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Abstract: 

      Traditional Wireless Sensor Networks (WSNs) suffer from non-uniform energy 

consumption, where nodes near high-traffic zones deplete their batteries faster than others, 

forming energy holes that significantly decrease the total network lifespan. Introducing a 

Mobile Sink (MS) can mitigate this issue by balancing the network load and redistributing data 

collection tasks. However, excessive or inefficient sink movement may increase 

communication overhead and cause frequent topology changes, leading to unstable 

performance. Thus, designing an adaptive and energy-aware trajectory for the mobile sink is 

crucial for efficient data gathering. This research deals with an adaptive fuzzy-based mobile 

sink path planning mechanism, termed RP-FCM-FIS, aimed at enhancing energy extending 

and usage network lifespan in WSNs. The suggested model partitions the sensing field into the 

optimal rendezvous points (RPs), and grid-based clusters are dynamically identified by 

utilizing the Fuzzy C-Means (FCM) algorithm. Thereafter, a Fuzzy Inference System (FIS) 

determines the sink’s next motion according to four decision parameters, residual energy, 

traffic load, sensor density, and the source node's angle. Simulation results validate that the 

RP-FCM-FIS protocol obtains superior energy stability, substantially extends network 

lifespan, and minimizes the standard variation of energy consumption compared to benchmark 

algorithms such as MSC-BES-HNN, MSPO-ABC, and FA*-Static.  

Keywords: WSN, Mobile sink, rendezvous points, Fussy system, FCM. 

1-INTRODUCTION 

       A WSN is a self-organizing wireless system composed of a huge number of mobile or 

stationary sensors [1]. These networks are more applied in various domains such as healthcare 

monitoring, military surveillance, building automation, environmental observation, and smart 

homes [2]. Every sensor node typically has limited hardware resources such as memory, 

processor, networking facilities, and battery capacity [3]. In recent years, prolonging the 

lifespan of the network revolutionized the state of the art, primarily due to the constraints of 

wireless communication bandwidth and the limited energy reserves of sensor nodes that are 
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often deployed in unreachable over hazardous environments [4]. Replacing or recharging the 

depleted batteries of such nodes is usually hard [5]. 

Regarding energy efficiency, the communication distance is a critical factor in 

assessing overall energy consumption. The amount of energy depleted for a sensor node to 

transmit data rises superlinearly with the distance between the sensor node's source and the 

destination [3][6]. SNs expend the majority of their energy during data transmission, 

forwarding, and reception. Among these operations, multi-hop forwarding consumes more 

power because it compares to reception and transmission of data packets [7]. Correspondingly, 

due to forward data excessively the sensor nodes that are one hop away from the sink use more 

energy, and the nodes which are farther away from the sink preserve 93% more energy [8], 

This can lead to the emergence of a "hot spot'' or "bottleneck'' problem may increase, which 

will generate energy holes, affect the network lifetime, and the isolation of sink from the 

network [9] 

       In (WSNs), there are types, homogeneous: all sensor nodes in the field are equipped with 

identical capabilities in such a way that all wireless sensor networks have the same memory 

storage capacity, computing power, battery capacity, etc. The basic principle of in 

homogeneous wireless sensor networks is to distribute the energy consumption uniformly 

among all sensor nodes where data sensing and transmission are performed in a turn-by-turn 

manner among sensor nodes[10] It is the primary focus of our study, But the other type, 

heterogeneous: has different characteristics in capabilities where a variety of sensors participate 

in a large wireless network usually organized into groups of simple nodes that form the 

members of the group, and the most capable and powerful nodes are the heads of the group 

[11][12]. 

To overcome these problems and extend the network lifetime, researchers have 

proposed the concept of a mobile sink (MS)[13], introduced a mobile data observer, which is 

a vehicle or mobile robot which limitless power capacity, to function as a mobile sink for data 

collection in WSNs, which triggered a boom of investigation in the fields of the mobile wireless 

sensor networks Designing the path of a mobile sink is a challenging issue due to its impact on 

network coverage,  network lifespan, data delivery, and data delivery. For quick data delivery, 

it is desirable to reduce the path of the mobile sink. Anyway, shorter path lengths lead to larger 

multi-hop communication, increased multi-hop path lengths, and result in higher hop counts. 

