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Abstract: In this paper, we use asymptotic techniques and the finite differ-
ences method to study the spectrum of differential operator arising in exponen-
tial stabilization of Euler-Bernoulli beam with nonuniform thickness or density
that is clamped at one end and is free at the other. To stabilize the system, we
apply at the free end, the following shear force feedback control:

(EI () Uz ('7t))ac (1) = O‘u(lvt) + 5”7& (17t)7 t>0.

We build a numerical scheme and investigate the eigenvalues locus as a function
of the positive feedback parameters o and .
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1. Introduction
Consider the following evolutive system:
up(z,t) — uge(x,t) =0, 0<zxz <1, t>0,
(S1) : ¢ u(0,t) =0, (1)
ug(1,t) = —PBuy(1,t), t>0,

where u is a scalar function of variables x and ¢, 5 is a nonzero positive constant.

This simplified model represents for example a cable clamped at one end
and is submitted to a linear boundary control force in velocity at the free end.
The cable is supposed flexible with constant length.

Many authors have studied the above system (see [5] for example and the
references therein) and have proved that the system (.S7) is exponentially stable
for all 5 # 1. Moreover, they have proved that the system (S7) verifies the Riesz
basis property and obtained the spectrum by an explicit formula.

The idea of adding a control force in position to the existing feedback has
been invoked by the studies of many authors (see [4]).

Consider the following system:

ug (2, t) — ugg(z,t) =0, O<zx<l1, t>0,
(‘92) : u(O,t) =0, t>0, (2)
ug(1,t) = —au(l,t) — pu(1,t), t>0.

From mathematical point of view one wants to check if the properties of the
disrupted system stay intact. To this question many authors have provided
a positive answer. The system (S7) obtained by disruption of system (S7) is
exponentially stable again (see [10]) and verifies the Riesz basis property (see
[14]).

From practical point of view, the goal is to improve the optimal decay rate
of energy. To this practical preoccupation which takes its importance from
cost of the realization of models thus obtained theoretically, it should provide
a satisfactory answer. The theoretical study of such problem, is not easy even
for a simple model like the system (.57).

In ([4] and [10]) the authors proved that the fact of adding a control force
in position to existing control in velocity, although preserving the Riesz basis
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property and the exponential stability has negative effect on the optimal decay
rate of elastic energy.

In [8] the authors use the finite differences method and the QZ method to
describe geometrically the spectrum and have got the same results.

So the idea of using numerical methods to study the impact of adding a
control to an existing control, seems to be a credible alternative.

In this paper we consider the evolutive system given by:

(- m () uy (x,t) + (EI () gy (2,1)),, = 0, O<z<l1, t>0,
w(0,t) = uy (0,t) = ugy (1,¢) =0, t >0,
3)
(BT (*) tugg (1)), (1) = au (1,t) + Bug (1,1), t >0,
[ u(x,0) =up(z);u (x,0) = uy (), 0<z<l1,

where «, 8 are two given positive constants, wu (x,t) stands for a transversal
deviation of the beam at position z and time ¢, a subscript letter denotes the
partial derivation with respect that variable. The length of the beam is chosen
to be unity, ET (.) is the stiffness of the beam, and m (.) is the mass density.
Moreover, we shall always assume that:

m(-), EI(.)eC*(0,1) and m(z),EI (x)> 0. (4)

For a = 0, many authors have proved the Riesz basis property and the expo-
nential stability (see [2], [12]).

In this paper one uses the finite differences method and the QZ method
to answer the following question: does the control in position improve the
optimal decay rate of elastic energy? The main goal of this work is to use
the finite differences method to elaborate a program that gives the complete
eigenvalues location of the system defined by (3), as a function of positive
feedback parameters o and (.

The paper is organized as follows. In Section 2 we recall the formulation of
the system (3) in the context of Cp—semigroup of contractions theory. Then,
in Section 3 we formulate the eigenvalue problem so that to use QZ method. In
Section 4, we develop a numerical scheme based on the finite differences method
for the eigenvalues problem. Finally, in the last section, we give some numerical
experiments from our scheme to answer at the question.
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2. Formulation of the System (3) in the Context of the
Cop—Semigroup of Contractions Theory
Let us introduce the following spaces:
Vi ={u(z) € H*(0,1) : u(0) = u, (0) = 0}, (5)
H=VZ(0,1) x L2 (0,1), (6)

D (0,1) = the space of smooth functions with compact support,
D' (0,1) = the space of continuous linear functions,
f:D(0,1) = C.
The superscript T stands for the transpose and the spaces L?(0,1) and
H*(0,1) are defined as

