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Abstract: In this paper, we present two new “transfer formulas” for some
generalized fractional derivative operators, and derive a Noether type symme-
try theorem to fractional problems of the calculus of variations with classical
and generalized fractional derivative operator. As a result, we obtain constants
of motion that are valid along Fuler-Lagrange extremals for mixed classical
and fractional derivatives. This theorem provides an explicit algorithmic way
to compute constants of motion for Lagrangian systems with classical and gen-
eralized fractional derivative operator admitting a symmetry. Results from
previous literature can be obtained as a special case of one.
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1. Introduction

Among the mathematical machinery of classical mechanics, the Noether the-
orem of calculus of variation became one of the most important theorems for
physics in the 20th century. Since the seminal work of Emmy Noether [1] it
was well know that all conservations laws in mechanics, e.g., conservation of
energy or conservation of momentum, are directly related to the invariance of
the action under a family of transformations.
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In 1931, Bauer [2] proved that it is impossible to use a variational principle
to derive a single linear dissipative equation of motion with constant coeffi-
cients. The Bauer theorem expresses the well-known belief that there is no di-
rect method of applying variational principles to nonconservative systems. Over
the last century, several methods were developed in order to deal nonconserva-
tive systems, such as introducing time dependent Lagrangians and introducing
auxiliary coordinates that describe the reverse-time system, etc., [3]. However,
all these approaches give us non-physical Lagrangians in the sense they provide
non-physical relations for the momentum and Hamiltonian of the system.

In 1996, Riewe observed that the second-order derivative terms in Euler-
Lagrange equations are corresponding to the square of the first-order derivative
times in Lagrangians, therefore Riewe presented that the first-order derivative
terms should come from the half-order derivative terms in Lagrangians. In
view of this, Riewe brought the nonconservative forces into Lagrangian and
Hamiltonian with applying the tools of fractional calculus [4], [5]. The idea
proposed by Riewe proved to be so novel and interesting that it transcended
the problem that it was originally designed to solve and became an area of
study in its own right. Nowadays, the fractional calculus of variations is being
developed as a tool to study a wide variety of problems [6].

Agrawal [7] presented a heuristic approach to obtain differential equations
of fractionally damped systems. Later, Agrawal [8]-[10] further presented gen-
eralized Euler-Lagrange equations for unconstrained and constrained fractional
variational problems involving Riemann-Liouville, Caputo and Riesz fractional
derivatives. Klimek presented a fractional sequential mechanics model with
symmetric fractional derivatives [11] and stationary conservation laws for frac-
tional differential equations with variable coefficients [12]. Dreisigmeyer and
Young [13] presented nonconservative Lagrangian mechanics using a general-
ized function approach. In [14], the authors showed that obtaining differential
equations for a nonconservative system using fractional variational calculus may
not be possible. Cresson [15] presented fractional embedding of differential op-
erators and Lagrangian systems where it was shown that the embedding proce-
dure is compatible with fractional variational calculus. Cresson also developed
several formulations for fractional mechanics.

The study on the symmetries and conserved quantities for fractional varia-
tional problems is an important and valuable aspect about fractional dynamics.
In 2007, Frederico and Torres [16] firstly studied invariance properties of frac-
tional variational problems with Riemann-Liouville derivatives, established the
Noether theorem by introducing a new concept of fractional conserved quan-
tity, and further extended it to the situation of the Caputo derivative [17]
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and Riesz-Caputo derivative [18]. Zhou and Fu [19] presented the fractional
Noether’s theorem of the Hamiltonian systems based on Frederico’s definition
of fractional conserved quantity. Considering this fractional conserved quan-
tity is not constant in time, so the concept of conserved quantity is not clear,
Atanackovi¢ [20] derived infinitesimal criterion for a local one-parameter group
of transformations to be a variational symmetry group for the fractional vari-
ational problem, and further present a Noether type theorem in terms of con-
servation laws as it is done in the classical theory. Zhang and Zhai [21] studied
Noether symmetries and conserved quantities for Birkhoffian systems based on
the strategy used by Atanackovié¢. Because the formula of conserved quantity
contain an integral relations, the result is also unsatisfactory. In 2013, Bourdin
[22] firstly proved a “transfer formula”, and then using this “transfer formula”,
the fractional conserved quantity introduced by Frederico and Torres be con-
verted into a new form conserved quantity. The formula of conserved quantity
is algorithmic, it can be used to computer conserved quantity to arbitrary high
order approximations. In 2010, Agrawal [23] introduced two new differential
operators (generalized fractional derivatives operators) and defined a new class
of variational problems, which in special cases reduce to fractional variational
problems with the left and right fractional Riemann-Liouville, Caputo, Riesz,
Riesz-Caputo derivatives, respectively.