This, in turn, causes higher energy consumption of the sensor nodes [14]. On the other hand, a 

longer MS tour shortens multi-hop path lengths and reduces hop counts, thereby lowering 

energy consumption per node, but may cause data collection and buffer overflow (latency) to 

be delayed [15].  A mobile sink's movement is generally limited by a different of factors, such 

as the maximum distance between them, the maximum number of practical locations it can 

visit, and the minimal sojourn time needed to stay at each position [16].  These elements 

guarantee the mobile sink's effective movement and conserve the energy of the sensor nodes 

to increase the network's lifetime.  To maximize network longevity and performance, these 

factors must be balanced in an effective path design [17]. 
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In literature, MS has been widely explored as a means to reduce energy-hole issues in WSNs 

[18]. Nonetheless, when the MS directly collects each node via short-range communication, 

the resulting data collection latency becomes inevitable. To deal with this, researchers have 

proposed the rendezvous point (RP)-based data acquisition model [19]. A significant concern 

is how to schedule an efficient trip route for the MS to collect data from sensors, as sensing 

data typically possesses timeliness (e.g., delay-sensitive applications or event reporting 

[20][21]).  

It makes intuitive sense to let the mobile sink to visit each sensor; however, this will result in 

the same problem as the NP-complete traveling salesman problem (TSP) [22].  However, 

because the MS is liable to violate the latency limitation of sensing data due to moving along 

a considerably longer path, such a solution could not be possible when the scale of the WSN is 

large. As an alternative, a subset of sensors can be chosen as rendezvous points (RPs) in order 

to shorten the journey [23]. Allowing the MS to minimize its route length and balance energy 

consumption across the network. 

2-RELATED WORK 

In mobile WSNs, route planning for sink nodes is a hot topic [24].  Numerous studies have 

been put out by researchers to use MS for effective and fruitful data collection in WSNs [25].  

However, MS mobility management is a significant problem that falls into two general 

categories: controlled mobility and random mobility [13]. To solve these problems for effective 

data collecting, the form of the optimum route (FCOR) by the mobile sink (MS) technique and 

fuzzy-based clustering is proposed. The CH is chosen using the fuzzy logic method based on 

the node's remaining energy, node distance parameters, and node connectivity. Discovering the 

MS's ideal movable trajectory is crucial to achieving energy efficiency. Finding a better 

solution route can be accomplished more effectively with the improved ant colony optimization 

(IACO) method. According to simulation data, FCOR improves throughput, energy efficiency, 

and reduces network delay in WSNs [26]. This article proposed an end-to-end data collecting 

strategy based on ant colony optimization to carry out both the touring path design and the 

collection point selection simultaneously.  The suggested algorithm builds a data-forwarding 

tree first, then at the same time prepares a touring path and heuristically chooses collection 

locations. According to the performance evaluation, the end-to-end strategy can extend the 

wireless sensor network's lifetime more than alternative approaches, particularly when there is 

an uneven distribution of sensors.  It is also possible to integrate the end-to-end strategy with 

other methods [27]. In another study, an Artificial Bee Colony (MSPO-ABC) [9], based path 

optimization strategy for mobile sink trajectory design in WSNs was proposed. The authors 

formulated the overall network energy consumption as a minimization problem of total hops 

between sensor nodes and the mobile sink’s rendezvous points. They improved the 

convergence speed of the standard ABC algorithm by introducing a cumulative factor during 

the employed bee phase, and they enhanced global search capability using a Cauchy mutation 

operator. Simulation results demonstrated that this approach achieved higher energy efficiency 

and better real-time data collection performance compared with traditional static-sink methods. 