L2(0,1):{u:[O,l]—)R:/Olu2dx<oo} (7)

H*(0,1) = {u : [0, 1] S R:uu®, k) e 2 (0,1)}. (8)

In the space H, we define the inner-product

1 - -
ol = [ (m@)fa @)@ + @) f{ (2) @) do

+afi (1) g1 (1), (9)

where u = (f1, fo)' € Het u = (g1,92)" € H.
Next, we define an unbounded linear operator A :D (A) C H — H as follows:

A(f.g) = (g (£),——— (EI(z) " <a:>>”) , (10)

m ()

where D (A), the domain of operator, is

D(A):{(f,g)TeH4(0,1)ﬂVE2(O,1) X V2(0,1) :

1) =0, (BI() ()" (1) = af (1) + Bg(1) }. (11)
With these notations, the set of system (3) can be formally written as
dy (t) _ AY (1),
Y (0) =Yy eH,

where Y (t) = (u (-, t) ,us (+,1)); Y (0) = (ug,uq) .
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Theorem 1. The operator A, defined by (10) and (11), generates a
Co—semigroup of contractions on H.

Proof. See [13]. O

3. Spectrum of Operator A
Now we are ready to study the eigenvalue problem of A.

Let A € 0 (A) and ® = (¢, V) be an eigenfunction of A corresponding to A.
Then we have ¥ = A\¢ and ¢ satisfies the following equation:

([ Nm(2)¢ (z) + (EI () ¢" ()" =0, 0<z<1,

¢(0) =¢"(0) =¢" (1) =0,

(13)
| () = g e A6 ).
Expanding (13) yields for all 0 < z < 1,
o0 () + 2 B g 0y 4 B g 0y 4 2B
6(0) =9/ (0) = " (1) =0, (19)
| ()= g 0+ BV 6 ().

In order to simplify our computations, we introduce a spatial scale transforma-
tion in x:

F () =), z(@:%/;(%)%dg,

p= /0 1 (%)idc (15)

where
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Then, (14) together with its boundary conditions can be transformed into

(SO (2) +alz) [ (2) +b(2) [ (2) + e (2) [/ (2) + A" (2) = 0,

0<z<1,
f(0)=f"(0) =0,
2 (1) (1) + 220 (1) f/ (1) =0,

" 32y (1) " Ryxx (1) / (O"i_)‘ﬁ) o
(1) + 2 (1) 1)+ 301 (1) - Wf(l) =0,

x T

with
_ 6zgp | 2EI (2)
a(z) = 22 zEI(x) (17)
322 62z BT (2 EI" (x -
b(z) = z%x * 23ET (.’E()) + Z%EI((CC)) * 23 (18)
Zpwwr  2Zppp T (2 2pn BT (2
¢(z) = 24 * ZAET (ac() ) * ZAET (:E:)) (19)
_(m@Y) L1 m@
== (Ee) A 2
and
_1(m@\T d (m@)
e = (EI (;;;)) dx (EI (ac)) ‘ 1)

The equation in (16) is

FP @) +az) 7 (2)+0(2) 7 (2) +c(2) f(2) + XD f(2) = 0,
0<z<1.

This can be further implied by applying another invertible transformation:
1 z
s =ew (1 [a@dc) 1), v<z<t (22)
0

and we arrive at the following eigenvalue problem that is equivalent to the
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original one for all 0 < z < 1:

(9 (2) +ar(2) 9" (2) +az(2) ¢ (2) +asg () + Np'g (2) = 0,

g" (1) +ang (1) + azg (1) =0,

d" (1) + a219” (1) + a229' (1) + azsg (1) =0,

where
m(:) = —5d(e) - 2a() + (),
w() = () - Ra(be)  a"(2) + (o),
as(z) = 1—36a/2(z) - i "(z) + 3_?)2‘1/(2)@2(2) N %QLI(Z)
1 1, a(z)c(z)
+b(2) (EaQ(z) — Za (Z)> T4
ailr = —%a(l)—i— Z%E((ll))’
00~ GO0 — e
a2 = z3(1)
on = () + )
3, 3 32z (1)a(l Zyza(l
az2 = —40 (1) + 1—6a2(1) B 22(3()1)( : z%(i))’
azy = _ia”(l) + %a/(l)a(l) - 6_14a3(1) - %
3200 (1)a?(1)  3zeae(Da(l) (a4 )
1622(1) 423(1) Z()EI(1)’
A3 .
= b gmey
3zm(1)a2(1) - Szxxx(l)a(l) @

1622(1) 423(1) BUEI(1)
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Theorem 2. Let A be defined by (10) and (11), then an asymptotic
expression of the eigenvalues of the problem (23) is given by

