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Abstract

In this work, we propose the ¥-Bicomplex Laplace Trans-
form Adomian Decomposition Method to solve fractional
differential e quations d efined wi th re spect to a function 1
in the Caputo sense. This approach integrates the effec-
tive Adomian Decomposition Method with a generalized
form of the classical bicomplex Laplace transform. We ap-
ply the resulting recursive scheme to several numerical ex-
amples, including a real-world pharmacokinetic model de-
scribing drug concentration in human blood, to evaluate the
method’s performance. The solutions obtained closely align
with known analytical results, while the pharmacokinetic
model outcomes closely match experimental data. These
findings d emonstrate t he reliability and effectiveness of the
method in solving a broad class of -fractional differential
equations.
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1 Introduction

Fractional-order calculus focuses on the study of derivatives and
integrals of noninteger order. In recent years, the field h as seen
significant advancements, particularly in its applications to various
modern scientific and engineering d omains such as fluid dynamics,
probability theory, control systems, thermodynamics, and dynami-
cal systems [6, 7]. Unlike classical calculus, which follows a unified
structure, fractional calculus involves multiple definitions, making
it a diverse and multidirectional discipline. Common definitions of
fractional derivatives include those proposed by Atangana-Baleanu,
Riemann-Liouville, Caputo, Hadamard, Erdélyi-Kober, Riesz and
Hilfer. A comprehensive historical overview of the field is provided
in [8, 9, 10]. Numerous studies have investigated the application of
different fractional d erivatives t o various types of fractional differ-
ential equations (FDEs), demonstrating the utility of fractional cal-
culus in modeling complex phenomena across multiple disciplines.

Almeida proposed a novel form of the fractional derivative [11].
The -Caputo fractional derivative generalizes several other frac-
tional derivative formulations, including the Caputo and Hadamard
derivatives. As fundamental components for proving the existence
and uniqueness of solutions to various classes of i-fractional dif-
ferential equations (¢-FDEs), numerous fixed-point t heorems are
currently in use [12, 13, 14, 15].

Recently, many new fractional integral and derivative operators
have been introduced in the field of fractional calculus. A new
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fractional derivative is typically introduced for one of two reasons:
either to incorporate specific mathematical properties that existing
fractional derivatives do not capture or to represent physical phe-
nomena that current fractional derivatives are unable to describe
effectively. Furthermore, r ecent r esearch on 1 -Caputo differential

operators suggests that 1-FDEs offer g reater fl exibility an d more
suitable outcomes in a variety of situations.

Almeida used the -Caputo derivative to model global population
growth, demonstrating that the accuracy of the model is dependent
on the appropriate choice of fractional operator and trial function
[12, 16]. Since analytical solutions for ¢-fractional differential equa-
tions (¢-FDESs) are not yet available, semi-analytical and numerical
methods are essential. Various techniques have been proposed, in-
cluding operational matrices based on 1-shifted Legendre polyno-
mials [18] and the ¥-Haar wavelet method for initial value problems

17].

Developing effective a nalytical and numerical a pproaches for spe-
cific classes of ¢-FDEs remains a significant challenge in fractional
calculus. As a result, researchers have increasingly focused on novel
methods to model complex physical phenomena. In this regard, the
1-Bicomplex Laplace Transform (¢ -BLT), a generalized transform
introduced in [19], has gained attention for its effective integration
with fractional derivatives and integrals in particular types of dif-
ferential equations [20].

Moreover, the Adomian Decomposition Method (ADM) is a semi-
analytical approach that has proven highly effectivein solving a
wide range of fractional differential e quations (  FDEs). I t finds
significant a pplications a cross v arious fi elds of th e bi ological sci-
ences. Notably, ADM is considered a practical and efficient method,
requiring less computational effort c ompared t o m any traditional
techniques. It simplifies t he s olution p rocess without t he n eed to
linearize the given problem, making the decomposition procedure
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straightforward and efficient.

