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Abstract 

Video captioning has become a pivotal research domain at the interface of computer vision 

and natural language processing, applications in multimedia retrieval, assistive systems, and 

human–computer interaction. Despite substantial progress, many existing approaches, 

including Vid2Seq, Positive-Augmented Contrastive Learning, GL-RG, and TextKG, 

continue to encounter limitations in jointly modeling fine-grained spatial details and long-

term temporal dependencies. These challenges hinder the generation of captions that are both 

semantically accurate and contextually coherent. It proposes novel video captioning 

framework that leverages a convolutional neural network (CNN)-based encoder integrated 

with residual and bottleneck blocks to capture rich temporal–spatial features while mitigating 

gradient degradation. The encoder’s design ensures efficient feature propagation and robust 

representation of video content. To model sequential dependencies and maintain contextual 

consistency, the extracted features are processed by a recurrent decoder based on long short-

term memory (LSTM) networks. This hybrid architecture effectively balances feature 

extraction with sequential modeling, thereby addressing critical shortcomings of prior 

methods. Extensive evaluations were conducted on three benchmark datasets—MSR-VTT, 

MPII Cooking 2, and M-VAD. The proposed framework achieved a peak BLEU score of 51 . 

Beyond accuracy improvements, the architecture demonstrated reduced computational 

complexity, confirming its suitability for large-scale video captioning tasks. In conclusion, 

the integration of CNN-based residual encoding with LSTM-based recurrent decoding offers 

a streamlined yet powerful solution for video captioning. The proposed model advances the 

field by achieving a balance between efficiency and accuracy, thereby contributing a 

significant step toward the development of high-quality, contextually rich video descriptions 

in vision–language research. 

Keywords: Video captioning, CNN encoder, Residual blocks, LSTM, Temporal-spatial 

features. 



International Journal of Applied Mathematics 

Volume 38 No. 2s, 2025 

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version) 

 

37 
Received: July 18, 2025 

1. Introduction 

In recent years, the intersection of computer vision and natural language processing has 

witnessed remarkable advancements, particularly in understanding and generating content-

rich multimedia data. Video understanding, in particular, presents a multifaceted challenge 

due to its sequential and dynamic nature, encompassing both visual and textual modalities. In 

this context, the fusion of Convolutional Neural Networks (CNNs) for visual feature 

extraction with Long Short-Term Memory (LSTM) networks for sequential modeling has 

emerged as a potent methodology for video understanding tasks. 

This article introduces a novel model architecture that combines a CNN encoder for 

extracting rich visual features from videos with an LSTM decoder for generating descriptive 

text. The CNN encoder is adept at capturing both semantic information and temporal 

dynamics inherent in videos, while the LSTM decoder processes tokenized textual input to 

generate coherent and contextually relevant descriptions. The proposed model is trained on 

two widely used benchmark datasets, MSRVTT and YouCook2, to demonstrate its 

effectiveness across diverse video content and domains. 

Generating captions from visual content, such as images or videos, requires the extraction 

of rich semantic features using advanced deep learning techniques. These visual cues are then 

semantically aligned with natural language expressions. To achieve the best performance, it is 

essential to refine these extracted features in a way that correlates with linguistic 

representations. This is typically accomplished by processing the input images through 

multiple layers of a deep neural architecture, where each layer incrementally learns and 

encodes different visual attributes. The culmination of this process results in a coherent 

sentence that describes the image's context. 

When extended to video captioning, the concept remains similar but becomes more 

complex due to the temporal dynamics involved [4]. Instead of static images, video-

captioning systems are trained on datasets composed of video sequences coupled with their 

textual annotations [5]. The model learns to capture spatio-temporal representations, 

encapsulating movement, transitions, and interactions within scenes over time [6]. These 

representations form the basis for generating descriptive sentences that convey the video's 

events. 

Since effective caption generation involves both understanding the visual domain and 

encoding linguistic structure, studying image-captioning methods provides foundational 

insights for developing video-captioning systems. Accordingly, the proposed model in this 

work draws inspiration from multiple prior methods, focusing on integrating techniques for 

sequence-specific descriptions. Emphasis is placed on context-aware captioning, including 

event-level tagging, object-level identification, and sequence-length-aware narration. 

Additionally, the way different architectures attend to temporal flow and spatial layout across 

frames greatly influences the quality and specificity of the generated captions. 

