COMMUTATIVE NEUTRIX CONVOLUTION PRODUCT
INVOLVING GAUSSIAN ERROR FUNCTION

Abstract

In this paper, using neutrix calculus, several commutative neutrix convolution products are evaluated, involving the Gaussian error function erf(x) and its associated functions erf(x+) and erf (x-).

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 30
Issue: 2
Year: 2017

DOI: 10.12732/ijam.v30i2.4

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] H. Alzer, A Kuczma-type functional inequality for error and complementary error functions, Aequat. Math., 89 (2015), 927-935.
  2. [2] H. Alzer, M.N. Kwong, A subaddivity property of the error function, Proc. Amer. Math. Soc., 142, No 8 (2014), 2697-2704.
  3. [3] J.G. van der Corput, Introduction to the neutrix calculus, J. Analyse Math., 7 (1959-1960), 291-398.
  4. [4] H. Dirschmid, F.D. Fischer, Generalized Gausssian error functions and their applications, Acta Mech., 226 (2015), 2887-2897.
  5. [5] B. Fisher, A noncommutative neutrix product of distributions, Math. Nachr., 108 (1982), 117-127.
  6. [6] B. Fisher, Neutrices and the convolution of distributions, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 17 (1987), 119-135.
  7. [7] B. Fisher, B. Jolevska-Tuneska, A. Takaci, On convolutions and neutrix convolutions involving the incomplete gamma function, Integral Transforms Spec. Funct., 15, No 5 (2004), 405-414.
  8. [8] B. Fisher, F. Al-Sirehy, E. Ozcag, Results involving gaussian error function 2 erf (2016), |x|1/2  231-240. and the neutrix convolution, Advances in Math., Sci. J., 5, No
  9. [9] B. Fisher, F. Al-Sirehy, Results on the dilagorithm integral, International Journal of Applied Mathematics, 28, No 6 (2015), 727-738; doi:10.12732/ijam.v28i6.7.
  10. [10] B. Fisher, F. Al-Sirehy, M. Telci, Convolutions involving the error function, International Journal of Applied Mathematics, 13, No 4 (2003), 317-326.
  11. [11] B. Fisher, C.K. Li, A commutative neutrix convolution product of distributions, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 23 (1993), 13-27.
  12. [12] B. Fisher, E. Özçağ, Ü Gülen, The exponential integral and the commutative neutrix convolution product, J. Analysis, 7 (1999), 7-20.
  13. [13] B. Fisher, M. Telci, F. Al-Sirehy, The error function and the neutrix convolution, International Journal of Applied Mathematics, 8 (2002), 295-309.
  14. [14] I.M. Gel’fand, G.E. Shilov, Generalized Functions, Vol. I, Academic Press (1964).
  15. [15] W. Gröbner, N. Hofreter, Integrafel II: Bestimmte Integrale, BandSpringer, New York (1973). 2,
  16. [16] B. Jolevska-Tuneska, A. Takaci, Results on the commutative neutrix convolution product of distributions, Hacettepe J. of Mathematics and Statistics, 37, No 2 (2008), 135-141.
  17. [17] B. Jolevska-Tuneska, A. Takaci, B. Fisher, On some neutrix convolution product of distributions, Integral Trans. Spec. Funct., 14, No 3 (2003), 243-250.
  18. [18] D.S. Jones, The convolution of generalized functions, Quart. J. Math., 24 (1973), 145-163.
  19. [19] E. Özçaǧ, H. Kansu, A result of neutrix convolution of distributions, Indian J. Pure Appl. Math., 28, No 10 (1997), 1399-1411.
  20. [20] I.N. Sneddon, Special Functions of Mathematical Physics and Chemistry, Oliver and Boyd (1961).