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1. Introduction

The classical Euler’s Gamma function is one of the most important special func-
tions with applications in many fields such as analysis, mathematical physics,
statistics and probability theory. In [4], Diaz and Truel introduced the g, k-
generalized Gamma function, and also in [10], Krasniqi and Merovci defined
the p, g-generalized Gamma function. This work is devoted to establish some
properties and also inequalities concerning ratios of these generalized functions.

The paper is organized as follows: In next Section 2, we present some
notations and preliminaries that will be helpful in the sequel. In Section 3 we
give some properties and inequalities for the functions I') ;(x) and ), 4(x) for

x > 0. Also, we present double inequalities involving a ratio of the functions

Received: June 9, 2017 (© 2017 Academic Publications

§Correspondence author



310 I. Ege, E. Yildirim

2. Notations and Preliminaries

In this section, we present some definitions to make this paper self-containing.
The reader can find details, e.g. in [3, 4, 5, 8, 11].

The well-known Euler’s Gamma function is defined by the following integral
for x > 0,

o0
I'(z) = / t*= et at,
0
and it has also an equivalent limit expression as

. n!n®
11m )
n—oo x(x +1)(x +2)...(x +n)

see [1, 2, 12]. The psi- or digamma-function, ¢ (x), is defined as the logarithmic
derivative of the Gamma function. That is,

¥(@) = () =

for x > 0. The series representation is
e eyt
x)=—y—— _
T = n(n+ x)

where v denotes Euler’s constant.
Diaz and Teruel [4] defined the g, k-generalized Gamma function I'y 5 (x) for
k>0, qe€ (0,1) and z > 0 by the formula

—1

Dyr(z) = (1_qk)§’k = (1_qk);ok 7
’ (1—gq)+! (1—qév)gf>k(1_q)g—1
where
(0 + e = T @+ a™), (142035 = [0+ ¢™a),
1+ x)ék = % for z,y,t e Rand n € Nand I'y y(z) = I'(z) as ¢ = 1
and £ — 1.

Also, Krasniqi and Merovci [10] defined the p,q extension of the Gamma
function for p € N, ¢ € (0,1) and z > 0 as

i 11 0]
Ppql2) = []gx 4+ 1glz +2]4 - .. [z + plg’
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where [p], = % and I', o(z) — I'(x) as p — oo and ¢ — 1.
The functions I'y ;. (x) and I, 4(x) satisfy the following identities:
Lor(z+k) = 2]y Tgn(@), Lor(k) = Land I g(z4+1) = [2]g Tpq(2), pge(l) = 1.
Similarly to the definition of ¥ (z), the ¢,k and p, g-generalized of psi- (or
digamma-) functions are defined respectively as:

d vaq
Var(T) = o InTyp(z) = 57—, Ygr(r) = T Inlp4(z) = )

for x > 0, and they satisfy the series representations

1 o0 anJr:t
Vo) = % In(1 —¢q) + (Ing) z_;] T ke (1)
p :J:x
Upa(@) = Inlply + (na) D0 175 (2)

n=0

where ¢ () = () as ¢ — 1 and k — 1,4, 4(x) = (x) as p — oo and
qg—1, [7,10].

The function f is called log-convex if for all a, 5 > 0 such that a + 38 =1
and for all x,y > 0 the following inequality holds:

log f(ax + By) < alog f(x) + Blog f(y).

Note that the functions I'yj, and I', 4 are log-convex, [9, 10].
In the paper [6], the authors proved the inequality

H Fq,k(bi + ozt H q, k(bi + H Fq,kz(bi)M

oy i <w <= (3)
[1Tar(8+> 0 H 5+Zaz | JRYRICI

=1 =1 =1 = i=1

by using the method based on some monotonocity properties of ¢, k-extension
of the Gamma function.

In this paper, one of our aim is to establish a generalization of equation (3)
by using techniques similar to those of [6].
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3. Main Results

We now present the results of this paper. Let us begin with the following
theorem.