The significance of this work lies in its potential to advance the state-of-the-art in video 

understanding and description generation. By leveraging both visual and textual modalities, 

the proposed model offers a holistic approach to interpreting and summarizing video content. 
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This is particularly valuable in applications such as video summarization, content retrieval, 

and assistive technologies for the visually impaired, where accurate and informative 

descriptions are essential for enhancing user experience and accessibility. 

The scope of this research encompasses the development and evaluation of a CNN-LSTM 

model for video understanding tasks. By integrating CNN-based visual feature extraction 

with LSTM-based sequential modeling, the model aims to capture both spatial and temporal 

cues in videos and generate coherent textual descriptions. Furthermore, the application of this 

model is not limited to specific domains or datasets but can be extended to various video 

understanding tasks across different domains, making it a versatile tool for multimedia 

analysis and interpretation. 

Summary of Contributions 

1. Novel Architecture: We propose a novel model architecture that combines CNN-

based visual feature extraction with LSTM-based sequential modeling for video 

understanding and description generation. 

2. Multimodal Fusion: Our model integrates both visual and textual modalities to 

provide detailed features of video content, capturing semantic information and 

temporal dynamics simultaneously. 

3. Benchmark Performance: Through extensive experimentation on benchmark 

datasets such as MSRVTT and YouCook2, we demonstrate the effectiveness and 

generalizability of our proposed approach, achieving state-of-the-art performance in 

video description tasks. 

 

2. Related Work 

Xu et al. [7] proposed a reinforcement learning-based caption generation framework that 

incorporates a denoising mechanism and grammar refinement unit. Their model maximizes 

the long-term reward through policy gradient optimization, using the following loss function: 

ℒ𝑅𝐿 = −𝔼𝑦̂∼𝑝𝜃
[𝑟(𝑦̂)]…(1) 

Where𝑝𝜃 denotes the probability distribution over generated sequences, and 𝑟(𝑦̂) 

represents the reward (e.g., CIDEr or BLEU score) for the generated caption 𝑦̂. This 

formulation encourages the generation of fluent and semantically accurate captions over time. 

D. Yasin et al. [2] developed a method that incorporates object appearance cues using 

word embeddings and FaceNet features, processed through recurrent layers. The architecture 

utilizes both LSTM and GRU layers, where the hidden state updates follow: 

ℎ𝑡 = LSTM(𝑥𝑡, ℎ𝑡−1),  or ℎ𝑡 = GRU(𝑥𝑡, ℎ𝑡−1)…(2) 

With𝑥𝑡 representing input vectors composed of image and object appearance features at 

time 𝑡. This allows the model to maintain sequential coherence while integrating visual 

semantics. 

Tang et al. [8] introduced a pyramidal feature extraction mechanism with multi-level 

attention for fine-grained image recognition. The attention module computes weights 𝛼𝑖 for 

feature maps 𝐹𝑖 as: 
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𝛼𝑖 =
exp(𝑒𝑖)

∑ exp𝑗 (𝑒𝑗)
,  where 𝑒𝑖 = score(ℎ, 𝐹𝑖)…(3) 

whereℎ is the current decoder state and score(⋅) is a similarity function. Their M3Net 

model [9] enhances this approach by adding additional levels of attention and multi-scale 

feature aggregation. 

Yan et al. [10] addressed the problem of image retrieval based on textual queries using a 

Channel Attention Filter and Relation-Guided Localization (RGL). The channel attention 

mechanism dynamically weights feature maps as: 

𝐹′ = 𝜎 (𝑊2 ⋅ ReLU(𝑊1 ⋅ GAP(𝐹)))…(4) 

whereGAP denotes global average pooling, and 𝑊1, 𝑊2 are trainable weights. The 

enhanced feature 𝐹′ guides more precise localization and identification. 

In [11], a pre-training strategy was employed to improve visual-language alignment. By 

optimizing the contrastive loss between paired and unpaired image-text pairs: 

ℒ𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = −log
exp(sim(𝐼,𝑇+))

∑ exp𝑗 (sim(𝐼,𝑇𝑗))
…(5) 

where𝐼 is the image feature vector, 𝑇+ is the correct text, and 𝑇𝑗 are negative samples, the 

model learns stronger cross-modal relationships. 

MasoomehNabati et al. [12] proposed a boosted LSTM model designed for iterative 

training and parallel batch processing. Their architecture improves temporal feature learning 

by computing sequential representations with enhanced speed and stability. 

