NUMERICAL APPROXIMATION OF SPECTRUM FOR
VARIABLE COEFFICIENTS EULER-BERNOULLI BEAMS
UNDER A FORCE CONTROL IN POSITION AND VELOCITY

Abstract

In this paper, we use asymptotic techniques and the finite differences method to study the spectrum of differential operator arising in exponential stabilization of Euler-Bernoulli beam with nonuniform thickness or density that is clamped at one end and is free at the other. To stabilize the system, we apply at the free end, the following shear force feedback control:

\begin{displaymath}
\left( EI\left( \cdot\right) u_{xx}\left( \cdot,t\right) \r...
...a u\left( 1,t\right) +\beta u_{t}\left(
1,t\right) ,\ \ t>0.
\end{displaymath}

We build a numerical scheme and investigate the eigenvalues locus as a function of the positive feedback parameters $\alpha$ and $\beta$.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 30
Issue: 3
Year: 2017

DOI: 10.12732/ijam.v30i3.1

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] M.D. Aouragh and N. Yebari, Stabilisation exponentielle d'uneéquation des poutres d'Euler-Bernoulli á coefficients variables, Annales Mathématiques Blaise Pascal, 16, No. 2 (2009), 483-510.
  2. [2] B.Z. Guo, Riesz basis property and exponential stability of controlled Euler-Bernoulli beam equation whith variable coefficients, SIAM J. Control Optim., 40, No. 6 (2002), 1905-1923.
  3. [3] P.G. Ciarlet, Introduction á l'analyse numérique matricielle et á l'optimisation, Ed. Masson (1982).
  4. [4] M. Cherkaoui, F. Conrad, N. Yebari, Optimal decay rate of energy for wave equation with boundary feedback, Advances in Mathematical Sciences and Applications, 12 (2002), 549-568.
  5. [5] S. Cox, E. Zuazua, The rate at which energy decays in a damping string, Comm. Partial Differential Equations, 19 (1994), 213-243.
  6. [6] R.F. Curtain and H.J. Zwart, An Introduction to Infinite Dimensional Linear System Theory, Springer Verlag, New York (1995).
  7. [7] G.H. Golub and C.F.V. Loan, Matrix Computations, The Johns Hopkins University Press (1989).
  8. [8] E.P. Mensah, K.A. Touré and M.M. Taha, Numerical approximation of the spectrum for a hyperbolic equation with boundary condition, Far East Journal of Applied Mathematics, 60, No. 1 (2011), 41-53.
  9. [9] C.B. Moler and G.W. Stewart, An algorithm for generalized matrix eigenvalue problems, SIAM J. Numer. Anal. 10 (1973), 241-256 (Collection of articles dedicated to the memory of George E. Forsythe).
  10. [10] Ö. Morgül, A dynamic control law for the wave equation, Automatic, 30, No. 11 (1994), 1785-1792.
  11. [11] J. Rappaz and M. Picasso, Introduction á l'analyse numérique, Press Polytechniques et Universitaires, Lausanne (1998).
  12. [12] P. Rideau, Contrˆole d'assemblage de poutres flexibles par des capteurs actionneurs ponctuels: étude du spectre du syst`eme, Thése, école Nationale Supérieure des Mines de Paris, Sophia-Antipolis (1985).
  13. [13] K.A. Touré, A. Coulibaly and A.A.H. Kouassi, Riesz basis, exponential stability of variable coefficients Euler-Bernoulli beams with a force control in position and vellocity. Far East Journal of Applied Mathematics, 88, No. 3 (2014), 193-220.
  14. [14] K.A. Touré, E. Mensah and M. Taha, On the stabilization of a flexible cable with boundary feedback, Communications in Mathematics and Applications, 2, Nos 2-3 (2011), 111-129.