However, since the ABC-based approach focuses mainly on global optimization, it does not 
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dynamically adapt to real-time variations in node energy or traffic as efficiently as fuzzy-based 

adaptive movement systems. This study addresses this issue and proposes EDEDA, an energy 

and delay-efficient data gathering technique.  The sensor field is separated into virtual grids, 

and a specific a certain number of grid cells—referred to as visiting points (VPs)—are 

identified so that a mobile sink can sojourn in them and gather data from 9 nearby grid cell 

heads in a single hop.  Furthermore, the mobile sink mobility pattern is modeled as a 

Hamiltonian cycle that starts at the base station (BS) and ends there after visiting each VPs. 

After each cycle, the collected data is offloaded to the BS by the mobile sink.  EDEDA beats 

current routing protocols in terms of throughput and energy consumption, according to 

simulations performed on NS-2 to assess its performance at varying numbers of sensor nodes.  

Additionally, compared to TCBDGA, PSOBS, RkM, and VGRSS, respectively, EDEDA 

improves data acquisition latency by 25.72%, 25.72%, 19.54%, and 14.57% for different 

numbers of sensor nodes in 2023. [28].  The authors suggested a cluster-based network that 

travels across a grid system with a cluster embedded in each grid and a centralized static sink, 

and a mobile sink.  Each cluster head sends the data to the closest sink after calculating the 

distances to the regional MS and the centralized static sink.  Salarian and associates.  On the 

other hand, swarm optimization and evolutionary algorithms also have important rules for 

resolving issues in real time.  Srivastava, A. K. et al. [29] forwarded the genetic algorithm (GA) 

to the sink mobility march.  By determining the ideal number of RPs based on three decision 

variables that were: (1) the minimum MS traveling distance, (2) the minimum number of SNs 

tow-hops away from the RPs, and  (3) the traffic load at the RP, GA created an MS trajectory. 

Preeth et al. [30] proposed an integrated hybrid model that uses an Adaptive Neuro-Fuzzy 

System (ANFS) for cluster head organization with an Emperor Penguin Optimizer (EPO) to 

design an efficient path for MS. The EPO goal of identifying the fewest number of RPs. They 

showed excellent result, nevertheless, utilizing a swarm intelligence algorithm along with the 

ANFS is computationally complex in large-scale areas. In 2021, Bilal R. Al-Kaseem et al. [18] 

proposed a four-step approach to reduce energy consumption and extend network lifetime. The 

sensing field was divided into equal regions according to the number of mobile sinks to 

eliminate energy holes. A heuristic clustering method, the Stable Election Algorithm (SEA), 

was introduced to minimize message exchange and cluster head rotation. The optimal sojourn 

locations were determined using the Minimum Weighted Vertex Cover Problem (MWVCP), 

and multi-objective evolutionary algorithms (MOEAs) were applied to optimize the sink 

trajectories, resulting in improved energy efficiency and prolonged network lifetime [31]. A 

number of approaches have leveraged mobile sinks and rendezvous points (RPs) to mitigate 

hotspot and energy-hole problems in wireless sensor networks (WSNs). Chaya Shivalinge 

Gowda et al. [32] proposed a hybrid framework in which sensor nodes are clustered via mean-

shift clustering, and cluster heads (CHs) are selected using a Bald Eagle Search (BES) 

metaheuristic. Instead of visiting all CHs, a subset of RPs is elected based on a weighted metric 

combining packet load and hop distance. A hybrid neural network (HNN), optimized via a 

Group Teaching Algorithm, computes an energy-efficient path through the chosen RPs—this 

integrated model, referred to as MSC-BES-HNN, effectively reduces energy consumption and 

delay in data collection. However, the combined use of clustering, metaheuristic optimization, 
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and neural learning may impose heavy computational and memory burdens, making 

deployment in resource-constrained WSNs challenging. [33] suggested ring routing for a data 

mechanism that creates a virtually node-wide, practically closed ring to advertise and store 

MS's present location.  The MS modifies the ring node's placement when it pauses at a one 

location by selecting one of its nearby sensor nodes as an anchor node. The source node delivers 

sensory input to the anchor node after first obtaining the anchor node location from the ring.  