Chohan et al. [13] focused on encoder-decoder frameworks for image captioning using 

attention. The decoder at each step attends to relevant image regions via a learned context 

vector 𝑐𝑡: 

𝑐𝑡 = ∑ 𝛼𝑡𝑖𝑖 ℎ𝑖 , 𝛼𝑡𝑖 =
exp(𝑒𝑡𝑖)

∑ exp𝑗 (𝑒𝑡𝑗)
…(6) 

whereℎ𝑖 are the encoder hidden states, and 𝑒𝑡𝑖 is a learned attention score. 

Mun et al. [14] introduced a temporal-aware video captioning framework that achieved 

state-of-the-art performance on the ActivityNet Captions dataset by emphasizing sequential 

dependencies across time frames. 

Fujii et al. [15] proposed a model that combines visual embeddings with sentence 

representations in hidden layers, updating weights to better align the visual-semantic 

space.Zhang et al. [16] worked on remote sensing image captioning using attribute attention. 

Their method extracts high-level semantic features and uses an attention-based decoder to 

link image attributes with descriptive phrases.Kim et al. [17] proposed a relational captioning 

system based on a triple-stream network, combining visual features, relational information, 

and part-of-speech tags. The final caption is generated using a fusion mechanism that 

integrates these three sources of information. 

Dong et al. [18] explored sentence selection for scene description using multi-scale 

Word2VisualVec (W2VV). The sentence scoring function is defined as: 

𝑠 = cos(𝜙(𝐼), 𝜓(𝑇))…(7) 
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where𝜙(𝐼) is the image representation and 𝜓(𝑇) is the textual embedding, with cosine 

similarity indicating relevance. 

Orozco et al. [19] developed a CNN-LSTM model using the Microsoft Video Description 

Corpus, designed with accessibility applications in mind. The CNN extracts frame-level 

features which are passed to an LSTM for sequence modeling.Li et al. [20] performed 

literature analysis by linking image and text data, encouraging diverse caption generation 

using reinforcement learning guided by a reward function tailored to linguistic diversity and 

fluency.Shetty et al. [21] proposed a hybrid captioning framework integrating contextual 

features with language models, ensuring more semantically meaningful outputs. 

Bai et al. [22] improved object relationship modeling through a geometric attention 

mechanism on MS-COCO. The geometric attention computes spatial relevance using 

bounding box coordinates and contextual embeddings.Daskalakis et al. [23] introduced a 

contextual feature-based captioning approach, achieving improved performance on MS-

COCO and MSR-VTT by enhancing feature discrimination at the encoder level.Yang et al. 

[24] developed the Ved2Seq model for activity-based captioning. Their framework aligns 

scene boundary detection with language model tokens, improving event-specific description 

accuracy. 

Sarto et al. [25] integrated a Vision Transformer encoder with textual processing, using 

CLIP for pre-alignment. Their similarity loss ensures better alignment between image patches 

and word tokens.Yan et al. [26] presented the GL-RG model using a granularity-aware 

learning objective, pairing fine-grained linguistic structures with localized visual 

representations.Gu et al. [27] proposed a transformer-based TextKG model, where scene-

relative captioning is enhanced using knowledge graph embeddings and cross-attention 

layers.Anderson et al. [28] reviewed encoder-decoder model evolution in video captioning, 

providing an overview of key improvements and benchmarks.Lee et al. [29] proposed the 

SeFLA model for semantic event captioning, utilizing both ResNet and C3D pre-trained 

models. The features are merged before passing into the decoder, achieving competitive 

results on MSVD and MSR-VTT. 

The comprehensive review of existing video captioning techniques provides a strong 

foundation for the proposed model. The analysis of diverse methods ranging from 

reinforcement learning-based caption refinement to attention-driven architectures highlights 

the significance of combining temporal modeling with spatial feature extraction. Many 

previous works employ encoder-decoder frameworks, attention mechanisms, or knowledge-

augmented models to improve caption quality. However, a common limitation observed is the 

inadequate fusion of spatial and temporal features in a streamlined manner. This motivated 

the design of a model that leverages the strengths of residual and bottleneck CNN blocks to 

capture fine-grained spatial patterns from video frames while maintaining computational 

efficiency. These features are then sequentially processed using an LSTM-based decoder, 

which excels at modeling temporal dependencies and generating contextually coherent 

sentences. The integrated architecture ensures that both local spatial details and long-range 

temporal structures are effectively utilized, addressing gaps identified in earlier models. By 
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grounding the model’s design in the strengths and limitations of existing techniques, this 

study paves the way for more accurate, descriptive, and efficient video caption generation 

across diverse video datasets. 

