SOME RESULTS ON THE q,k AND p,q-GENERALIZED
GAMMA FUNCTIONS

Abstract

In this paper, the authors present some properties and inequalities for the p,q-generalized psi-function. Also they obtain double inequalities bounding ratios of q,k and p,q-generalized Gamma functions.

Some of the results in this paper are presented at International Conference on Applied and Mathematical Modeling ICAAMM 2017.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 30
Issue: 4
Year: 2017

DOI: 10.12732/ijam.v30i4.4

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] G.E. Andrews, R. Askey and R. Roy, Special Functions, Encyclopedia Math. Appl. 71, Cambridge University Press, Cambridge (2000).
  2. [2] T.M. Apostol, Introduction to Analytic Number Theory, Springer (1976).
  3. [3] R. Diaz and E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulgaciones Matematicas, 15, No 2 (2007), 179-192.
  4. [4] R. Diaz and C. Teruel, q, k-generalized gamma and beta functions, Journal of Nonlinear Mathematical Physics, 12, No 1 (2005), 118-134.
  5. [5] G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge (1990).
  6. [6] K. Nantomah, E. Prempeh and S.B. Twun, On (p, q) and (q, k)-extensions of a double-inequality bounding a ratio of gamma functions, Mathematical Sciences and Applications E-Notes, 4, No 2 (2016), 23-28.
  7. [7] K. Nantomah, E. Prempeh and S.B. Twun, The (q, k)−extension of some Gamma function inequalities, Konuralp Journal of Mathematics, 4, No 1 (2016), 148-154.
  8. [8] V.G. Kac and P. Cheung, Quantum Calculus, Universitext, Springer-Verlag, New York (2002).
  9. [9] C.G. Kokologiannaki, Some properties of Γq,k (t) and related functions, International Journal of Contemporary Mathematical Sciences, 11, No 1 (2016), 1-8.
  10. [10] V. Krasniqi and F. Merovci, Some completely monotonic properties for the (p, q)-gamma function, Mathematica Balkanica, New Series, 26 No. 1-2 (2012), 133-145.
  11. [11] A.D. Sole, V.G. Kac, On integral representations of q-gamma and q-beta functions, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, 16, No 1 (2005), 11-29.
  12. [12] N.M. Temme Special Functions, an Introduction to Classical Functions of Mathematical Physiscs, John Wiley and Sons, New York (1996).