The data is sent to MS by the anchor node.  There is little overhead involved in building the 

ring structure.The procedure of obtaining the anchor node's location data from the ring, 

however, could be time-consuming and energy-intensive for large networks.  Data delivery and 

energy consumption may rise as a result of this circumstance. 

3. System and Energy Consumption Model: 

Energy consumption is a fundamental parameter in evaluating the lifespan of a WSN. 

The lifetime of WSNs is typically defined as the duration from the start of time point when 

network operation until the first sensor node exhausts its runs out of energy. Once a node’s 

energy is depleted, it can no longer transmit or relay data to the sink node,  

This study proposes an efficient method to plan a tour for the Mobile Sink (MS) to collect data 

from all sensor nodes (SNs) in a homogeneous WSN. The sensor nodes are assumed to be 

randomly distributed over a regular area. Some reasonable assumptions are made for this model 

to network representation: 

1-MS is characterized by an infinite amount of energy and a constant speed. 

2- Every SN has a unique ID number, remains static in the area, and is aware of its location 

coordinates by using a positioning system. 

3- The WSN is homogeneous, meaning all SNs share identical characteristics, including 

communication range, buffer size, and energy capacity. 

4- Two sensor nodes can communicate directly if the distance between them is within the 

communication range, and each node can dynamically adjust its transmission power based on 

the receiver’s distance. 

5- Data transmission follows a Time Division Multiple Access (TDMA) mechanism to 

efficiently allocate communication slots and minimize interference between nodes. 

Consumption by allowing the transceiver of each node to remain in sleep mode for long 

durations when it is not scheduled to transmit or receive [31]. Although energy depletion also 

occurs during sensing and data processing, this study primarily focuses on energy consumption 

during communication, which includes both data transmission and reception operations. 

As depicted in Figure 1, the radio energy dissipation model represents the power required for 

a node to send and receive data packets. When a node transmits an m-bit data packet over a 

distance d, energy is consumed by both the radio electronics and the power amplifier. 

Conversely, when receiving data, only the electronic circuitry is activated. 
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Figure1. Radio Energy 

The energy is dissipated based on the communication distance (d), which classifies the 

channel model into two models a “free propagation model” and a “multi-path fading model.” 

Therefore, when the communication distance between the transmitter and the receiver is lower 

than the attenuation threshold (d0), which can be represented by equation (4), the transmission 

model is free propagation, thus the power of transmission is attenuated by d2 (d2 power loss). 

In contrast, if the distance is greater than d0, the transmission model is a multi-path fading, and 

the power of transmission is attenuated by d4 (d4 power loss).  Energy consumed (ET) to 

transmit an m-bit packet between two sensor nodes S1 at the location (x1, y1) and sensor node 

S2 at the location (x2, y2), is calculated as: 

                                ETx(m, d) =ETx−elec(m) + ETx−amp(m, d) 

                 = {

𝐸𝑒𝑙𝑒𝑐 ∗ 𝑚 + 𝜀𝑓𝑠 ∗ 𝑚 ∗ 𝑑2, 𝑑 ≤ 𝑑0

𝐸𝑒𝑙𝑒𝑐 ∗ 𝑚 + 𝜀𝑎𝑚𝑝 ∗ 𝑚 ∗ 𝑑4, 𝑑 > 𝑑0

        (1)      

 

The energy consumed by node S1 to receive the m-bit packet (ER)is calculated as follows: 

  ER= mb Eelec   (2) 

  d0= √ 
Ɛfs

Ɛamp
                 (3) 

Here, Eelec represents the electronics energy. The terms Ɛfs and Ɛamp refer to the amplifier 

energy, which is influenced by the receiver's sensitivity and noise figure. The distance between 

the sensor nodes S1 and S2 is denoted as d. 

d=√(𝑥1 − 𝑥2)2 − (𝑦1 − 𝑦2)2              (4) 

4- PROPOSED APPROACH 

4.1 Grid-Based Network Partitioning 

 In the proposed methods, new algorithms are developed to identify rendezvous points (RPs) 

that serve as residency locations for the mobile sink (MS) while collecting data from other 

nodes within the network. One algorithm is based on fuzzy C-means to find (RPs), while the 

other algorithm uses a fuzzy system to determine the optimal path for the mobile sink to move 

through the network. 
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It is assumed that the mobile sink knows of the sensor nodes' locations beforehand. Therefore, 

the objective is to construct a network topology and select an appropriate number of RPs, which 

are regarded as the residence locations of MS, to acquire data from the network. As to how 

many sensor nodes there are overall, the base station divides A * A sensory field into multiple 

"Grid" cells of the same size. 

