FRACTIONAL NOETHER'S THEOREM WITH CLASSICAL
AND GENERALIZED FRACTIONAL
DERIVATIVE OPERATORS

Abstract

In this paper, we present two new ``transfer formulas'' for some generalized fractional derivative operators, and derive a Noether type symmetry theorem to fractional problems of the calculus of variations with classical and generalized fractional derivative operator. As a result, we obtain constants of motion that are valid along Euler-Lagrange extremals for mixed classical and fractional derivatives. This theorem provides an explicit algorithmic way to compute constants of motion for Lagrangian systems with classical and generalized fractional derivative operator admitting a symmetry. Results from previous literature can be obtained as a special case of one.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 30
Issue: 2
Year: 2017

DOI: 10.12732/ijam.v30i2.5

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] A.E. Noether, Invariant variations problem, Nachr. Akad. Wiss. Göttingen. Math. Phys. Ki., II (1918), 235-257.
  2. [2] P.S. Bauer, Dissipative dynamical systems, Proc. Natl. Acad. Sci. USA, 17 (1931), 311-314.
  3. [3] B.D. Vujanovic, S.E. Jones, Variational Methods in Non-conservative Phenomeana, Academic Press, San Diego (1989).
  4. [4] F. Riewe, Nonconservative Lagrangian and Hamiltonian mechanics, Phys. Rev. E, 53 (1996), 1890-1899.
  5. [5] F. Riewe, Mechanics with fractional derivatives, Phys. Rev. E, 55 (1997), 3581-3592.
  6. [6] A.B. Malinowska, D.F.M. Torres, Introduction to the Fractional Calculus of Variations, Imperial Colloge Press, London-World Scientific Publishing, Singapore (2012).
  7. [7] O.P. Agrawal, A new Lagrangian and a new Lagrange equation of motion for fractionally damped systems, J. Appl. Mech., 68 (2001), 339-341.
  8. [8] O.P. Agrawal, Formulation of Euler-Lagrange Equations for fractional variational problems, J. Math. Anal. Appl., 272 (2002),368-379.
  9. [9] O.P. Agrawal, Fractional variational calculus and the transversality conditions, J. Phys. A: Math. Theor., 39 (2006), 10375-10384.
  10. [10] O.P. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives, J. Phys. A: Math. Theor., 40 (2007), 6287-6303.
  11. [11] M. Klimek, Fractional sequential mechanics-models with symmetric fractional derivative, Czech. J. Phys., 51 (2001), 1348-1354.
  12. [12] M. Klimek, Stationarity–conservation laws for fractional differential equations with variable coefficients, J. Phys A: Math. Gen., 35 (2002), 6675-93.
  13. [13] D.W. Dreisigmeyer, P.M. Young, Nonconservative Lagrangian mechanics: A generalized function approach, J. Phys. A: Math. Gen., 36 (2003), 8297- 8310.
  14. [14] D.W. Dreisigmeyer, P.M. Young, Extending Bauer's corollary to fractional derivatives, J. Phys. A: Math. Gen., 37 (2003), L117-21.
  15. [15] J. Cresson, Fractional embedding of differential operators and Lagrangian systems, J. Math. Phys., 48 (2007), 033504.
  16. [16] G.S.F. Frederico, D.F.M. Torres, A formulation of Noether's theorem for fractional problems of the calculus of variations, J. Math. Anal. Appl., 334 (2007), 834-846.
  17. [17] G.S.F. Frederico, D.F.M. Torres, Fractional optimal control in the senseCaputo and the fractional Noether's theorem, Int. Math. Forum, 3 (2008), 479-493.
  18. [18] G.S.F. Frederico, D.F.M. Torres, Fractional Noether's theorem in the Riesz-Caputo sense, Appl. Math. Comput., 217 (2010), 1023-1033.
  19. [19] S. Zhou, H. Fu, J.L. Fu, Symmetry theories of Hamiltonian systems with fractional derivatives. Sci. China Phys. Mech. Astron., 54 (2011), 1847- 1853.
  20. [20] T.M. Atanacković, S. Konjik, S.Pilipovic, S. Simic, Variational problems with fractional derivatives: invariance conditions and Noether's theorem. Nonlinear Anal., 71 (2009), 1504-1517.
  21. [21] Z.X. Long, Y. Zhang, Noether's theorem for fractional variational problem from EI-Nabulsi extended exponentially fractional integral in phase space, Acta. Mech., 225 (2014), 77-90.
  22. [22] L. Bourdin, J. Cresson, I. Greff, A continuous/ discrete fractional Noether's theorem, Commun. Nonlinear Sci. Numer. Simulat., 18 (2013), 878-887.
  23. [23] O.P. Agrawal, Generalized variational problems and Euler-Lagrange equations, Computers and Mathematics with Applications, 59 (2010), 1852- 1864.
  24. [24] G.S.F. Frederico, D.F.M. Torres, Fractional Noether's theorem with classical and Riemann-Liouville derivatives, arXiv : 1209.1330v1[math.OC],Sept. 2012. of 6
  25. [25] L. Bourdin, A class of fractional optimal control problems and fractional Pontryagin's systems. Existence of a fractional Noether's theorem, arXiv : 1203.1422v1[math.OC], 7 March 2012.
  26. [26] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus: Models and Numerical Methods, World Scientific Publishing, Singapore (2012).
  27. [27] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore (2000).
  28. [28] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, CA (1999).
  29. [29] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives, Translated and updated from the 1987 Russian original, Gordon and Breach, Yverdon (1993).
  30. [30] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam (2006).
  31. [31] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York (1993).
  32. [32] M.D. Ortigueira, Fractional Calculus for Scientists and Engineers, Lecture Notes in Electrical Engineering # 84, Springer, Dordrecht (2011).
  33. [33] R. Herrmann, Fractional Calculus – An Introduction for Physicists, World Scientific Publishing, Singapore (2011).
  34. [34] C.P. Li, F.H. Zeng, Numerical Methods for Fractional Calculus, CRC Press (2015).
  35. [35] R. Almeida, S. Pooseh, D.F.M. Torres, Computational Methods in the Fractional Calculus of Variations, Imperial College Press, London (2015).
  36. [36] J. Jost, X. Li-Jost, Calculus of Variations, Cambridge University Press, Cambridge (1998).