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Abstract: The aim of this paper is to study numerically the blood flow in an
arterial segment in the presence of an externally applied magnetic field and body
acceleration by considering the fluid to be incompressible and Newtonian. A
heat transfer analysis is carried out along with the governing momentum equa-
tions for the fully developed flow. A suitable numerical technique is employed to
solve the Navier-Stokes equations. The influence of the applied magnetic field
on the flow is analyzed with the aid of the dimensionless magnetic parameter
H. the Hartmann number. The velocity distribution, temperature distribution
and the heat transfer effects are studied and presented graphically.
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1. Introduction

List of symbols

a Dimensionless amplitude of body acceleration
b Dimensionless frequency of body acceleration
B, Applied magnetic field strength

Cp Specific heat at constant pressure

Ec Eckert number

G(t) Dimensionless periodic body acceleration
H Hartmann number

P Dimensionless pressure

Pr Prandtl number

R, Half width of artery

Ty Temperature of arterial wall

U Dimensionless x-component of velocity

v Dimensionless y-component of velocity
Greek

« Womersley number

Ko Thermal conductivity

1 Viscosity of blood

w Frequency of pulse

wp Frequency of body acceleration

o Phase difference in body acceleration

p Density of blood

o Electrical conductivity

0 Dimensionless temperature

2. Introduction

The flow of blood through arteries is an important phenomenon in biofluid dy-
namics. In recent years, the study of magnetohydrodynamic (MHD) flow of
blood has gained the attention of many researchers because of its wide range of
physiological applications. Blood can be treated as a magnetic fluid because the
erythrocytes contain haemoglobin molecules, which are oxides of iron and are
present with uniquely high concentration in mature erythrocytes. Arteries are
blood vessels that carry highly oxygenated blood away from the heart. They
face high levels of blood pressure as they carry blood being pushed from the
heart under great force. To withstand this pressure, the walls of the arteries
are thicker, more elastic, and more muscular than those of other vessels. The
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smooth muscles of the arterial walls contract or expand to regulate the flow
of blood through their lumen and hence control the amount of blood flow to
different parts of the body under varying circumstances. Several features of
biological flows such as vessel wall elasticity, non-Newtonian viscosity, slurry
particles in the blood, although, are physiologically relevant but can be justifi-
ably neglected in most of the arterial flows [1].

Vardanyan [2] studied that for steady flow in an artery, a uniform transverse
magnetic field alters the flow rate of blood. It was observed by some investiga-
tors [3, 4, 5] that under certain conditions blood exhibit visco-elastic behaviour
which may be due to the visco-elastic properties of the individual red cells and
the internal structures formed by cellular interactions. Pedley [6] and Fung et.
al. [7] have conducted a study on the blood flow mechanics in arteries of differ-
ent sizes. An experimental and numerical approach was adopted by Taylor and
Draney [8] for quantifying the blood flow velocity and pressure field in human
artery. A theoretical and experimental work was carrrried out by Berger et.
al. [9] to provide an idea of the pressure drop and heat exchange in the fluid
when it is subjected to move along a curved path. The effects of the interaction
between a magnetic field and the haemodynamics of the arterial system have
been studied in [10]. Misra and Chakravarty [11] have studied the unsteady flow
of blood through arteries in which the blood was treated as a Newtonian viscous
incompressible fluid. Several attempts have been made [12, 13, 14] to study the
effect of magnetic field on the blood flow in arteries in various physiological
conditions.

In the present paper, the characteristics of blood flow and heat transfer is
studied through parallel plates under the influence of periodic body accelera-
tion in presence of transverse magnetic field. The study concentrates on the
blood velocity, temperature, pressure and heat transfer rate with the varia-
tion of the magnetic field parameter (H), body acceleration parameter («) and
thermal diffusivity parameter (Pr). The result of computation thus obtained
for the physical quantities velocity, temperature and heat transfer are presented
graphically. This investigation has clinical significance as it reveals the fact that
the flow and the heat transfer rate of blood can be controlled by the application
of sufficiently strong magnetic field.