V2

1 (V2 N\ L.
- Z;U%—uﬂi5§—§0m+uﬂ+(n+—)ﬂll

-+o(%), (24)

wheren = N, N +1,... with N large enough, and

~ B 23 (m@\T
wew = Ve = rr () %
n3 + po = 2\/5(,!11-1-()11). (26)

Moreover, A, (n = N, N + 1,...) with sufficiently large modulus are simple and
distinct except for finitely many of them, and satisfy

| _ 28 (m(D\TF
Jm Re(hn) == 7m0 (EI(1)> ‘

Proof. (See [13]). O

4. Finite Differences Method

In this section, we use the finite differences method to study numerically the
spectrum of operator of the problem (3), see P.G. Ciarlet [3], J. Rappaz and
M. Picasso [11]. Then, we apply QZ method, see G.H. Golub [7], C.B. Moler
and G.W. Stewart [9]. Finally, we study the influence of parameters «, f in
velocity convergence of the system (3). The length of the beam is chosen to be
unity, EI (z) = (1 +z)*, is the stiffness of the beam, and m (z) = (1+z)* is
the mass density.

In the rest of this section we denote u by ¢g and z by z(x) in system (23).
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Hence we get the following system 0 < x < 1:

(u™ () + a1 (2) v (2) + a2 (2) o/ (2) + a3 () u (z)

+A\2ptu (x) = 0,

(27)
u” (1) + apv’ (1) + ajpu (1) =0,

L u'" (1) + aglu” (1) + CLQQUI (1) + as3u (1) =0.

We develop a numerical scheme based on the finite differences method for the
eigenvalue problem (27) associated with the evolutive system defined by (3). In
practical, the spectral problem is not simple and cannot be solved by formula.
Even when there is a formula, it might be so complicated that we would prefer to
visualize the eigenvalues by looking at a graph. The finite differences method
is one of the best known of the most important techniques of computation
using quite simple equations and consists of replacing each derivative by a
difference quotient. Consider for instance, a function u : x — u (z) of variable

1
x. Choose a mesh size h = — for all n € N*. We approximate the value u (z;)

n
for x; =th, i =0,1,...,n and z9g = 0, x, = 1, by a number u; indexed by an
integer 7 : u; ~ u (z;). Using Taylor expansions, we get for the derivatives, the
following approximations for i =2,...,n — 2:
o gy = oulE) ““2; el Lo m), ()
u(x; —h) —2u(z;) + u(x; + h)
i (@) = - o), (29)
u(x; — 2h) — 4u (z; — h) + 6u (z;)
0y M) ) win)
—4u (x; + h) + u (x; + 2h) 9
W +0 (r%). (30)
The approximations of the boundary conditions give:
ug = 0, 4U1 — U2 = 0, (31)
where u (z;) = w;, fori=0,1,...,n.

Expanding the function u :  — u (x) according to its Taylor series of order
4, we get:

2 3 4
w(l—h)=u(l)—hu'(1)+ %u" (1) — %u”/ (1) + %u<4> &), (32
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4

u(1—2h) = u(1) — 2hu’ (1) + 203" (1) — Zi‘gu’” (1) + %u(“ (&), (33)
2 3 4

w(1—3h) =u(l)—3hu' (1) + 92i'u” (1) — %u”/ (1) + S @ (&3), (34)

4!
with & €]1—jh,1[, j = 1,2,3.
We eliminate u” (1) (respectively «’ (1)) in equations (32) and (33) we get:

u(l—2h) —4u (1l —h)+ 3u(l)

W (1) = 5 +0 (h?), (35)
W(1) = u(1—2h)—21;2(1—h)—|—u(1) Lo n). (36)

We eliminate u’ (1) in equations (32), (33) and (34) we get:

—u(l=3h)+3u(l—2h) —3u(l—nh)+u(l)

W (1) 5

(37)
The approximation of the system (27) is:

Uj—o + a;U;—1 + (bl + )\2p4h4) U; + CiUji41 + diul'+2 == 0,
1=2,...,mn—2,

’U,():4’LL1—UQ:0,
(2 + hall) Up—92 — (4 + 4ha11) Up—1 + (2 + 3ha11 + 2@12h2) Up = O,

—2un,3 + (6 + 6@21h + 3@22h2) Up—2 + (—6 - 12&21h - 120,22}12) Up—1
ABh3
+ <2 + 6as1h + 9a22h2 + 300h3 — 3 5 ) Uy = 0,

23 (1) EI(1)
(38)
where

a; = —4+ah? (39)

3
b = 6-—2h%ay; — §a2ih3 +agh?, (40)
¢ = —4+ayh®+2ah3 di=1- %hgv (41)