Method to calculate the total number of grid cells in [34].  The authors of this heuristic use 

simulations to analyze the network's overall energy usage.  A randomly deployed network with 

different percentages of sensor nodes and selected RPs is conducted for simulation.  The 

findings Results that 5% of all sensor nodes chosen as RPs perform better in terms of energy 

consumption. 

Equation (5) defines the total number of grid cells H (or rendezvous points, RPs) used to 

partition the sensing field according to the total number of deployed sensor nodes M, as shown 

in Figure 2. The value of H is always chosen as a perfect square to ensure uniform grid 

formation, where √H × √H represents the grid structure. As the number of nodes increases, the 

sensing field is divided into a greater number of grids to balance node density and energy 

distribution, thus improving data collection efficiency and reducing communication overhead.

  

 

𝐻 =

{
 
 

 
 
4,                𝑀 × 0.05 ≤ 5                                𝑀 < 100
9,               5 ≤ 𝑀 × 0.05 ≤ 10          𝑀 = 101 𝑡𝑜 200
16,            10 ≤ 𝑀 × 0.05 ≤ 16       𝑀 = 201 𝑡𝑜 300
.                               .                                                           .
.                               .                                                           .

 

    

  In the grid model, determining the distance value (x,y) of the grid side length (𝑙) is 

essential for circling the energy holes area, therefore, Eq. (6) is utilized to calculate (𝑙). For 

better encirclement of the energy holes area, the consideration is that (𝑙) has a relationship with 

the radius of the TR of SNs, that is, if the TR radius has a low distance value, (𝑙)should have a 

higher value than TR. In contrast, the higher TR radius of SNs, the more equal (𝑙) to TR. 

𝑙 = TR*2          (6) 

 

 

H = 4, When M ≤ 100 H = 9, When 100 ≤M ≤ 200 H = 9, When 200 ≤ M ≤ 300 

Figure 2. The virtual grid structure is distinct for 100, 200, and 300 sensor nodes. respectively 

(5) 
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This grid formulation is a key step in the proposed methodology. By determining the 

number of grids H according to the total number of sensor nodes M, the network achieves a 

balanced spatial distribution. This balance allows for efficient selection of the optimal 

rendezvous points within each grid and enables the mobile sink to perform energy-aware 

movement decisions with minimal communication overhead. 

4.2 Eliminating RP using FCM algorithm. 

    The proposed approach adopts a grid-based network model, where the sensing field is 

separated into equal square grids. Each grid contains a sum of sensor nodes, choose the optimal 

rendezvous point (RP) in each grid based on the Fuzzy C-Means (FCM) algorithm. Based on 

network conditions, the fuzzy inference system (FIS) leads the mobile sink (MS) to move 

efficiently among these grids.  

      In the suggested approach, the rendezvous point (RP) inside each grid is not chosen based 

on the geometric center or randomly. Instead, it is determined to utilize the Fuzzy C-Means 

algorithm to locate the most centralized and relevant position among the active sensor nodes, 

as shown in Figure 3. This approach reduces transmission distances, enhances data collection 

efficiency by minimizing the number of hops, often enabling single-hop transmission, and 

improves energy balance and  Quality of Service (QoS) across the network 

    After dividing the sensor field of size A×A into equal-sized square grids based on the 

transmission range TR, each grid acts as a localized sub-network containing a subset of the 

total sensor nodes. Within each grid, the goal is to determine the most suitable location for the 

mobile sink to stop based on node density within the grid, and collect data. These positions are 

referred to as Rendezvous Points (RPs).  