In the present work, we will further develop the idea of Bourdin, and present
a new “transfer formula” for generalized fractional derivatives operators intro-
duced by Agrawal, and using this new “transfer formula” deduce generalize
Noether’s theorems for Lagrangian depending on mixed classical and gener-
alized fractional derivative operators. When the parameters of generalized
fractional derivatives operators p and [ take different values, we can obtain
Noether’s theorems for Lagrangian depending on mixed classical and Riemann-
Liouville, Caputo, Riesz fractional derivatives, respectively.

The article is organized as follows: In Section 2, a brief summary of the
definitions and properties of the generalized fractional integrals and derivatives
are proposed. The main contributions of the paper appear in Section 3, we first
derive fractional Euler-Lagrange equations and necessary condition of invari-
ance, present a new “transfer formula”, then prove the extension of Noether’s
theorem to fractional problems of the calculus of variations with classical and
generalized fractional derivatives operators. Finally, a conclusion is given in
Section 4.
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2. Definition and Properties of Some Generalized
Fractional Order Operators

For convenience, we briefly overview definitions and properties of some gener-
alized operators for integration and differentiation of frcational order.

First, consider a generalized integral operator K§ of order «, which is de-
fined as follows in [23].

Definition 1. (A generalized fractional integral) The operator K is given
by

t t2
K8 o) =p / bty ) f(7)dr + 1 / kalr O f(T)dr = K3f(8), (1)
where t; < t < to, P = (t1,t,t2,p,l) is a parameter set, k,(t,7) is a kernel
which may depend on a parameter «, and the parameters p and [ are two real
numbers.

Obviously, the new operator K¢ satisfies the following properties:

Property 1. The operator K¢ is a linear one, i.e. if fi(t) and fa(t) are
two functions, then

Kp(f1(t) + fo(t) = KR f1(t) + Kp fa(t). (2)
Property 2. The new operator K% satisfies the following formulae
Kpf(t) = pKp, f(t) + 1Kp, f(1), 3)

where P = (tl,t,tg,p, l>, P1 = (tl,t,tg, 1,0> and P2 = (tl,t,tg,o, 1>
Property 3.  The operator K and K$. satisfies the following integration
by parts formula

to to
| sorsswi= [ roKzg (4)
t1 t1
where P = (t1,t,t2,p,l) and its dual P* = (t1,t,ta,1,p).
Second, consider two generalized derivative operators A% and B%, which
are defined as follows:

Definition 2. (A generalized Riemann-Liouville fractional derivative)
The operator A% is given by
Al oy f () = DK™ f(t) = AR f (1), (5)

where D is the classical derivative operator, n —1 < a < n, n being an integer.
We refer to A% as operator A of order o and p-set P.
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Definition 3. (A generalized Caputo fractional derivative) The operator
B% is given by
B, ttepnyf () = KD f(t) = Bp f(1). (6)
We refer to B% as operator B of order a and p-set P.

The operators A% and B satisfy the following properties:
Property 4. The operators A} and B% are also linear, i.e. if fi(t) and
fa(t) are two functions, then

Ap(f1(t) + f2(t)) = AR f1(t) + AB fa(t), (7)
Bp(f1(t) + f2(t)) = By f1(t) + Bp fa(t). (8)

Property 5.  The operators A} and Bf satisfy the following formulas
for integration by parts,

/ CgWARf(dt = (~1" [ F(t)BEg)dt

t1 t1
n—1 ' ) '
+ Y (—1TAFITT R DM ()2, (9)
7=0

/ CgBRfdt = (~1)" [ () AB.g()dt

t1 t1
n—1 )
+ D (DT ART g0 D" f (B (10)
§=0
where f(t) and g(t) are sufficiently smooth functions, and n —1 < a < n.
When 0 < o < 1, we have following integration relations:

/ oA F()dt = oKL F D2 — [ FOBEgd, (1)

t1 t1
to to
/t o0 BRS (0t = K 0 — [ fOAR g (12)

Property 6. Let 0 <a <1, P=(t1,t,ta,p,1l), and f(t) € AC([t1,12]),
if the kernel k1_o, is integrable and there exist functions h and g such that

/t ki o(0,7)dO + /T k1_o(t,0)d0 = g(t) + h(T)

a

for allt, T € [t1,t2], then the following relation holds [18]:
Pf(t) =pf(t)ki—a(t,t1) = Lf (t2)k1—a(t2,t) + BEf(1). (13)
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Remark. For new operators A% and B, we have the following relations
a _ po a _ p« a _ f«
P — P2*7 Py — P1*7 P3s — Pg’
B%l - B%Q*, 3%2 - B%l*’ B%S - B%S*’ (14)
where P1 = <t1,t,t2, 1, 0>, P2 = (tl,t,tg,o, 1> and P3 = <t1,t,t2, %, %>
In particular, let 0 < o < 1, ko(t,7) = ﬁ(t —7)e bl P =P =
(t1,t,t2,1,0), then

K50 = i [ 0= 7 0 = 110 (19
is a left Riemann-Liouville fractional integral of f(¢) of order «,
B0 = rr | ¢TI =D ()
a)dt Jy,
is a left Riemann-Liouville fractional derivative of f(t) of order «,
1 t
BASW) = gy L =D S =EDerw ()

is a left Caputo fractional derivative of f(t) of order a.
The relation between 4, D{ f(t) and { D f(t) is given by following formula

DY f(t) = o DY (f — f(t1)). (18)
If P= PQ = <t1,t,t2,0, 1>, then
« 1 b2 a—1 «
K10 = 7o / (r— ) f(r)dr = T2 f(2). (19)

is the right Riemann-Liouville fractional integral of f(¢) of order a,

1 d

—Ap, f(t) = T —aydt

/t ) f(rdr = DI (20)

is the right Riemann-Liouville fractional derivative of f(t) of order «,

1 t2 . fa/T T_C fo
) / (r =t (ndr =CDEF) (1)

—Bp,f(t) = Ti—a)

is the right Caputo fractional derivative of f(¢) of order .
The relation between ;Df f(t) and ¢ Dg f(t) is given by following formula

CDRf(t) =Dy (f — f(t2)). (22)
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If P=P;=(t1,t,t2, 5, 3), then

1

5 [Kp f(t) + KB, f(t)] = l[nf?f(t) AL F] =TI (23)

K3,1(0) ;

is the Riesz fractional integral of f(t) of order «,

3,7() = AP, F(1) + AR F(O)] = 51, DEF() — DR = EDLF(E) (24

is the Riesz fractional derivatives of f(t) of order a,
Bp, f(t) = 5Bp f(t) + Bp, £ (1)) = 5[, DY F(t) = D f(H)] = (D, (1) (25)

is the Riesz-Caputo fractional derivative of f(t) of order c.
The relation between ﬁDtO‘Q f(t) and ﬁCDtO‘Q f(t) is given by following formula

FODRF(t) = DRI ~ 3u D f(h) + 5D f(12). (26)

For additional background on fractional calculus, we may refer to one of the
many books on the subject, as [26]-[35].

3. Main Results

Firstly, we consider the extreme problem (of minimizing or maxi-minimizing)
for the functional

Jag) = / T LAt g% (), §° (1), ABg* (1)) dt (27)

t1

subject to boundary conditions

¢*(t) =g, ¢°(t2) = g, (28)

where [t1,t2] C R, t1 < t2, 0 < a < 1, s = 1,2,--- ,n, the Lagrangian
La(t,q*(t),q*(t), A%q®(t)) : ([t1,t2] x R" x R" x R™; R) is assumed C?-functions
with respect to all its arguments, ¢° are generalized coordinates. We de-
note by 0;La the partial derivative of L4 with respect to its ith argument,
i=1,2,---,5.