Theorem 1. Forxz >0, p,n € N and 0 < g < 1, the following inequality
is valid:
Ly q(na)

Lpq() = [p];w_l. @)

Proof. Using the definition of I' ; for x and nx, we get

Ly q(n) _ [p];m' [zlg[z +1g ... [z +plg
Lpq(2) [P]?f [nzlglnz +1]q. .. [nx + ply
< [p];wc—l’
and thus the result follows. O

Corollary 2. The inequality

Lpolz+y) < [P]§+y_1 Lpq(2)lpq(y)

holds for x,y >0, p,n e N and 0 < ¢ < 1.

Proof. Since I',, 4 is log-convex, we can write

Cpal™52) < \Tpal@)Tpaly). (5)

Then

Lpglz+y) < \/Fp,q@x)rp,q@y)-

From equation (4) in the last theorem we get for n = 2 that

Fp,q(%ﬂ) < Tp,q(fv)[p]i”“l, Fp,q(Q?/) < Fp,q(?/)[?]gyil'
Hence we get the result. U

The p, g-extension of the psi-function is similarly defined as

’

r,.(x)
Lpq(z) '

d
Vpq(x) = Iz InTy4(z) =
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It satisfies the series representation:

p n+x

Upal@) = Inlply + (0) D0 5o (6)

n=0

where 1, 4(x) = ¥(x) as p — oo and ¢ — 1, [6].

Lemma 3. For x>0, pe N and 0 < ¢ <1, the function v, 4(z) satisfies
the equation:

xT

Upalw +1) = =gy + () (7)

Proof. Since

Dpg(z+1) = [z]glpq(2), (8)
by differentiating with respect to x both parts of equation (8), it follows:

d q~ d
@I‘pvq(x +1)=— 11r1q1 — qrp,q(x) + [x]qafpﬂ(x). 9)

By dividing both parts of (9) by I'p 4(x), taking in mind the definition of 1, 4(x)
and equation (8), we obtain the desired equation. O

Remark 4. By induction and using

Lpg(z+1) = [2]41p4(2),

)

we get
Lpq(@ +n) = [2]n,glpq()
forx >0, peN, 0<qg<1andn €N where

[@]n,q = []gz + glz +2]g... [+ (n — Dy
Theorem 5. The function v, ,(x) satisfies the recurrence formula
n—1 qx+j
Upg(z+n) =1pq(r) —Ing Z; 1—qoti
]:

forx >0, peNand0<qg<1.
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Proof. The equality will be proved by induction. For n = 1 it holds, because
of equation (7). We suppose that our assumption holds for n and we will prove
that it holds also for n + 1.

Since we have

Ypgz+(n+1)) = Ppellz+n)+1)

qurn
= Ypg(x+n)—In gy
n—1 z+7 x+n
_ q q
- wp,q(x) o qu 1— qac+j o lnql — getn
j=0
n 4]
_ q
= Upg(z) —Ing) T
§=0
then our assumption is true for every n € N. Hence the result follows. U

Theorem 6. The following inequalities are valid for x > 0, p € N and
0<g<l1:

T

q
1—¢*

In g+ Infz]y < tpq(x) <Infz],. (10)

Proof. Let f(x) = InT') 4(z). We apply the mean value theorem to this
function in the interval (z,z + 1).
Then, there is xg € (z,z + 1) such that the equality

InT) 4(z4+1) —InT) 4(x) = ¥y 4(z0)

holds, and using
Lpglz +1) = [z]glp ()
we get
Vp,q(T0) = Infz]y.

Since
p x+k
/ - 2 q
Upq(r) =1In qz (1 — g tk)2 >0,
k=0
we have 1, 4(x) is increasing on (0,00). Then we obtain

Vpg(2) < pg(x0) < Ypglz+1).
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Since we got

q
Qﬁp,q(.’ﬂ + 1) = _hlql . qx + ¢p7(I(‘r)7
we have .
Vpg(@) <Infz]g < —hlql p + Upq(),
and the result follows. O

Corollary 7. For p e N and 0 < ¢ <1 we have

q
1—

. Ing <p4(1) <0

and for x € (0,1] we have
Ppq(x) <O0.