 

3. Proposed Work 

The proposed work consist of the video frames feature extraction and recurrent neural 

network (RNN) decoder. The RNN decoder is designed with the use of LSTM.  Figure 1 

shows the proposed model architecture. 

 
Figure 1: Proposed Model Architecture 

Semantic and fine features play crucial roles in various computer vision tasks, including 

video captioning. Semantic features capture high-level information about the content of an 

image or video, such as object categories, scene context, and overall context. These features 

provide a global understanding of the visual content, aiding in tasks like scene recognition, 

activity detection, and context understanding. Semantic features are essential for generating 

coherent and contextually relevant captions in video captioning tasks, as they help the model 

grasp the overall theme and content of the video. On the other hand, fine features capture 

detailed information at a lower level, including textures, shapes, edges, and colors. Fine 

features focus on capturing intricate details and nuances within the visual content, enabling 

the model to discern subtle variations and specific characteristics of objects or scenes. While 

semantic features provide a holistic understanding, fine features offer granularity and richness 

to the visual representation, enhancing the model's ability to capture nuances and details 

crucial for accurate description generation. In video captioning, combining both semantic and 

fine features allows the model to generate comprehensive and detailed descriptions that 

effectively convey the content and context of the video. Semantic features provide the 

overarching structure and context, while fine features contribute nuanced details, resulting in 

more informative and accurate captions. Therefore, leveraging both semantic and fine 

features is essential for achieving robust and effective video captioning systems.  

In the proposed video captioning work, combining features from different CNN 

architectures such as Inception-V3 and MobileNet-V2 enhances the model's ability to capture 

diverse visual information.  

Let FInception represent the feature vector extracted from the Inception-V3 CNN 

architecture, and FMobileNet represent the feature vector extracted from the MobileNet-V2 

architecture. Both feature vectors are of dimension D. 
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To combine these features, you can use a weighted sum approach: 

Fcombined=α⋅FInception+β⋅FMobileNet…(1) 

Where, Fcombined is the combined feature vector. α and β  are the weights assigned to 

the features from Inception-V3 and MobileNet-V2, respectively. These weights can be 

learned during the training process or set manually. α+β=1 to ensure that the combined 

feature vector is a weighted average of the individual feature vectors. 

Adjusting the parameters α and β is based on the relative importance or performance of 

each CNN architecture in specific video captioning task. For example, if Inception-V3 tends 

to capture more semantic information while MobileNet-V2 captures finer details, in which 

case assign a higher weight to Inception-V3 (α>β).In summary, combining features from 

Inception-V3 and MobileNet-V2 for the CNN decoder stage in video captioning involves 

calculating a weighted sum of the feature vectors extracted from each architecture, with the 

weights determined based on their relative contributions to the task. 

 

4. Results and Discussion 

a. Dataset 

The MSR-VTT (Microsoft Research Video to Text) dataset is a large-scale video 

description dataset that includes 10,000 video clips collected from sources such as YouTube. 

Each video is 10 to 30 seconds long and annotated with 20 different captions, providing a 

diverse set of natural language descriptions. The MPII Cooking Activities Dataset contains 

around 44,000 video clips of 65 cooking activities, annotated with detailed descriptions of 

actions and objects. This dataset is widely used for recognizing and understanding fine-

grained human activities in cooking scenarios. The MVAD (Montreal Video Annotation 

Dataset) consists of 92 movies with over 48,000 video clips, each annotated with detailed 

descriptions and aligned with movie subtitles. This dataset is designed for video description, 

summarization, and understanding tasks, offering a comprehensive resource for developing 

and evaluating models that aim to understand and generate descriptions for complex video 

content. 