Theorem 1.  Let ¢°(t) be a solution to problem (27)-(28). Then ¢°(t)
satisfies the generalized Fuler-Lagrange equation
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OLy dOLy

—4 =0 29
o dt 9¢° P oA%qs (29)

fort e [tl,tg].
Proof. Suppose that ¢°(t) is an extremizer of J4. Consider the value of

Ja at a nearby admissible function ¢*(t) = ¢°*(¢t) +€£*(t), where € € R is a small
parameter and £*(t) is an arbitrary function satisfying £°(¢1) = £%(t2) = 0. A

necessary condition for ¢*(t) to be an extremizer is given by d‘]dLe(e)k =0, i.e.,
2 9L OLa ; OL A
5(t t 5 dt = 0.
| Gew+ Thin + 5t ane )

Using the classical integration by parts formula as well as formula (11), we
obtain that

t2 0Ly 'S(t) 8LA / fSdaLA
4 0¢° dt dqs t
2 9L, OL 4 t2 OL 4
s = KL St — $(t)B%. dt.
" 8Aas 5() P 8A%qs€()t1 tlg()PaA%qs
Because £°(t1) = £%(t2) = 0, we have
[Gkd T gy O ey =
. O0¢®  dt 0¢® 3A%q

We obtain (29) applying the fundamental lemma of the calculus of variations.

In order to prove a fractional Noether’s theorem for functional (27) we
adopt a technique used in [16], the proof is done in two steps: we begin
by proving a Noether’s theorem without transformation of the time (without
transformation of the independent variable); then, using a technique of time-
re-parametrization, we obtain Noether’s theorem in its general form.

Definition 4. Functional (27) is invariant under the e-parameter group
of infinitesimal transformations

¢°(t) = ¢°(t) + €€°(t, ) (30)
if and only if

/t " LAt g (1), 6 (1), AP (1)) dt = / CLa(h 3 (), 3 (1), AR @)dt (31)

for any subinterval [t,, ] C [t1,to].
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Theorem 2. If the functional (27) is invariant under infinitesimal
transformations (30), then

02La(t,q° (), 4 (1), ABa* ()€ (@) + s La(t, 4 (1), 6°(t), A (£)€° (¢, q)

+0sLa(t,q°(t),4°(t), Apq® (1)) ApE3(t, ¢) = 0. (32)

Proof. The condition (31) is valid for any subinterval [t,,ts] C [t1,2].
Differentiating this condition with respect to €, and substituting ¢ = 0, and
using the definitions and properties of generalized derivative operators given in
Section 2, we arrive to

0= 02La(t,4"(1), 4°(t), ABq®(1))E°(t, q) + B3 Lalt, ¢ (1), ° (), ABa® ()€ (t, q)

FOLAL (1), 8°(0), ABa" () S (ARG (1) + ABE (|0 (33)

The expression (33) is equivalent to (32).
Remark. Using the Euler-Lagrange equation (29), the necessary condi-
tion of invariance (32) is equivalent to

£ (t, )583LA(tQ() *(1), ABa* (1)) + 85 La(t, ¢°(8),4°(t), ABa® (1) (¢, )

+04La(t, q°(t), 4°(t), Apa®(t)) ABE’ (L, q)
€5 (1, 0) B O La(t, ¢* (), 6° (1), ARG (1)) = 0. (34)
Imitating the proof from paper [22], we can prove the following a new “transfer
formula” for generalized fractional derivative operators.

Theorem 3.  Consider functions f,g € C*([t1,t2]; R") and assume the
following condition (C): the sequences (g'*) 'K]k;;o‘ Yeen+ (g% - Klli;af)keN*,

(F8)- K (9= g(t0))nen and (f0)- K}, (9 —g(t2)))nex converge uniformly
to 0 on [t1,t2]. Then, the following relation holds:

d o0

ABf+ fBpg=— (g7 (1) pKR! 7 f +IKE )
r=0
i( (FO (DR g = g(t) + KR! (g = g(t2))- (35)

r=0
Theorem 4. (Fractional Noether’s theorem without transformation of
time) If the functional (27) is invariant under the one-parameter group of
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transformation (30), and functions £°(t,q) and O4L satisfy the condition (C)
of Theorem 3, then

CeoLa+ Y (L) (1) PR 4 IKE6))

r=0
o) (IR OhLa = 0uLa(1))
FE O (€)  PRE (il — DL a(t2)))) =0, (36)
r=0

along any fractional extremal with classical and generalized fractional deriva-
tives ¢°(t), t € [t1,ta].