\Bh3
On — I 42

with
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a1; = aq (CCZ), a9; = a9 (.CCZ) and az; = as (.’EZ), 7, = 2, , N — 2.
The system (38) can be written following form:
( )\2u1 - i)\QUQ = 0,

ui—g + ajui—1 + (b + Np*hY) w; + ciuisr + diviye = 0,
1=2,...,n—2,

(2 + hall) Up—92 — (4 + 4ha11) Up—1 + (2 + 3ha11 + 2&12h2) Up = O,
—2un,3 + (6 + 6@21h + 3@22h2) Up—2 + (—6 - 12&21h - 120,22}12) Up—1

3\Bh3
2 2 o = 0.
+ < + 6as1h + 9agoh® + 30ph Z% (1) EI(l)) Uy =0

(43)
We can calculate uq,...,u, using the scheme for the partial differential

equation. Here the finite differences method looks for the complex number A
such as there exists a nonzero vector

U = (uy,us, ...,un)T satisfies the above discrete problem (43). Now, we
consider the matrices A, B, C of order n, defined as follows:

1 for 1=3=1,

-1 for 1=1,7=2
4 ) )

p*ht  for 1=7=2,...,n—2,

L 0 elsewhere,
3
—Bh3 f ==
s Erm R
Bij = 0 for i=j=1,...,n—1,

0 elsewhere,
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(b if Q=]
a; if j=i-1,
C; if j:i+1,

d; if j=i+2,

Cn =

Cra =

Cn— In-2 —
Cn— In—-1 —
Cnfln =
Cnn73 =
Cnn72 =
Cnnfl =

Cnn =

1 if j=i—2.

0,

0,

2+ haq,
—4 — 4haqy

2 + 3haiy + 2a12h?,
-2,

6 + 2hag + axh?,

—6 — 12has; — 12a99h?,

2 + 6hag + 9@22h2 + 36y.

The problem (43) takes the following equation form:

N AU + \BU + CU = 0,

where the matrices A, B, and C are defined as above, and where

U = (uy,ug, ..., up

)

Now, we introduce the auxiliary vector:

and we get the system:

7 = \U,
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AZ = NAU
(47)
~CU

AAZ + ABU,

which is equivalent to the system:

(0 20)(0) (3 5) (0) @

We get a generalized eigenvalue problem:

MV =ANV (49)
with
(A O (0 A B T
M_(O —C>’ N—<A B) and V =(Z,U)" .

And we use QZ method to resolve this problem.

5. Numerical Experiments

To evaluate the effect of parameters a and 8 on the spectrum, we give here in
the same field, the graphs of the spectrum for different values of the control in
position « and velocity f.

We do the study for three cases:

First case : a =0

a) We take 8 € ]0; 1[.

We observe that when the parameter 5 € |0; 1[ without control in position
«, the location of spectrum moves rapidly on the left-hand side of the complex
plane.

b) We take > 1.

We observe that when the parameter 5 increases without control in position
a, the location of spectrum moves rapidly on the left-hand side of the complex
plane.

Second case a > 0:

a) 5 €]0;1[. We fix = 10 and take 5 = 0.1 and 8 = 0.3.

We observe that when the parameter 8 € |0; 1] for a fixed value of a > 0,
the location of spectrum moves rapidly on the left-hand side of the complex
plane.

b) 8> 1. We fix o = 10 and take 5 =1 and 3 = 10.
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Figure 1: Effect of parameter 8 € ]0;1[ on the spectrum for oo = 0.

We observe that when the parameter 3 increases for a fixed value of a > 0,
the location of spectrum moves rapidly on the left-hand side of the complex
plane.

Third case:

We fixe 8 = 10 and take o« = 10 and o = 20.

We observe that the parameter o has not effect on the spectrum for a
fixed value of 8 and the location of spectrum stays on the left-hand side of the
complex plane.

Conclusions. From all previous observations we claim that the control
feedback « in position has no influence on the optimal decay rate of the energy.
But the control feedback in velocity improves the optimal decay of the energy.
At last, in [2] the author has theoretically proved that the control in velocity
was enough to establish the system exponential stability when a = 0, which
corresponds to our numerical results. Finally the numerical method thus set,
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25 T T T T T
4 beta=45
25 +  beta=15 ]

05

Imaginary part
=
+

0.5

1EF .

_25 | 1 1 1 1
-10 -8 B 4 -2 a 2

Real part

Figure 2: Effect of parameter 8 > 1 on the spectrum for v = 0.

permits to appreciate the impact of the control force in position on the optimal
decay rate of the studied system energy.
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