3. Governing equations

Let us consider the unsteady two-dimensional laminar and fully developed flow
of an incompressible and electrically conducting Newtonian fluid in a parallel
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plate channel bounded by the planes y = £Ry (Fig. 1). A uniform magnetic
field of strength By is applied along the normal to the channel walls and the
electrical conductivity o is assumed to be constant. Let (z*, y*) be the material
point in Cartesian coordinate system, x* being the axis along the flow direction
and y* being perpendicular to it. The flow is considered to be symmetric about
the x- axis and our focus is on the flow profile in the region 0 < y < Ry. u*,
v* are the velocity components in the z* and y* directions, respectively, and t*
is the time parameter. For t* > 0, the flow is assumed to have periodic body
acceleration given by

G () = a* cos(wit”* + &), (1)
where a* is the amplitude of the body acceleration.
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Figure 1: Schematic of the flow configuration of the artery.

The governing equations of the unsteady two-dimensional flow of the viscous
incompressible fluid are given by

oo,
p<(31tb: u*g;b: v*?ZZ) = —gz:—oBgu*-i-pG*(t*)
oG ot o) = o

or* 9T  ,OT* 92T+ O°T*
PC g Y = M\ gz T
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+0B2u*?, (5)
along with the following boundary conditions on velocity and temperature
ou* oT*
=0 =0 at y =0
ay* 9 8:1_/* a y Y
w=v"=0, T*=T, at y* =Ry (6)
We now introduce the non-dimensional variables defined by
x* y* u* V*
x:R_O’ y:R_O’ UZWRO’ V:W—.RO’
p* N T*
=—, t=t 0=—. 7
P= w, » (7)
Using these dimensionless variables, equations (2)-(5) become
ou Ov
—+ = = 0, 8
ox i dy ()
ou n ou n ou 1 oOp 1 [0%u n 0%u
ot Ox oy a?20r  o? \0x2  Oy?
H? 1
v ov ov 1 Op 1 [0%v 0%
— — — = ——=—+=|=—=+=, 10
ot +u8:1: +U@y a2y a? (6:1:2 * Oy? (10)
o0 N o0 N o0 1 (0% N 0%0 H2Ecu2 (11)
ot ox oy a?2Pr \ 0x2 = Oy? a? '

where a = Ry, /%2 is the Womersley number, H = RgBy,/Z is the Hartmann
1 1

2 p2
number, Pr = “K—C;p is the Prandtl number, Ec = Z‘pii is the Eckert number,
G(t) = a cos(bt + ¢g4), a = pw—lzfa* and b = 2%,

The corresponding boundary conditions are

ou 06

— =0, —=0 at =0

6y ) 6y a y )

u=v=0 6=1 at y=1 (12)

The Nusselt number is obtained by calculating the temperature gradient on the
plates from the relation

x 00
NU = T_wa_y ‘y:() . (13)
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4. Numerical methods

In order to discretize the non-linear partial differential equations we have opted
the finite volume method. The problem domain €2 has been decomposed into
a finite number of discrete network of non-overlapping cells. The conservative
form of the governing equations is

oU OF  0G;

W + 8561 * 8:61 - B7 (14)

where (j, F’Z-, él and B are the conservation flow variables, convection flux
variables, diffusion flux variables and source terms, respectively. Integrating Eq.
(14) spatially over the control volume € and applying Gauss integral theorem,

we obtain
ou e
/Q<§_3> dQ+/F<FZ-+Gi>n¢dF—0, (15)

where I' is the surface of the control volume and n; are the components of
the unit normal vector to the surface. We have considered rectangular control
volumes with cell centered arrangement of nodes given in Fig. 2.

| 0 o o
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Figure 3: Quadratic upstream
based interpolation for u [15,
16].

Figure 2: Cell-centered ar-
rangement of nodes.

The choice of averaging fluxes has been employed for the approximation of
the convective and diffusive fluxes through the control volume faces. As a result
of the splitting of the surface integral in Eq. (15) into the sum of four surface
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integrals over the cell faces I'. (¢ = e,w,n,s) of the control volume, Eq. (15)

becomes
oU -,
/Q(—a —B> ds) + E / Gei nczdr =0, (16)

& _{alqu—agqu-i—(l—al-i—ag)gbp if A¢>0

. , 17
bipp —bagpr + (1 — by +bo)pp if Ay <0 (17)

where Ay is the coefficient of ¢. through the face I'.. As we have considered an
equidistant grid

alzbl

as = by =

oo|;_nm|0~3

The diffusive terms are discretized by the finite difference method using the
central difference scheme. Integrating the continuity equation over the (i, j)™
scalar control volume at the (n 4 1) time level gives