      To determine the optimal (RPs) within each grid, the FCM algorithm is utilized. Unlike 

conventional hard clustering methods, (FCM) enables each node to belong to the cluster with 

a degree of membership, enabling a more flexible and accurate estimation of the central and 

high-density location. 

     Let us define X = {x1, x2, ..., xn}, represent the set of sensor nodes within a given grid, 

where each xi represents the coordinates of node i. c represnt the optimal point (RP).  ui the 

degree of membership of node xi to the cluster centre c. 

Since only one RP per grid is required, we configure FCM to generate a single RP per grid 

(K=1). The objective function minimized by FCM is: 

𝐽𝑚 = ∑ .𝑁
𝑖=1 ∑ (𝑢𝑖𝑘)

𝑚𝐶
𝑘=1 ‖𝑥𝑖 − 𝑐𝑘‖

2                                    (7) 

 

Where m > 1 denotes the fuzzification coefficient (commonly set to m = 2), ||xi - c|| is the 

Euclidean distance between node xi and the center c, ui ∈ [0,1] indicates the fuzzy membership 

of node i. 

Membership values and the corresponding optimal locations of rendezvous points (RPs) are 

updated iteratively using. 
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𝑢𝑖𝑘 =
1

∑ (
‖𝑥𝑖−𝑐𝑘‖

‖𝑥𝑖−𝑐𝑗‖
)

2
𝑚−1

𝑐
𝑗=1

                        (8) 

 

𝑐𝑘 =
∑ (𝑢𝑖𝑘)

𝑚 𝑥𝑖
𝑁
𝑖=1

∑ (𝑢𝑖𝑘)
𝑚𝑁

𝑖=1

                    (9) 

The algorithm repeats these updates until the position estimate (c) converges, i.e., the change 

between successive iterations becomes smaller than a predefined threshold (ε). 

This process is applied independently to each grid as follows. 

1. For each grid, identify all sensor nodes located within its boundaries. Apply the FCM 

algorithm to determine (RP) as the location that is both most representative and most densely 

connected.  Store this RP as the designated stop position for the mobile sink in that grid. 

2. After obtaining all RPs from every grid as Figure 3, a set of optimal rendezvous points is 

formed, RPset = {RP1, RP2, ..., RPk}, where k denotes the total number of  )RPs(. These points 

are subsequently utilized by the fuzzy decision system in the next phase to determine the 

adaptive movement sequence of the mobile sink. 

 

 

4.3 Fuzzy Inference System for Mobile Sink Movement Decision 

In the proposed approach, after determining the optimal (RPs) for each grid using 

(FCM), the mobile sink (MS) decides its movement pattern through a fuzzy decision system. 

This system dynamically evaluates neighboring grids based on critical energy and traffic 

parameters to avoid rapid energy depletion, especially in high-traffic zones, and to maintain 

uniform energy consumption throughout the network. 

  Figure 3:      Rendezvous Points (RPs),      Sensor Nodes 
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    Grid Evaluation Criteria  at each transmission round r, the MS evaluates its current grid and 

up to eight neighboring grids to determine the most suitable next destination. The evaluation 

process is based on four fuzzy input variables, as shown in Figure 4. Unlike studies that rely 

on the geometric center of each grid, our method uses FCM to identify a more optimal, data-

centric rendezvous point within each grid. This ensures the MS avoids low-density or inactive 

zones, reduces intra-grid hops and latency, and prolongs the overall network lifetime. 

 

 

 

 

 

 

 

 

 

 

 

Fuzzy Inference System 

The fuzzy system is built using Mamdani inference. Each fuzzy input is divided into linguistic 

levels such as Low, Medium, and High. A total of 375 fuzzy rules are used to cover all input 

combinations. 

Fuzzy Input and Output Variables 

4.3.1 Average Residual Energy(RE̅) 

This is the most important factor in lifetime extension strategies. A grid with a higher 

average residual energy has a higher chance of being selected. This variable contributes 

approximately 40% to the fuzzy rule base evaluation. 

