iha)(y y—stih) g (D

S TLI6 o et k) 2222 (0
Xanzn ]( , Y, [ ( —1)h1,b] X [C— n—l)hg,d];—hl,—hg)
x Bl (t, 5 R; h).
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Proposition 14. (Representation of Constant and Linear Functions)

L= Biyz,y;R;h),

k=0 1=0
Z ( ‘o + Eb> B, (t,s;R; h),

N\~ (N ]
( c+ Ed> B?j’"(t,s;R; h).
=0 j=

M

Proposition 15. The functions @y, ,.5(t, s; ﬁ) satisfy

—

(I)m,n;k,l(ta 53 h) =
Zzwm,n;k,l(a_ihla'“ y @ — (m_ 1)h17b7"° 7b_ (Z - 1)h17
1=0 j=0

c—jha,...,c—

(n—Vha,d,...,d— (h — 1)ho; h)
x B, (t,s;R;h).

5. A Subdivision Algorithm for (h;, hy)-Bézier Surfaces

In this section we present a subdivision algorithm for (hi, he)-Bézier surfaces
and we illustrate it on several examples.

Theorem 16. Let {P,;}, i = 0,...,m, j = 0,...,n, be the control
points of an (hy, he)-Bézier surface P(t,s) of degree m int and n in s on a
rectangle R := [a,b] X [e,d] with (hy, hg)-blossom p(ul,...,um;vl,...,vn;ﬁ).
Let x € (a,b) and y € (¢, d).

e LOWER-LEFT (hy, hy)-subdivision
A control polygon for the surface P(t, s) over the subrectangle [a, x] X [c, y]
is generated by selecting o1(k) = k, k = 1,...,m and o3(l) =1, | =
1,...,n in Theorem 7. Then

m n

P(t,s) =Y > BB (t s [a.a] x [e,y]: h),

k=0 =0
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where
Pk:l =p(a — khy,...,a— (m —1)hy,z,...,x — (k— 1)hy;
c—lhg,...,c—(n—1)h2,y,...,y—(l—1)h2;f_£),
k=0,....mandl=0,...,n. Moreover,

Py —ZZPMBM (2,4 R; h).

7=0r=0

e UPPER-LEFT (hy, hy)-subdivision

A control polygon for the surface P(t, s) over the subrectangle [a, x| X [y, d]
is generated by selecting o1(k) =k, k=1,...,m and o9(l) =n+1—1,
[=1,...,n in Theorem 7. Then

=SS RUEB 5t asa] * [y, di ),

k=0 1=0
where
P,glL =p(a — khy,...,a— (m —1)hy,z,...,x — (k — 1)hy;
y—1lhy, ...,y — (n—1Dhg,d,...,d— (I —1)hg;h),
k=0,....,mandl=0,...,n. Moreover,

kl —ZZPJrBJan ll z,y; Ry h).

7=0 r=I

¢ LOWER-RIGHT (hy, hy)-subdivision

A control polygon for the surface P(t,s) over [z,b] x [c,y] is generated by
selecting o1(k) =m+1—k, k=1,...,mand o9(l) =1, =1,...,n in
Theorem 7. Then

ZZ FBE (53, 0] < [e,y)s h),

k=0 1=0

where

Pkl =p(x — khy,...,z — (m —1)hy,b,....b— (k — 1)hy;
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c—lhg,...,c—(n—l)hg,y,...,y—(l—l)hg;f_i),
k=0,....mandl=0,...,n. Moreover,

kl —ZZP B]mkkrl (z,y; R; h).

j=k r=0

e UPPER-RIGHT (hy, hy)-subdivision

A control polygon for the surface P(t,s) over |x,b] X [y, d] is generated by
selecting o1(k) = m+1—k, k=1,...,mandos(l) =n+1-1,l=1,...,n
in Theorem 7. Then

P(t,s) ZZPglRBgl”(t s; [z, 0] x [y, d]; h),

k=0 1=0
where
P =p(x — khy,...,x — (n — 1)h1,b,...,b— (k= 1)hy;
y_lh277y_(n_1)h27d77d_(l_1)h27ﬁ)7
k=0,....mandl=0,...,n. Moreover,
m—k,n—I 7
:ZZP rBj ko (x,y; R; h).
j=k r=l
Proof. The results follow from Theorem 7. O

Theorem 17. Let P(t,s) be an (hy, hy)-Bézier surface defined on the rect-
angle R := [a,b] x [¢,d]. The control polygons generated by (hi, he)-midpoint
subdivision algorithms converge uniformly to P(t,s) at the rate of 2=~ , where
N is the number of iterations.