(it = ity Aw (o2 = o) Ay =0, (18)

Integrating the z-momentum equation at the (n + 1)"* time step over (i,7)""
control volume for u produces

AxAy u n+1 n+l _ AxAy H2 n
(2520 )+ S - (222

Oé2
1 1 1
—3 { QO i - G (19)
where

2 Ay Ax 1
ai; = (a—) (A—x + A—y> + 7 (i —uin) Ay

1

+7 (V8 + vl — oo — Vi) A (20)

Zanbu”+1 denotes all the convection and diffusion contribution from neigh-

bouring nodes (i —1,5),(i+1,7),(i,7 — 1) and (¢, 5+ 1). The term Ay(p?fﬁ]
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p?jl) represents the pressure acting on the w-control volume. Similarly, the

y-momentum and energy equations can be discretized as

AzAy 1 1 AzAy 1
( At U’J) D = TRy

< {ax@irl - o}, (21)

2
<AxAy a 7]) 0n+1 ‘|‘Zaib92:l _ AxAyen' N H?Ec

At At a?
x ( Ly AxAy) (22)
where
; 2\ (Ay  Az\ 1 . n
= ()& s
1 n n
+Z (u Ui — Vg 1 — Uz‘—l,j) Ay, (23)
2 A Ax 1
0 y n n
i T (oz?Pr> (E + A—y) 1 (0715 = 015) Ay
1 n n
+7 (07541 — 075-1) Aw. (29)

A convenient combination of the tridiagonal matrix algorithm (TDMA) method
and the Gauss-Seidel method has been implemented to solve the resulting sys-
tem of algebraic equations. We have made use of the semi-implicit method for
pressure linked equations (SIMPLE) algorithm for pressure correction. This
algorithm is based on a cyclic series of guess-and-correct operations and repre-
sents an implicit influence of the pressure correction on velocity. All velocity
components are first calculated from the momentum equations using a guessed
pressure field. Then the pressure and velocities are corrected so as to satisfy con-
tinuity. This process continues until the solution converges. The pressure link
between the continuity and momentum equations is accomplished by transform-
ing the continuity equation into a Poisson equation for pressure. The Poisson
equation implements a pressure correction for a divergent velocity field. The
solution of the stated unsteady problem involves the process of solving a succes-
sion of steady state problems. For reasonable values of time step At, the known
¢ values at time t are used as a guess of the unknown ¢ values at time ¢ + At,
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where ¢ denotes the dependent variables of the problem. Iteration at each time
step continues until the divergence-free solution is obtained. We have obtained
a time-independent numerical solution which is convergent by advancing the
flow field variables through a sequence of shorter time step At = 0.001. For
the range of parameter values considered here, the flow field achieves a steady
state after a transient state, and this steady state is independent of the initial
conditions prescribed. For achieving a satisfactory convergence of this scheme
we have used the under-relaxation parameter S = 0.8 in p = p+ 3p’, where p is
the guessed pressure, p’ is the pressure correction and p is the actual pressure.
The convergence criteria is employed of the form

|0 — ¢ <e. (25)

Here i and j denote the cell indices, n is the time level, ¢ stands for u, v or
and the value of ¢ is considered to be 107%.

5. Results and discussion

The blood flow phenomenon and heat transfer through a normal artery in the
presence of periodic body acceleration as well as an external magnetic field
is studied. The flow is governed by the Womersley number, the Hartmann
number and the Prandtl number. The physiological applicable data used for
computation of numerical results are collected from the existing literatures and
are listed as: o = 3.0; H = 1.0; Pr = 21.0; b = 1.0; a = 1.0; ¢4, = 0.0; Ry
= 1.0mm; Ec = 0.0002; T, = 310K; p = 1,050kg/m?3; By = 8 Tesla and o
= 0.8s/m. The computational results are presented graphically for different
values of the parameters involved in the present problem. In all the numerical
computations that has been carried out and presented in form of figures we
have adopted the steady state condition considering time ¢ = 0.5.