Proof. We combine equation (34) and Theorem 3.

Next, we consider a more general notion of invariance for the integral func-
tional (27).

Definition 5. (Invariance of (27)) The functional (27) is said to be invariant
under the e-parameter group of infinitesimal transformations

t=t+er(t,q), (37)
() =q(t) +€€°(t, q), (38)
if and only if

/tt"LAuq() (1), Apq® (1))t = /t_tbLM@@S(Z)@S(&A%@S(D)dt (30)

for any subinterval [t,, ] C [t1,t2].

Theorem 5.  (Fractional Noether’s theorem) If the functional (27) is
invariant under the one-parameter group of transformations (37) and (38), and
the functions &(t,q) and 04L satisfy condition (C) of Theorem 3, then

d 38 o S
Z(€0La+7(La—q"0sLa — adiLa- Apq’))

F D@L - (1) e + UK E))
r=0
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d = s\(r) r+l—a
+ (O GRE (0L~ ALa()) =0 (40)
along any fractional extremal with classical and generalized fractional deriva-
tives ¢*(t), t € [t1,ta].

Proof. Our proof is an extension of the method used in [36]. For that we
re-parametrize the time (the independent variable ¢) by the Lipschitz transfor-
mation

[th t2] 2t O-f()‘) € [Ut170t2]

that satisfies
dt(o
= ()—f()—lif A=0. (41)

/
7 do

The functional (27) is reduced, in this way, to an autonomous functional:

t

JIEC), ()] = /% L(t(0),q°(t(0)), 4" (t(0)), Ap*(t(0)))todo,  (42)

3]

where t(oy,) = t1, t(or,) = to, t, and (¢3) = dqsé';(a)). Using the definitions
and properties of fractional derivatives given in Section 2, we have:
Case 1: If P = P, = (t1,t,192,1,0),

af(X)
5 0'(0) = T 7o /ﬁ (0 F(N) — 0) " (0~ (\)do

[y

()™ d [T s -
_m%/(i;)z(g_p) *(p)dp = (t;)™* o D% (o).

Case 2: If P = Py = (t1,t,12,0,1),

B0 (U0) = i o) [ 6= afON) (65 (e

- %(—i) /U%—)Q(p —0)"¢*(p)dp = (t;) "D, _¢*(0).

Case 3: If P = P3 = (t1,t,t5, 1 ok §>

t

W' (0) = Tz 10— 0 ()0

F)
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! (ti'g)g — 8 /I'\—aR « s
lp— o™ %¢*(p)dp = (t,) ", D%, q¢°(0).

(t5)2  (t5)?

7i
a) do

(tg)2

Introducing the operator A%, , we have

Apq®(t(0)) = (t;) " AP, q°(0).
Then,

-/ " LAt(0) 4 (H0)). 1) (45)'s A, ¢ (0))do

—/qu() (1), ABg*()dt = Jalg’ ()]

t1

If the integral functional (27) is invariant in the sense of Definition 5, then
the integral functional (42) is invariant in the sense of Definition 4. It follows
from Theorem 4 that

d
(10304 +& - 04L4 +Z (DL )™ - (1) pKpH—oes + IR oee)))

dt =
(o (VTG 0 = DuLa(0))
F @) - (PKEOiLa — D1La(12)))) = 0. (43)

r=0

For A = 0, the condition (41) allows us to write that

P4 (tH(0)) = Apg*(D).
And, therefore, we get
OnLa=083La, OsLa=04La, (44)
and
OL A 9 (q¢g) 0

=Ly -|—83L

+ 5L A (%, —((t5) ™ ®.q°(0)) “ty

otl, o 815’ L

= LA - (jsagLA — 0484LA . A%qs. (45)
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We obtain (40) substituting (44) and (45) into equation (43).
Second, we consider the problem of extremizing the functional as following
to
Tnla) = [ Latt.q*(6,8°(), Bpe* () (46)
t1

subject to the boundary conditions

) =q,, ¢t2)=0q,, (47)

where [t1,t2] C R, t1 < t2, 0 < a < 1, s = 1,2,--- ,n, the Lagrangian
Lp(t,q*(t),¢°(t), BE¢*(t)) : ([t1,ta] x R x R™ x R™; R) is assumed C?-functions
with respect to all its arguments. We denote by 0;Lp the partial derivative of
Lp with respect to its ith argument, ¢ =1,2,--- 5.