The Adomian Decomposition Method (ADM) has proven to be an
effective t echnique f or s olving various f ractional d ifferential equa-
tions (FDEs). Its applications include studying generalized frac-
tional Riccati differential e quations with respect t o another func-
tion, ¢ [22], and analyzing relaxation-oscillation differential equa-
tions involving the ¥-Caputo derivative [21]. ADM has undergone
several enhancements that aim to improve accuracy, reduce compu-
tational time, and accelerate convergence. As a result of these ad-
vancements, the modified ADM offers faster series convergence com-
pared to the classical version. This improved method has demon-
strated computational efficiency across a range of mo dels, making
it a valuable tool for researchers in applied sciences.

To address non-linear FDEs more effectively, a recent modification
of ADM was introduced [23]. Researchers have also explored hybrid
approaches by combining ADM with various integral transforms
such as the Elzaki, Laplace, Sumudu, and Natural transforms.
These combinations have successfully addressed a wide range of
FDE models. One prominent example is the Laplace-Adomian de-
composition method (LADM), which integrates the Laplace trans-
form with ADM. This hybrid technique replaces traditional solution
methods with a decomposition-based approach, yielding accurate
and efficient re sults. Consequently, LA DM continues to be widely
employed for solving numerous types of FDEs in scientific and en-
gineering applications [24, 25].

This paper aims to apply the standard Adomian Decomposition
Method (ADM) in combination with the generalized Bicomplex
Laplace transform, known as the -Bicomplex Laplace Adomian
Decomposition Method (¢)-BLADM), to address a class of fractional
differential equations (FDEs) involving ¢-Caputo fractional deriva-
tives, referred to as ¢-FDEs. The motivation behind this approach
is to extend the applicability of recently introduced v-fractional
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operators to more realistic scientific problems. The proposed gen-
eralized ©-BLADM recursive scheme is evaluated through several
test cases, including a practical example from pharmacokinetics.

The ¥-BLADM method was selected based on its promising per-
formance in the numerical examples presented later in this paper.
Compared to previous studies on ¢-FDEs, our results demonstrate
improved accuracy. As shown in [26], this approach has been suc-
cessfully used to solve various types of ¢-FDEs, including systems
of such equations, with excellent results.

Although we encountered some challenges in computing the inverse
-Bicomplex Laplace transform for specific functions, the method
still yielded highly accurate outcomes and was easy to implement
using the Maple 2022 software. We hope this study will contribute
to expanding the range of tools available to researchers for tackling
different types of fractional problems in the future.

The increasing demand for analytical methods capable of managing
multicomponent systems and higher-dimensional data necessitates
the extension of effective solution approaches, such as ¥-LTADM, to
bicomplex-valued functions. Compared to conventional techniques,
the bicomplex structure provides richer algebraic structures that
are better able to represent complex relationships.

The solution of ¢-fractional differential equations in bicomplex spaces
has received very little attention, despite the fact that there are sev-
eral analytical and numerical methods for solving classical and even
fractional differential equations in real or complex domains. There
are not many general-purpose decomposition techniques designed
for these kinds of situation, particularly when working with frac-
tional calculus that involves generalized derivatives.

The bicomplex 1-LTADM created in this work is readily applied to
systems described in bicomplex algebra, while retaining the advan-
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tages of the original approach, such as avoiding linearization, dis-
cretization, or perturbation. New approaches to solving 1-fractional
differential equations in hypercomplex spaces are made possible by
this study.

The structure of this paper is as follows: Section 2 presents relevant
definitions and theorems; Section 3 outlines the formulation of the
overall ¥»-BLADM scheme; Section 4 demonstrates the proposed
approach through test problems, including a real-world application
in pharmacokinetics; and Section 5 offers concluding remarks.

2 Preliminaries

This section discusses the fundamental properties of 1-fractional
operators and provides their key definitions. It also covers the -
Bicomplex Laplace Transform (BLT) for certain simple functions,
introduces the generalized ¥-BLT, and examines the application
of the ¥-BLT to -fractional operators and other special functions
that are essential for solving t-fractional differential equations (-
FDEs).

