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1. Introduction

In 1965, Lofti A. Zadeh [9] introduced the notion of a fuzzy subset. Azriel
Rosenfeld [6] defined fuzzy graph based on the definitions of fuzzy sets and
fuzzy relations and developed the theory of fuzzy graphs in 1975. John N.
Mordeson and Premchand S. Nair [4] introduced different types of operations
on fuzzy graphs. M.B. Sheeba [7] introduced the concept of strength of fuzzy
graphs. She determined the strength of fuzzy graphs in two different ways. One
by introducing weight matrix of a fuzzy graph and the other by introducing the
concept of extra strong path between its vertices. In this paper we use the
concept of extra strong path to find the strength of various fuzzy graphs.
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Throughout this paper only undirected fuzzy graphs are considered.

2. Preliminaries

A fuzzy graph G = (V, µ, σ) [4] is a nonempty set V together with a pair
of functions µ : V −→ [0, 1] and σ : V × V −→ [0, 1] such that for all u, v ∈ V ,
σ(u, v) = σ(uv) ≤ µ(u) ∧ µ(v). We call µ the fuzzy vertex set of G and σ

the fuzzy edge set of G. Here after we denote the fuzzy graph G(µ, σ) simply
by G and the underlying crisp graph of G by G∗(V,E) with V as vertex set
and E = {(u, v) ∈ V × V : σ(u, v) > 0} as the edge set or simply by G∗. If
for (u, v) ∈ E we say that u and v are adjacent in G∗. In that case we also
say that u and v are adjacent in G. A fuzzy graph G is complete (see [4]) if
σ(uv) = µ(u) ∧ µ(v) for all u, v ∈ V . A fuzzy graph G is a strong fuzzy graph
( [4]) if σ(uv) = µ(u) ∧ µ(v), ∀u, v ∈ E.

A strong fuzzy complete bipartite graph is a strong fuzzy graph with its
underlying crisp graph is a complete bipartite graph, [5]. A path P of length
n−1 in a fuzzy graph G ( [4]) is a sequence of distinct vertices v1, v2, v3, . . . , vn,
such that σ(vi, vi+1) > 0, i = 1, 2, 3, . . . , n−1. We call P a fuzzy cycle if v1 = vn
and n ≥ 3. The strength of a path is defined as the weight of the weakest edge
of the path, [4]. A path P is said to connect the vertices u and v of G strongly
if its strength is maximum among all paths between u and v. Such paths are
called strong paths, [9]. Any strong path between two distinct vertices u and
v in G with minimum length is called an extra strong path between them, [7].
There may exists more than one extra strong paths between two vertices in a
fuzzy graph G. But, by the definition of an extra strong path each such path
between two vertices has the same length. The maximum length of extra strong
paths between every pair of distinct vertices in G is called the strength of the
graph G, [7].

Theorem 1. [7] For a fuzzy graph G, if G∗ is the path P = v1v2 . . . vn
on n vertices then the strength of the graph G is its length (n− 1).

Theorem 2. [7] The strength of a strong fuzzy complete graph is one.

Hereafter, for a fuzzy graph G we use S (G) to denote its strength. The
following theorems determine the strength of a fuzzy cycle.

Theorem 3. [8] In a fuzzy cycle G of length n, suppose there are l weakest
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edges where l ≤ [n+1
2 ]. If these weakest edges altogether form a subpath then

S (G) is n− l.

Theorem 4. [8] Let G be a fuzzy cycle with crisp graph G∗ a cycle of

length n, having l weakest edges which altogether form a subpath. If l > [n+1
2 ],

then S (G) is [n2 ].

Theorem 5. [8] Let G be a fuzzy cycle with crisp graph G∗ a cycle of

length n, having l weakest edges which do not altogether form a subpath. If

l > [n2 ]− 1 then the strength of the graph is [n2 ] and if l = [n2 ] − 1 then S (G)
is [n+1

2 ].

Theorem 6. [8] In a fuzzy cycle of length n suppose there are l <

[n2 ] − 1 weakest edges which do not altogether form a subpath. Let s denote

the maximum length of a subpath which does not contain any weakest edge. If

s ≤ [n2 ] then the strength of the graph is [n2 ] and if s > [n2 ] then the strength of

the graph is s.