4.3.2 Sensor Density(ρ) 

Grids with higher sensor density are more likely to be chosen. However, in practice, 

energy distribution might not always be uniform due to varying sensing loads. This variable 

contributes about 20% to the rule base. 

4.3.3 Average Traffic Load(T͞L) 

Grids with lower average traffic are favored due to lower data latency and reduced 

computation. This variable holds about 20% weight in the fuzzy system. 

4.3.4 Source Nodes Angle (Â) 
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Figure 4. Fuzzy Inference System Structure of RP-FCM-FIS Protocol. 
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     This parameter reflects how close a candidate grid is to the region where source nodes are 

located. A closer grid reduces the number of hops required for transmission, contributing about 

20% to the rule evaluation. 

     Each grid is evaluated and assigned a Selection Chance (SC), which is the fuzzy system's 

output. The grid with the highest SC is chosen, and the MS moves to the FCM-determined RP 

within that grid. The MS then broadcasts its new position to the entire network. 

Membership graphs of fuzzy inputs and outputs using triangular membership functions, 

illustrated in Figure 5 

 

 

 

Figure 5. Membership function of the input and output FIS. 
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The fuzzy inference system in the proposed method considers four input variables (RE̅, ρ, TL̅, 

and Â). The first three inputs are divided into five linguistic levels (‘Very Low’, ‘Low’, 

‘Medium’, ‘High’, ‘Very High’), while Â is represented by three levels (‘Low’, ‘Medium’, 

‘High’). By using the If–Then rules, the fuzzy output is mapped with the inputs, resulting in a 

rule base that contains a total of 375 rules to cover all possible implications. The output 

selection chance (SC) is then defuzzified using the center of gravity method, and the mobile 

sink moves to the RP of the grid with the highest SC. Finally, the new sink position is broadcast 

to all sensor nodes in the network.  

5-Performance Evaluation 

 proposed sink mobility method in homogeneous WSNs, the performance of the proposed RP-

FCM-FIS strategy was evaluated by comparing it with three recent state-of-the-art approaches, 

namely MSPO-ABC, MSC-BES-HNN, and FA*-Static, under identical simulation conditions. 

The evaluation aimed to verify the effectiveness of the proposed method in achieving balanced 

energy consumption, mitigating energy-hole formation, and extending the overall network 

lifetime. 

5.1 Simulation Setup 

     All algorithms including the proposed RP-FCM-FIS were implemented in Python 3.8 using 

Spyder IDE within the Anaconda environment. The simulation scenario consisted of 200 

homogeneous sensor nodes randomly distributed within a 200 × 200m² sensing field. Each 

sensor node was initialized with equal energy capacity and a transmission range of 25m. To 

optimize sink mobility and ensure uniform coverage, the sensing field was partitioned into 

square grids of 50m side length, enabling the mobile sink (MS) to move between adjacent grids 

either horizontally or vertically by 50 m, or diagonally by 70.7m. The simulation was executed 

for 10,000 transmission rounds, during which all protocols generated an equal number of 

packets per round. The same radio energy dissipation model defined in was applied to all 

compared methods. This setup enabled an accurate comparison of the proposed RP-FCM-FIS 

model against MSPO-ABC, MSC-BES-HNN, and FA*-Static in terms of reducing energy 

imbalance, delaying the first node death, and extending the overall network lifetime, illustrated 

in Table 1. 

Table 1. Parameters of Simulation 

                        Parameter                                                            Value 

Region size 200m x 200m 

Node deployment Randomly 

No. of sensors 200 

No. of grids 16 (Grid side = 50m, diagonal = 70.7m) 

Transmission range 25m 

Initial sensor’s energy 0.4J 
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Control packet length 2kb 

No. of transmissions 10000R 

Maximum traffic in the sensor’s queue 10 

Eelec 50 NJ/bit 

Eamp 100 pJ/bit/m2 

 

5.2   Simulation results 

The performance of the proposed RP-FCM-FIS strategy was evaluated by comparing 

it with three recent approaches. To accomplish this, several key performance indicators were 

measured, including traveling distance of the mobile sink, Standard deviation, Ratio of 

Remaining Energy, and Ratio of Sensors Still Alive. 

