STUDY OF MHD FLOW OF BLOOD WITH HEAT TRANSFER
IN AN ARTERIAL SEGMENT UNDER THE EFFECT OF
PERIODIC BODY ACCELERATION

Abstract

The aim of this paper is to study numerically the blood flow in an arterial segment in the presence of an externally applied magnetic field and body acceleration by considering the fluid to be incompressible and Newtonian. A heat transfer analysis is carried out along with the governing momentum equations for the fully developed flow. A suitable numerical technique is employed to solve the Navier-Stokes equations. The influence of the applied magnetic field on the flow is analyzed with the aid of the dimensionless magnetic parameter H, the Hartmann number. The velocity distribution, temperature distribution and the heat transfer effects are studied and presented graphically.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 30
Issue: 4
Year: 2017

DOI: 10.12732/ijam.v30i4.2

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] S. Mandelbrojt, Séries de Dirichlet: Principes et Méthodes, GauthierVillars, Paris (1969).
  2. [2] O.M. Mulyava, On the convergence abscissa of a Dirichlet series, Mat. Stud., 9, No 2 (1998), 171-176 (in Ukrainian).
  3. [3] O.Yu Zadorozhna, O.B. Skaskiv, Elementary remarks on the abscissas of the convergence of Laplace-Stieltjes integrals, Bukovyn. Mat. Zh., 1, No 3-4 (2013), 45-50 (in Ukrainian).
  4. [4] J.-P. Kahane, Some Random Series of Functions, 2nd Ed., Cambridge Univ. Press, Cambridge (1985).
  5. [5] Fanji Tian, Dao-chun Sun, Jia-rong Yu, Sur les séries aléatoires de Dirichlet, C. R. Acad. Sci. Paris, 326 (1998), 427-431.
  6. [6] Fanji Tian, Growth of random Dirichlet series, Acta Math. Sci., 20, No 3 (2000), 390-396.
  7. [7] H. Hedenmalm, Topics in the theory of Dirichlet series, Visn. Kharkiv. Un-tu. Ser. Mat., Prykl. Mat., Mekh., No 475 (2000), 195-203.
  8. [8] P.V. Filevych, On the relations between the abscissa of convergence and the abscissa of absolute convergence of random Dirichlet series, Mat. Stud., 20, No 1 (2003), 33-39.
  9. [9] X. Ding, Y. Xiao, Natural boundary of random Dirichlet series, Ukr. Mat. Zh., 58, No 7 (2006), 997-1005.
  10. [10] O.B. Skaskiv, L.O. Shapovalovska On the abscissas convergence random Dirichlet series, Bukovyn. Mat. Zh., 3, No 1 (2015), 110-114 (in Ukrainian).
  11. [11] H.J. Godwin, On generalizations of Tchebycheff's inequality, J. Amer Stat. Assoc., 50 (1955), 923-945.
  12. [12] I.R. Savage, Probability inequalities of the Tchebycheff type, J. of Research National Bureau of Standarts, 65B, No 3 (1961), 211-222.
  13. [13] P. Billingsley, Probability and Measure, Wiley, New York (1986).
  14. [14] C.D. Ryll-Nardzewski, Blackwell's conjecture on power series with random coefficients, Studia Math., 13 (1953), 30-36.
  15. [15] L. Arnold, Über die Konverge einer zufälligen Potenzreihe, J. Reine Angew. Math., 222 (1966), 79-112.
  16. [16] L. Arnold, Konvergenzprobleme bei zufälligen Potenzreihen mit Lücken, Math. Zeitschr., 92 (1966), 356-365.
  17. [17] K. Roters, Convergence of random power series with pairwise independent Banach-space-valued coefficients, Statistics and Probability Letters, 18 (1993), 121-123.
  18. [18] L.O. Shapovalovska, O.B. Skaskiv, On the radius of convergence of random gap power series, Int. Journal of Math. Analysis, 9, No 38 (2015), 1889-1893.
  19. [19] Ph. Holgate, Some power series with random gaps, Adv. Appl. Prob., 21 (1989), 708-710.