3. Main Results

Definition 7. Let G1(V1, µ1, σ1) and G2(V2, µ2, σ2) be two fuzzy graphs
with underlying crisp graphs G1(V1, E1) and G2(V2, E2) respectively. Then the
tensor productG, denoted byG1⊗G2, of G1 andG2 isG(V, µ1⊗µ2, σ1⊗σ2) with
the underlying crisp graph G(V,E1 ⊗ E2) is the tensor product of G1(V1, E1)
and G2(V2, E2) where V = V1 × V2 and E1 ⊗ E2 = {(u1, u2)(v1, v2) : u1v1 ∈
E1, u2v2 ∈ E2}, (µ1 ⊗ µ2)(u1, u2) = µ1(u1) ∧ µ2(u2), (u1, u2) ∈ V , and
(σ1 ⊗ σ2)((u1, u2)(v1, v2)) = σ1(u1, v1) ∧ σ2(u2, v2), (u1, u2) ∈ E1,

(v1, v2) ∈ E2.

Theorem 8. Let G1 and G2 be two fuzzy graphs with underlying crisp

graphs P2 and Pn respectively. Then the strength S (G1 ⊗ G2) of the tensor

product of G1 and G2 is n− 1.

Proof. If n = 1 then G1⊗G2 is a null fuzzy graph. Therefore S (G1⊗G2) =
0 = n−1. If n > 1, then it is the disjoint union of two fuzzy paths on n vertices
(see Figure 1). So by Theorem 1 S (G) = n− 1.
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Figure 1: Tensor product of two fuzzy paths

If we replace the fuzzy graph G2 of Theorem 8 by an another fuzzy graph,
having star graph as the underlying crisp graph on n vertices and keeping G1

as it is then their tensor product G is a null fuzzy graph, if n = 1. It is a
disjoint union of two fuzzy paths if n = 2 and if n > 2 it is a disjoint union of
two fuzzy star graphs on n vertices. Therefore in the first case, that is if n = 1
then S (G) = 0 and in the second case that is if n = 2, S (G) = 1 and when
n = 3, S (G) = 2 by Theorem 8. We can summarise these results as follows.

Theorem 9. Let G1(V1, µ1, σ1) and G2(V2, µ2, σ2) be two fuzzy graphs

with underlying crisp graph P2 and the star graph Sn, respectively. Then the

strength of the tensor product G is

S (G) =







0 if n = 1
1 if n = 2
2 if n ≥ 3

.

Theorem 10. Let G1(V1, µ1, σ1) and G2(V2, µ2, σ2) be two strong fuzzy

graphs with the underlying crisp graphs the path P2 with vertex set V1 =
{u1, u2} and the cycle Cn with vertex set V2 = {v1, v2, . . . , vn}. Let µ◦ =
µ1(u1) ∧ µ1(u2) ∧ µ2(v1) ∧ µ2(v2) . . . ∧ µ2(vn). Then the strength of the tensor

product of G1 ⊗G2(V, µ, σ) with vertex set V = {wij : i = 1, 2; j = 1, 2, . . . , n}
is

S (G) =































[n2 ] if |V (G2)| is even and

there exist w ∈ V (G1), such that µ1(w) = µ◦.

S (G2) if |V (G2)| is even and

there exist no w ∈ V (G1), such that µ2(w) = µ◦

n if |V (G2)| is odd .
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Proof.

Case 1. |V (G2)| is even.
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Figure 2

Then G = G1 ⊗ G2 is a disjoint union of two fuzzy cycles H1 with vertex
set

{w11, w22, w13, w24, . . . , w1n−1, w2n},

and H2 with vertex set

{w12, w23, w14, w25, . . . , w2n−1, w1n, w21}

(see Figure 2).

Subcase 1. There exist w ∈ V1 such that µ1(w) = µ◦.

In this case all the edges of G have the same weight. So, the strength of
G = strength of H1 = strength of H2 = [n2 ].

Subcase 2. There exist no w ∈ V1 such that µ1(w) = µ◦.

In this there exists a w ∈ V2 such that µ2(w) = µ◦. Without loss of
generality assume that w = v1. Then w11 and w21 are two weakest vertices of
G. In fact each weakest vertex of G2 determines exactly one weakest vertex
in H1 as well as in H2. So the number of weakest vertices of H1 and that of
H2 are equal and equal to that of G2. Note only that if G2 has m consecutive
weakest vertices then both H1 and H2 have the same number of consecutive
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weakest vertices. From this we can conclude that the strength of G is equal to
that of G2.