Using the same reasoning, we can obtain following results:

Theorem 6. Let ¢°(t) be a solution to problem (46)-(47). Then ¢°(t)
satisfies the generalized Euler-Lagrange equation

6LB d 8LB aLB
- — — A% = 4
dg  dt 9¢° P oBags 0 (48)

fOT’ te [tl,tQ].
Theorem 7.  If the functional (46) is invariant under transformations

(30), then

aZLB(tv qs(t)v qs(t)7 B%qs(t))fs(tv Q) + 8SLB (tv qs(t)7 qs (t)v B%qs(t))és(tv Q)

+04Lp(t,q°(1),¢°(1), Bpq® (1)) Bp&®(t, ¢) = 0. (49)

Remark. Using the Euler-Lagrange equation (48), the necessary condi-
tion of invariance (49) is equivalent to

§(t, q)%ﬁzLB(t, @°(t),d°(t), BRa*(t)) + 9sLp(t, ¢°(t),4°(t), Bpa®*(t))€° (¢, q)

+0sLp(t,q°(t),4°(t), Bpq®(t)) BpE® (¢, q)

+&°(t, q)AP-04Lp(t, ¢° (1), ¢°(t), Bpg®(t)) = 0. (50)
Theorem 8. Consider the functions f,g € C*®([t1,t2];R") and as-
sume the following condition (C): the sequences (g\*) - Kllﬁ.l_a(f — f(t1)))ken+,

(9®) K5 (F = f(t2)wene, (F9 KR g en- and (f¥)- K g)ren- converge
uniformly to O on [t1,te]. Then, the following relation holds:
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(0% (e} d - T T « T -
9 Bpf+ fr Apeg == (f7 (F1)IKE g + KL %))
r=0

d > T T T — T —
+o( (9" - (—1)PKE(f = () + LK (f = £(82))))- (51)
r=0
Theorem 9. If the functional (46) is invariant under the one-parameter
group of transformation (30), and the functions £°(t,q) and O4L satisfy the
condition (C) of Theorem 8, then

%<5883L3+Z<<64LB>”>-<<—1>TpK;1“*“<§S—§S<t1))+lK;j“<fS—§S<t2>>>>>

r=0
d S — T —Q
+ E(Z((fs)m ((~D)"IK R %04 L + pK '~ *04L))) = 0. (52)
r=0

along any fractional extremal with classical and generalized fractional deriva-
tives ¢°(t), t € [t1,t2].

Theorem 10. If the functional (46) is invariant under the one-parameter
group of transformations (37) and (38), and the functions £°(t,q) and O4L
satisfy the condition (C) of Theorem 8, then

d 58 [}
—(€03Lp +7(Lp — °0sLp — adsLp - Bpq'))

%(Z((»:’S)(” (VIR 0L + pKH 0 L))
S (1)) (1 PEGE = (€ — €°(0)) + LK€~ €(12))) =0,
r=0

(53)
along any fractional extremal with classical and generalized fractional deriva-
tives ¢°(t) , t € [t1,ta].

In particular, when parameters p and [ take different values, we have fol-
lowing corollaries:

Corollary 1.  If P = P, = (t1,t,t2,1,0), the functional Ji(q)

Ji(q) —/2L1<t (0,6 (1), 0 DY P () dt (54)

t1
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is invariant under the one-parameter group of transformations (37) and (38),
and functions £°(t,q) and 04L;1 satisfy the condition (C) of Theorem 3, then

d 55 a s
(0L +7(L1 = 0511 — ads Ly -1, DY'q"))
d o0
— "(04Ly)) -
Tl r:O 1L1)

[T (€)1 I (0L — 04La (12)))) = 0,

55
along any fractional extremal with classical and left Riemann-Liouville f(mc)-
tional derivatives ¢°(t), t € [t1,ta].

