STRENGTH OF TENSOR PRODUCT OF
CERTAIN STRONG FUZZY GRAPHS

Abstract

In this paper we find the strength of tensor product of two strong fuzzy graphs with their underlying crisp graphs $P_2$ and $P_n$, $P_2$ and $S_n$, $P_2$ and $C_n$ and also $K_n$ and $K_m$.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 30
Issue: 2
Year: 2017

DOI: 10.12732/ijam.v30i2.3

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] R. Balakrishnan, K. Ranganathan, Text Book of Graph Theory, Springer (2008).
  2. [2] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer (2008).
  3. [3] K.P. Chithra and R. Pilakkat, Strength of certain fuzzy graphs, International Journal of Pure and Applied Mathematics, 106, No. 3 (2016), 883-892, doi:10.12732/ijpam.v106i3.14.
  4. [4] N. John Mordeson, S. Premchand Nair, Fuzzy Graphs and Fuzzy Hypergraphs, Physica-Verlag, Heidelberg, Second Ed. (2001).
  5. [5] A. Nagoorgani, D. Rajalaxmi Subahashini, Fuzzy labeling tree, International Journal of Pure and Applied Mathematics, 90, No. 2 (2014), 131-141, doi:10.12732/ijpam.v90i2.3.
  6. [6] A. Rosenfeld, Fuzzy Sets and Their Applications to Cognitive and Decision Process, Academic Press, New York (1975), 75-95.
  7. [7] M.B. Sheeba and R. Pilakkat, Strength of fuzzy graphs, Far East Journal of Mathematics, 73, No. 2 (2013), 273-288.
  8. [8] M.B. Sheeba and R. Pilakkat, Strength of fuzzy cycles, South Asian Journal of Mathematics, 1 (2013), 8-28.
  9. [9] L.A. Zadeh, Fuzzy sets, Information and Control, (1965), 338-353.