 

b. Performance Parameters 

Performance parameters such as BLEU, METEOR, and CIDEr are crucial for evaluating 

machine-generated translations or textual descriptions. BLEU measures the likeness between 

generated and reference texts by comparing n-grams, with a higher score indicating greater 

similarity. METEOR incorporates precision, recall, and alignment-based measures, producing 

a single score reflecting overall quality. CIDEr, tailored for image description evaluation, 

considers both precision and diversity by weighting n-grams based on TF-IDF and including 

a penalty term for promoting diversity. For BLEU, the score is calculated using modified 

precision for n-grams, while METEOR combines precision and recall with alignment score 

computation. CIDEr computation provides the understanding of a weighted sum of TF-IDF 

scores, scaled by a term frequency penalty. These metrics provide comprehensive 
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assessments of the quality and diversity of generated texts, essential for refining and 

optimizing machine-generated outputs 

.𝑇𝐹𝐼𝐷𝐹𝑖 = (
𝑐𝑖

|𝑐|
) ∗ log (

∑ 𝑟𝑖

𝑟𝑖+1
)...(1) 

 

𝐶𝐼𝐷𝐸𝑟 = (∑ 𝑤𝑖 ∗  𝑇𝐹𝐼𝐷𝐹𝑖)/ 𝑁 +  𝑇𝐹𝑝𝑒𝑛𝑎𝑙𝑡𝑦
𝑁
𝑛=1 ...(2) 

 

In the METEOR evaluation metric, a penalty parameter, denoted as α, is assigned for 

chunk matches, conventionally set to 0.5. Precision (P) and recall (R) are fundamental 

components of the METEOR computation. This metric calculates both unigram precision and 

recall, assessing the accuracy and completeness of the captions generated compared to 

original ground truth. Additionally, METEOR computes an alignment score, which reflects 

the degree of correspondence between the generated and reference texts. By considering 

precision, recall, and alignment, METEOR provides a comprehensive evaluation of the 

quality of machine-generated translations or textual descriptions. 

 

𝑃 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑢𝑛𝑖𝑔𝑟𝑎𝑚𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑈𝑛𝑖𝑔𝑟𝑎𝑚𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒
...(2) 

 

𝑅 =
(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑢𝑛𝑖𝑔𝑟𝑎𝑚𝑠)

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑖𝑓 𝑢𝑛𝑖𝑔𝑟𝑎𝑚𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒)
...(3) 

 

𝐴𝑙𝑖𝑔𝑛𝑒𝑚𝑒𝑛𝑡 𝑆𝑐𝑜𝑟𝑒 =
(𝑃∗𝑅)

((1−𝛼)∗𝑅+ 𝛼∗𝑃)
...(4) 

BLEU (Bilingual Evaluation Understudy) is a metric that quantifies the similarity between 

machine-generated translations and reference texts by comparing n-gram matches, yielding a 

precision-oriented score. 

BLEUn =
(Number of n−gram matches)

(Number of n grams in the candidate sentence)
...(5) 
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c. Comparative Analysis  

 
 

Figure 2: Performance analysis of proposed model on different datasets 

 
Figure 3: Comparative Analysis 

 

 

 

 



International Journal of Applied Mathematics 

Volume 38 No. 2s, 2025 

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version) 

 

45 
Received: July 18, 2025 

Table 1: Comparative Analysis with Other Existing Methods 

Method Dataset Used Approach and Steps Performance 

Vid2Seq [24] 

MSR-

VTTMSVDViTT

YouCook2 

Implements dense captioning of videos. 

Identifies event boundaries for generating 

captions. Utilizes transcripted speech for 

training. Employs a CLIP-based visual 

encoder 

Attained a 

peak CIDEr 

value of 47.2 

Positive-

Augmented 

Contrastive 

Learning [25] 

VATEX-EVAL 

Encodes video data with CLIP- Augments 

caption datasets with additional captions 

for the same video sequences. Utilizes 

PACS score-based learning. Evaluated 

through human annotations 

Achieved a 

Machine 

Correct 

Caption Score 

of 0.821 

GL-RG [26] MSR-VTTMSVD 

Links descriptive granularity from videos 

with linguistic expressions. Utilizes 

incremental learning. Encodes local key 

frames. Combines temporal features with 

global frame encoding 

Attained a 

maximum 

BLEU score 

of 46.2 

TextKG [27] 

MSR-

VTTYouCook2M

SVD 

Utilizes a two-stream transformer. 

Employs self and cross-attention for 

multimodal data. Encodes appearance 

information with ResNet-200. Encodes 

regional information using Faster-R-CNN 

Models transcription tokens with GloVe. 