Proof. Let © € (a,b) and y € (c¢,d) be arbitrary. In the first iteration we
subdivide the surface P(t, s) into four segments over subrectangles [a, x] X [¢, y],
[a,z] X [y,d], [z,b] X [c,y] and [z,b] X [y, d] and we use Theorem 16 to compute
the control points for each segment. In the Nth iteration, N > 2, we subdivide
each of the four surfaces generated at the (N — 1)th iteration.
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Next, we estimate the areas of the corresponding 3d control polygons and
we prove that, in the case when = (a +0)/2 and y = (¢ +d)/2, they converge
to the original (hy, ho)-Bézier surface uniformly at the rate 2=V. First, assume

=33 A Bt 53 ).

p=0rv=0

—

Then the (h1, hy)-blossom of P(t,s), p(u1,...,Un;V1,...,Un;h), is

m n
§ § AM,I/SOm,TL;M,V(ulu"'7um;/U17'"J/Un)'

n=0r=0

To estimate the area of the 3d surface polygon Py, resulting from the lower-
left subdivision, with vertices Pk;L,sz Pkal b P,f_fl 141 and PkLl]jH, we estimate
the areas of triangles A; (with vertices PkLlL , PLE i1,y and P Ll ) and Ay (with
vertices P,ffl o> P,CLJFL1 141 and PkaJrl). We start by estimating the length of the
segment [PLE o PkLl ]. By Theorem 16 we have

pih - P
=pla—(k+1hy,...,a— (m—1)hy,x,x — hy,...,x — (k — 1)hy;
c—lhg,...,c—(n—l)hg,y,y—hg,...,y—(l—l)hg;f_i)

—pla—khi,...,a— (m—1)hy,z,x — hy,...,x — (k — 1)hy;
c¢—lho,... c—(n—l)hg,y,y—hg,...,y—(l—l)hg;ﬁ)
_ZZAW a)pm—1—1(a — (k+Dhy,...,a — (m — 1)hy,

pu=1v=0
x,x—hi,...,x— (k—1)hy;hy)
X ()Dn;l/(c_lh%“'vc_ (n_l)h27y7y_h27"'7y_ (l_l)h2;h2)7

and, therefore,

| k+1l kl

<ol 323 A Gmc(lal, l} + (m— DAy ) (n-))
pu=1v=0

< mae 4+ (n = 1)) ()
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<\x—arM122( )(Z)S’x‘a’Mlé(f)f;@

pu=1v=0
= |z — a|M12™" = My|x — a,
where
M; = A, -1 "
V= o (Al ma (maxlal -+ G~ Dl
-1 v,
x gma (max{lel, ] + (n — 1)[hal})
Similarly, |P,€LILJrl PEL) < Maly — ¢f, and, therefore, |A1] < Ms|x — ally — ¢,
with M3 = M3, implying |Py,| < My|lz —al|ly — ¢|, where M, = 2M3. Similarly,
the areas of the control 3d subpolygons P} ; arising from the upper-left, lower-
right and upper-right (1, ha)-subdivisions can be estimated by [Py ;| < My|z —
alld = yl, [Prul < Malb— zlly — c| and [Py < Ma|b — z[|d — y|, respectively.
Let P(t,s) be a segment of the original (hq,h2)-Bézier surface generated
after N iterations and let P(t,s) be the corresponding control polygon. Then
P(t, s) is the restriction of P(t, s) over the subrectangle R = [to, t1] X [s, s1] C R
of area (b — a)(d — c)/4" and P(t,s) and P(t,s) coincide at the corner points.
Hence,

]P(t, s) —P(t,s)| = |P(t,s) — P(t,s)]
< |P(t,s) = P(to, s0)| + [P(to, s0) — P(t,s)]

max 8—(7’0) |t —to] + max 8—P(TU) |s — so]
T (r0)eR| Ot 0 (r,0)eR | Os ’ 0
Ms(b—a)(d —c)
+ Myt —tol|s — so| < 5N ,
for every (t,s) € R, where
1 oP 1 oP My
M; = . or My
> d—c(rH};)eR 825( )'—'—b—a(rr,r(l:)lé{R 0s (T’J)‘+2N

O

Example 18. We consider three (hi, ha)-Bézier surfaces on the rectangle
[0,1] x [0,1]. We perform the recursive (hy, ha)-midpoint subdivision algorithm
on each surface and we plot both the surface and the control points obtained
in the 4th iteration of the subdivision algorithm.
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Figure 3: An (hy, hy)-Bézier surface quadratic in both ¢ and s.
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