Figure 6 shows the cumulative travelling distance of the mobile sink. The proposed RP-

FCM-FIS protocol achieves the lowest movement cost during the early and middle rounds, 

demonstrating efficient sink mobility control. Although its distance increases in later rounds 

(≈ 990 m at round 10,000), this is expected as fewer active nodes require broader coverage. 

Compared to MSPO-ABC and MSC-BES-HNN, RP-FCM-FIS provides a better balance 

between movement overhead and network lifetime. 

 

                                    Figure 6: Traveling Distance of the mobile sink Analysis. 

Figure 7. Standard deviation of energy consumption. The proposed The proposed maintains 

the highest remaining energy with a smooth and gradual decline, indicating efficient and 

balanced energy usage, while MSC-BES-HNN and MSPO-ABC show moderate depletion and 

FS*-Static experiences the fastest energy loss. Achieves the lowest SD, ensuring balanced 

energy distribution, while MSC-BES-HNN  and MSPO-ABC show moderate performance, and 

FA*-Static suffers from the highest imbalance. In addition, the proposal maintains the highest 

remaining energy with a smooth and gradual decline, indicating efficient and balanced energy 
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usage, while MSC-BES-HNN and MSPO-ABC show moderate depletion and FA*-Static 

experiences the fastest energy loss. Protocol shows stable and balanced SD values without large 

fluctuations, reflecting intelligent sink mobility and efficient energy utilization.  

 

                  Figure 7. Standard deviation of energy consumption among sensor nodes 

 

                                   Figure 8. Ratio of alive sensor nodes over simulation rounds 

Among all compared protocols, RP-FCM-FIS preserves nearly all sensor nodes alive up to 

around 9500 rounds, indicating extended network lifetime and efficient energy balance, while 

MSPO-ABC and MSC-BES-HNN  experience earlier node deaths, and FA*-Static shows the 

weakest performance. 
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                             Figure 9. Ratio of alive sensor nodes over simulation rounds 

The proposed maintains the highest remaining energy with a smooth and gradual decline, 

indicating efficient and balanced energy usage, while MSC-BES-HNN  and MSPO-ABC show 

moderate depletion and FA*-Static experiences the fastest energy loss. 

6- CONCLUSION. 

     This paper presented an adaptive path construction strategy for mobile sink movement in 

wireless sensor networks using a fuzzy inference system integrated with the C-Means 

algorithm. The network was divided into grids, and the best rendezvous points were 

dynamically updated in each round according to the residual energy, distance, and node 

density. The fuzzy inference system was then applied to determine the next sink position using 

four critical factors: residual energy, number of nodes, traffic level, and angle between the sink 

and the optimal position. 

The simulation results demonstrated that the proposed method maintains the highest 

remaining energy with a smooth and gradual decline, indicating efficient and balanced energy 

usage, while MSC-BES-HNN and MSPO-ABC show moderate depletion, and FA*-Static 

experiences the fastest energy loss. Protocol outperforms existing approaches such as MSPO-

ABC, MSC-BES-HNN, and FA*-Static in terms of energy balance, network lifetime, and sink 

mobility efficiency. RP-FCM-FIS achieved the lowest standard deviation of energy 

consumption, maintained the highest ratio of alive nodes up to nearly 9500 rounds, and 

exhibited smooth and stable energy depletion, confirming its ability to distribute the energy 

load evenly among sensor nodes.. 

    The proposed algorithms are limited in their assumptions regarding the energy consumption 

of the SNs. Specifically, the assumption has been made that the SNs utilize energy exclusively 

for radio transceiver operations during data transmission and reception. However, it should be 

noted that the SNs also experience energy expenditure during data processing operations, such 
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as noise elimination and data aggregation. In addition, the approach can be enhanced by 

incorporating reinforcement learning or other intelligent optimization techniques to improve 

sink movement prediction. These issues will be addressed in future research. 
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