Lemma 8. Let f: R — R be an increasing function on any open interval
and o, B,7;, b, A, b be real numbers such that

n
b—i—a:):gﬁ—l—z%:):, YA > ap > 0.
i=1

If
fb+ax)>0 or f(B+ i%x) > 0,
then -
apf(b+ ax) = i f(8+ i%w) <0 (11)
is valid.

Proof. Let f(b4+ax) > 0. Since f is increasing, f(b+ax) < f(B+> i vix).

Then f(B+4 > vix) > 0.
Writing

apfb+az) <apf(B+Y  viz) < if(B+ ) viw),
=1

i=1
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leads us to equation (11). This time, let f(5+> ;" viz) > 0. Then f(b+ax) >
0or f(b+ ax) <0.

If f(b+ ax) > 0, then the proof is completed. And if f(b+ ax) < 0; since
YA > ap > 0 we have

WAL (b+ ax) <apf(B+ Y viw) < HAF(B+ D vir).
1=1 1=1
Hence equation (11) holds. O

One can prove the following lemma immediately:

Lemma 9. Let f: R — R be an increasing function on any open interval
and «, 3,7;, 4, A, b be real numbers such that

n
b+oz:c§5+z%:c, ap > A > 0.
i=1

Then if

n
fb+ax) <0 or f(B+ ) mx) <0,
i=1
the inequality (11) still holds.

Preparation for Applications:

Since g () and ), 4(z) are increasing functions on the open interval
0,00), we can write ¥, r(x) or x) in equation (11) instead of f.
4 .

Applications to the ¢,k Generalized Gamma Function:
We apply Lemmas 8 and 9 to the function I'j ;. Note that one can get

similar results for the generalized p, g-Gamma function I', ,.

Theorem 10. Let «;, 53,7, ii, A, b; be positive real numbers such that
n
b; +a;x < 5+Z%5€, YA = aip; > 0.
i=1

If

Yan(bi +aiw) >0 or Yer(B+ Y yir) >0,
i=1
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then

n

Hr%k(bi + ozl-:c)’”

=1

- n n
Hrq,k(ﬁ + Z%‘IL’)A
i=1 i=1

is decreasing function for x > 0.

g(z)

Proof. Let H(z) =1Ing(z). Then,

n

Hr%k(bi + ai:c)’”
H(z) = In 72:1

HF(I,k(/B + Z%x)A

= uzlnHFqkb + a;) AlnHF%k(ﬂ—FZ%x)
i=1 i=1

=1

We have

’ T k(b —|—Oéz ,3+Z %)
H = zz?— /q =1
@ = 2 o Z ARTES S

= Z [Miaz‘%,k(bi + ;) — Mg k(B + Z’Yﬂ)] <0
=1

i=1

This implies that H is decreasing on z € [0,00). As a result, g is decreasing on
x € [0,00). O

Corollary 11. Let oy, 3,7, ti, A\, b; be positive real numbers such that

n
bi+aiw < B+ yiw, BA> i >0
i=1
and let

bak(bi + i) >0 or Perp(B+ Y yix) >0

i=1
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Then for x € [0,1] we have

n

H Fq’k(bi + Oéiil,')m H Fq’k(bi + Oéiil,')m H Fq,k(b )u
i i=1

i=1 i=
<
n n =

n

: <5
[TrexB+> 7" JITaxB+> 7z J[Tar(®*
i=1 i=1 i=1 i=1

i=1

?

(12)

and for x € [1,00) we have

n

Hr%k(bi + )P H q, k(b + a;)H
e z N (13)

qu,k(BJrZ%rr)A ) 5+2%
=1 =1 i=1

||:j:

[1 ) Tk (bitaux)ti
H?:1 Fq,k(ﬂ+2?:1 Vil

Proof. Since g(z) =
[0, 1] we have

R is decreasing function, for z €

and for z € [1,00)

yielding the results. O

Remark 12. Let o, 3,7i, it, A\, b be real numbers such that

n
b+oz:c§5+z%:c, ap > A > 0.
i=1

Then if

bar(b+ox) <0 or Per(B+ Y vir) <0,
=1

inequalities (12) and (13) are hold.

Remark 13. If we set v; = «; in Theorem 10 and Corollary 11, we obtain
inequalities (3.3) and (3.4) from [6].
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