Fig. 4 depicts the variation of axial velocity for different values of Hartmann
number with Womersley number o« = 3 and Prandtl number Pr = 21. It reveals
that the velocity decreases as the the magnetic strength parameter increases.
In arteries the magnetic field strength brings a great change in the u-velocity
of blood. When the biomagnetic fluid (blood) is subjected to a magnetic field,
the action of magnetization introduces an orientation of the blood charged ions
with the magnetic field. The action of orientation makes the red blood cells
more suspended in the plasma and an increase in the haemoglobin concentration
results in an increase in the internal blood viscosity, and hence a reduction in
blood axial flow velocity is obtained. This result supports the phenomenon that



298

0 0.2 04 06 08 1
y

Figure 4: Variation of axial ve-
locity profile for different values
of H.
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Figure 5: Variation of axial ve-
locity profile for different values
of a.

decreasing magnetic strength reduces the flow resistance and hence the velocity
of blood flow increases with the decrease in magnetic strength. The maximum
velocity of blood occurs in the middle of the channel and gradually reduces to
zero on the walls as we have considered the arterial wall to be a rigid plate and

hence no slip condition prevails.
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Figure 6: Distribution of di-
mensionless pressure p for dif-
ferent values of a.
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Figure 7: Distribution of di-
mensionless temperature 6 for
different values of Pr.

The axial velocity profile for various values of Womersley number is included
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in Fig. 5. It is observed that the axial velocity increases with increasing body
acceleration parameter, the Womersley number. This is due to the fact that
whenever the body accelerates faster the requirement of blood in the heart
increases and for compensating this, blood flow rate increases in the arteries.
The non-dimensional pressure distribution with varying « is presented in Fig. 6.
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Figure 8: Distribution of di-

mensionless temperature 6 for

different values of a.

Figure 9: Heat transfer rate for
different values of Pr.

The non-dimensional pressure decreases with increasing value of the body
acceleration parameter. The pressure p attains its minimum in the middle
of the channel, then goes on increasing and takes almost a constant value
when approaches the arterial wall. This suggests that in blood flow through
an artery the maximum pressure is exerted on the walls. The distribution of
non-dimensional temperature is shown in figures 7 and 8 for different Prandtl
numbers and Womersley numbers, respectively. It is interesting to find that
temperature decreases with increasing thermal diffusivity parameter (Pr) and
the body acceleration parameter. It is often found that after running or jog-
ging, where the body gets accelerated there is sweating which gives a cooling
effect that is the temperature inside our body gets lowered down. The maxi-
mum heat transfer occurs in the middle of the channel as can be seen in figures
9- 11 and reduces to zero on the walls. In case of varying Prandtl number
(Fig. 9), the variation found in the heat transfer rate from Pr =7 to 14 is very
much prominent as compared to the variation occuring from Pr = 14 to 21.
Fig. 10 infers that the heat transfer rate decreases by increasing the magnetic
parameter H. Thus, by applying a magnetic field of sufficient strength the heat
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transfer rate can be controlled which has clinical significance during surgeries
and cancer therapy. For varying Womersley number, the heat transfer rate de-
creases with increasing « in the beginning and then increases with increasing
« when approaches the wall as shown in Fig. 11.
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Figure 10: Heat transfer rate Figure 11: Heat transfer rate
for different values of H. for different values of o.

6. Conclusion

The present study is motivated towards the flow and heat transfer of blood in an
artery under the combined effect of periodic acceleration and an external mag-
netic field. Blood behaves as a non-Newtonian fluid in channels of narrow width
which are referred as arterioles and capillaries whereas its behavior is Newto-
nian in most of the arteries. We have considered such an artery as our channel.
We have made an attempt to examine the effect of the Prandtl number, the
Hartmann number and the Womersley number on the flow and heat transport
characteristic of blood. Some graphical presentations of the computed results
have been performed. The study reveals that the axial velocity and the heat
transfer rate can be controlled by the application of a strong magnetic field.
The observations also indicate the influence of the body acceleration parameter
a on the axial velocity, pressure and temperature distribution. Furthermore,
increasing Prandtl number results in decreasing temperature as well as heat
transfer rate. This investigation has significant clinical importance during the
stages where the blood flow need to be checked (surgery) and the heat transfer
rate to be controlled (therapy).
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