Uses knowledge graph tokens for object 

relationships 

Achieved a 

BLEU score 

of 43.7 on 

MSR-VTT 

Proposed 

MSR-VTTMPII 

Cooking 2M-

VAD 

Extracts temporal global features using 

FFT. Utilizes an MBConv-based CNN 

model for spatial local features. Adopts a 

short video description approach. 

Generates captions by maximum 

matching with ground truth 

Reached a 

peak BLEU 

score of 51 

 

d. Discussion 

Various approaches have been proposed for video captioning, each employing unique 

techniques to extract and utilize video features for generating descriptive captions. This 

discussion highlights several noteworthy methods and positions the proposed model within 

this context. 

Vid2Seq implements a dense video captioning strategy that focuses on generating 

captions by identifying event boundaries within videos. The approach uses transcripted 

speech data for training and leverages a CLIP-based visual encoder to enhance the descriptive 
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quality of the captions. This method has shown impressive results on datasets like MSR-

VTT, MSVD, ViTT, and YouCook2, achieving a peak CIDEr value of 47.2. 

The Positive-Augmented Contrastive Learning method utilizes a CLIP-based visual-text 

encoder to represent video content while enriching the training corpus by associating multiple 

captions with identical video segments. This augmentation strategy enhances semantic 

diversity, enabling the model to generalize better across varied linguistic expressions. The 

learning process incorporates a PACS (Positive-Augmented Contrastive Score)-driven 

objective, supported by human-generated annotations for robust evaluation. On the VATEX-

EVAL benchmark, the model achieves a Machine Correct Caption Score (MCCS) of 0.821, 

indicating its effectiveness in aligning visual scenes with appropriate textual descriptions. 

In contrast, the GL-RG (Global-Local Representation Granularity) framework adopts an 

incremental training strategy that bridges fine-grained visual events with layered language 

expressions. By progressively mapping temporal cues and spatial details from videos to 

hierarchical linguistic structures, the model ensures that the generated captions reflect both 

global scene context and local action details. This alignment between visual granularity and 

descriptive clarity plays a crucial role in improving caption accuracy and contextual 

relevance.It encodes local key frames and combines temporal features with global frame 

encoding. This approach has shown effectiveness on MSR-VTT and MSVD datasets, 

achieving a maximum BLEU score of 46.2.TextKG utilizes a sophisticated two-stream 

transformer model that incorporates self and cross-attention mechanisms to handle 

multimodal data. It encodes appearance information using ResNet-200 and regional 

information with Faster-R-CNN, and models transcription tokens with GloVe. Additionally, 

it uses knowledge graph tokens for object relationships. This method has achieved a BLEU 

score of 43.7 on the MSR-VTT dataset. 

In contrast to these methods, the proposed model employs a CNN encoder specifically 

designed to extract both temporal and spatial features from video frames using a combination 

of residual and bottleneck blocks. This allows for efficient capture of intricate details and 

high-level abstractions in the video data. The RNN component of the model utilizes an 

LSTM-based architecture for generating captions, leveraging its capability to handle 

sequential data and long-range dependencies effectively. The proposed model adopts a short 

video description approach and generates captions through maximum matching with the 

ground truth, evaluated on MSR-VTT, MPII Cooking 2, and M-VAD datasets. This approach 

has yielded a peak BLEU score of 51, showcasing its effectiveness in accurately describing 

video content. 

 

5. Conclusion 

In this study, various methods for video captioning were explored, and the distinctive 

features of the proposed model were highlighted. Existing approaches like Vid2Seq, Positive-

Augmented Contrastive Learning, GL-RG, and TextKG leverage different techniques to 

extract and utilize video features, achieving notable results on various datasets. However, the 

proposed model stands out by employing a CNN encoder with a combination of residual and 
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bottleneck blocks to effectively capture temporal and spatial features from video frames. The 

RNN component, based on an LSTM architecture, excels in handling sequential data and 

long-range dependencies, crucial for accurate caption generation. Evaluated on datasets such 

as MSR-VTT, MPII Cooking 2, and M-VAD, the proposed model demonstrated superior 

performance, achieving a peak BLEU score of 51. This highlights its effectiveness in 

generating high-quality video descriptions. By avoiding reliance on FFT, BiLSTM, and 

MBConv blocks, the model maintains a streamlined architecture that efficiently balances 

complexity and performance. The proposed model offers a significant advancement in video 

captioning by integrating robust feature extraction techniques and sequential data handling, 

providing a promising solution for generating descriptive and accurate captions for a variety 

of video content. 
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