Case 2. V (G2) is odd.

In this case G = G1 ⊗G2 is a strong fuzzy cycle with vertex set
{w11, w22, w13, w24, . . . , w2n−1, w1n, w21, w12, w23, . . . , w1n−1, w2n}
(see Figure 3).
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Figure 3

Subcase 1. Suppose there exists w ∈ V1 such that µ1(w) = µ◦.

Then all the edges of G have the same weight. Therefore S (G) = [2n2 ] = n.

Subcase 2. There exist no w ∈ V1 such that µ1(w) = µ◦.

By our assumption there exists a w ∈ V2 such that µ2(w) = µ◦. Assume that
w = v1. Then w11 and w21 are weakest vertices of the partial fuzzy subgraph

P =< {w11, w22, w13, w24, . . . , w2n−1, w1n >}

and
Q =< {w21w12w23 . . . w1n−1w2n >}

of G. Also corresponding to each weakest path of length m in G2 there exist
weakest paths of the same length in P and in Q. Let u and v be any two
vertices of G. Then the path joining u and v having length ≥ n passes through
at least one weakest edge of G. So the length of the extra strong u − v path
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in G is ≤ n. If u = w11 and v = w21 then the length of the extra strong u− v

path is exactly n. Hence follows the proof.

Theorem 11. Let G1(V1, µ1, σ1) and G2(V2, µ2, σ2) be two strong fuzzy

graphs with underlying crisp graphs Km and Kn, respectively. Let V1 =
{u1, u2, . . . , un} and V2 = {v1, v2, . . . , vm} be the set of all vertices of Km and

Kn respectively. Then the strength of the tensor product G1 ⊗ G2(V, µ, σ) of

G1 and G2 is

S (G1 ⊗G2) =























0, for n = 1,m ≥ 1 or n ≥ 1,m = 1

1, for n = m = 2,

2, for n > 2 and m > 2,

3, n = 2,m > 2 or n > 2,m = 2.

Proof. Let u and v be two non-adjacent vertices of G = G1⊗G2, say u = wij

and v = wkl. Then ui is not adjacent to uk in G1 or vj is not adjacent to vl in
G2.

Case 1. n = 1,m ≥ 1 or m = 1, n ≥ 1.

In this case G = G1⊗G2 is a null fuzzy graph onm (or n) vertices. Therefore
S (G) is 0.

Case 2. n = m = 2.

In this case the tensor product is the disjoint union of two fuzzy paths with
P2 as the underlying crisp graphs. So strength of G is 1 by Theorem 1.

Case 3. n > 2 and m > 2.

Since G1 and G2 are complete fuzzy graphs, there exist atleast one vertex
in G1 ⊗G2 which is adjacent to both u and v in G1 ⊗G2.

Whether i = k or not, since n and m > 2, we can find a ur ∈ V (G1)
different from ui and uk such that µ1(ur) = ∨{µ1(up) : 1 ≤ p 6= i, k ≤ n} and
a vs ∈ V (G2) such that µ2(vs) = ∨{µ2(vq) : 1 ≤ q 6= l, j ≤ m}, so that wrs is
adjacent to both u and v in G. By the choice of wrs the u− v path uwrsv is an
extra strong path joining u and v in G of length 2.
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Case 4. n > 2 and m = 2 (or m > 2 and n = 2).

First of all suppose that n = 2 and m > 2. The case m > 2 and n = 2 can
be dealt as in the same way. We have the following cases:

i u = w1j, v = w1l, 1 ≤ j 6= l ≤ m,

ii u = w2j, v = w2l, 1 ≤ j 6= l ≤ m,

iii u = w1j and v = w2j for some j.

In the first two cases we can proceed as in the proof of Case 3 and prove
that the length of the extra strong path joining u and v is 2.

When u = w1j and v = w2j , there is no vertex in G which is adjacent to
both u and v. Since w1j is adjacent to w2k, for k 6= j and w2j is adjacent
to w1l, for l 6= j, the extra strong path joining u and v is uw2rw1su where
(vr), r 6= j is chosen so that µ2(vr) ≥ ∨{µ2(vp); r 6= j} and vs, s 6= j, r, is chosen
such that µ2(vs) ≥ ∨{µ2(vq); q 6= j, r}. Hence the length of the extra strong
path joining u and v is 3.
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