This is the result of the paper [24].
Corollary 2. If P = P; = (t1,t,t2,1,0), the functional J2(q)

n= [ ® Lot 0" (8),4°(1), € DI (1))t (56)

t1

is invariant under the one-parameter group of transformations (37) and (38),
and the functions £5(t,q) and O4Lo satisfy the condition (C) of Theorem 8, then

d 55 a s
71§ 0sLa+7(L2 — ¢°03L2 — ady Ly - W)

d > T s T — S S S\(T T —
O @) - [T — €(0) + ()7 - I 0u)) =0,
r=0
(57)
along any fractional extremal with classical and left Caputo fractional deriva-
tives ¢°(t), t € [t1,12].
The Noether theorem from paper [25] can be derived from Corollary 2.

Corollary 3.  If P = Py = (t1,t,t2,0,1), the functional Js(q)
to
Tala) = [ Lalt,a*(0).4° (), Dia* (1)t (58)
t1

is invariant under the one-parameter group of transformations (37) and (38),
and the functions £°(t,q) and 04L3 satisfy the condition (C) of Theorem 3, then

d 1S o S
5(5883113 +7(L2 — ¢°03L3 + adsL3 - 1Dy, q°))

d o0

b
dt =

((0aLg)™) - I7F =g 4 (= 1) (€)1 IT 1794 Ly — 04 L3(11)))) = 0,

(59)
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along any fractional extremal with classical and right Riemann-Liouville frac-
tional derivatives ¢°(t), t € [t1,ta].
Corollary 4. If P = P; = (t1,t,t2,1,0), the functional J4(q)
to
Ta) = [ Ltaa*(0).6°(0).€ Dy () (60)
t1
is invariant under the one-parameter group of transformations (37) and (38),

and the functions £5(t,q) and O4Lo satisfy the condition (C) of Theorem 8, then

d ) a S
(0L +7(La = §°0s Ly + adi La - D))

+ (D (OaLa) ) I (€ = €8(82)) + (—1)7 (€)1 - [T 04 La)) = 0,

(61)
along any fractional extremal with classical and right Caputo fractional deriva-
tives ¢*(t), t € [t1,ta].

Corollary 5. If P = P3 = (t1,t,t9, %, %>, the functional J5(q)

t2

J5(q) = / Ls(t, q°(t),4°(¢), 1 Dy ¢ (£))dt (62)
ty

is invariant under the one-parameter group of transformations (37) and (38),

and the functions £°(t, q) and O4Ls satisfy the condition (C) of Theorem 3, then

d 5 S a S
%(5833115 +7(Ls — ¢°03Ls — ads L5 - {1 D3 ¢°))

L S O (e 4 )
+ %%@((ssw (TG - OiLs(1))))
g € IOk~ duks(t) =0 (63)

along any fractional extremal with classical and Riesz fractional derivatives
qs(t), t e [tl,tg].
Corollary 6.  If P = Py = (t1,t, 19, %, %), the functional Jg(q)

n= [ ® Lot.q"(8),¢°(1), PO D2 g (1))t (64)

t1
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is invariant under the one-parameter group of transformations (37) and (38),
and the functions &5(t,q) and 04Lg satisfy the condition (C) of Theorem 8, then

7 (5853L6 +7(Le — ¢°03Lg — adyLg - 1 Df ¢°))

(0aL6) " - (1) TH 7€ = € (1) + oI, (€ — €(12)))))

S
WE

N | —
l\:}lr—t g
&|g‘

<

(€)Y - (1) [T 0L + oI T 0uLe))) = 0, (65)
r=0

along any fractional extremal with classical and Riesz-Caputo fractional deriva-
tives ¢*(t), t € [t1,ta].

4. Conclusion

Almost all classical processes observed in the physical world are nonconser-
vative. The fractional mathematical model can more accurately describe the
dynamics of the systems. Over the past 20 years,studies on fractional varia-
tional problems made a number of important accomplishments. In this paper,
we study generalized fractional variation problems, and the main results are:
(1) Two new “transfer formulas” about generalized fractional derivative opera-
tors; (2) A extension of Noether’s theorem to fractional problems of the calculus
of variations with classical and generalized fractional derivative operators. It
provides an explicit conservation law. The formula given is algorithmic, it can
be used to computer conserved quantity to arbitrary high order approximations.
Nevertheless, the conservation law is only given as a series of function: in most
cases, it is not easily computable. However, an arbitrary closed approximation
of this quantity can be obtained with a truncation. The results may be further
applied to the area of fractional optimal control in future.
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