Definition 1. [1] Let f(¢) be a real-valued function with ex-
ponential order k. The Bicomplex Laplace Transform of f(t) for
t > 0 is defined as:

Lirerel = [ a = Fo).
Here, F(£) exists and converges for all £ € D = Dy U Dy U D3, or it
may have a hypergeometric projection H,(§) in the right half-plane
where ag > k + |az|. In the region D, there are an infinite number
of values for £ for which the hyperbolic projection H, remains the
same, as a; and ay are not subject to any constraints. The regions
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D+, Dsy, and D3 are defined as:

Dl:{f:a0+i1a1+i2a2+i1i2a3:a0>k5and a3:0}
Dy = {& = ag + 11a1 + igay + iyiga3 : ag > k + a3 and az > 0}
D3 = {¢ = ag + 11a1 + i2ay + iyisa3 : ag > k — a3 and az < 0}

Definition 2. A function y with respect to another function
1 can be expressed as a fractional integral of order 5 > 0 using the
following equation [11]. Specifically, let y : I — R be integrable,
where I = [a,b], f € R, n € N, and ¢(z) € C™(I) is a function such
that ¢/'(x) # 0 for all x € I. The fractional integral is defined as:

ﬁ”mw==HW%Y*/%W@X¢@)—¢@»*“%@Mt 0

Here, the gamma function is denoted by I'. In particular, when
Y(z) = z or ¥(z) = In(z), the above equation reduces to the Rie-
mann—Liouville and Hadamard fractional integrals, respectively.

Definition 3. Consider an integrable function y : I — R
defined on the interval I = [a,b]. The fractional derivative of y
with respect to ¢ is defined as follows [6] for a fractional order

B > 0 and a function t» € C™(I) such that ¢'(x) # 0 for all x € I:

1 d\"
Dy(x) = ( w’(x)%) 5%y (x)

— -5

1 d
V'(x) dx
(2)

Here, n = 1+ [f]. It should be noted that when ¢(x) = x or

Y(xz) = In(z), equation 1 simplifies t o t he R iemann-Liouville and
Hadamard fractional derivatives, respectively.

Definition4 .[11]Let ] = [a,b] beaninterval where § > 0
and n € N. Given that v is an increasing function with ¢/(z) # 0
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for all z € I, let ¢ and y be two functions in C),(I). The ¥-Caputo
fractional derivative of order 3 for the function y is defined as:

c B — By 1 i !
DLyte) = 1 (s ) o)

Here, 5 ¢ N, n =1+ [3], and if 5 is an integer, then n = f.

w0 = (1) e

in its simplified notation. From this definition, it is clear that the
1-Caputo fractional derivative is:

g D= B [T () (w(x) — ()" Pyl () dt if B ¢ N,
Da y(l’) - [n] .
Yy () if 8 € N.

It is important to note that for ¢(x) = z and (z) = In(x), this
formula simplifies to the classical Caputo derivative and the Ca-
puto-Hadamard fractional derivative, respectively.

In addition, as noted in [11], some important properties of ¢ (x)-
fractional operators are derived by considering the function y(z) =
(Y(x)—1(a))* !, where « € R, a > n, and 3 > 0. These properties
are as follows:

1-Caputo fractional derivative:

“Dly(e) = S5 — vla)

-fractional integral:

1y(e) = 5 () — g@)

Relationship between the fractional integral and derivative:

—_

n—

.,
12 (°D2y()) = y(o) - 32 2 () — ()

£
Il
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Moreover, for 5 € (0,1), the expression simplifies to:

17% (“D}y(@) = yl@) — y(a).

These results highlight the key properties of fractional operators
with respect to the function v, which are essential for solving -
fractional differential equations (FDEs). The following definitions
and theorems provide specialized functions that are useful in solving
these equations.

Definition 5. The Mittag-Leffler function F,(z), introduced
by Gosta Mittag-Leffler, is a well-known function in the theory of
fractional calculus. It is expressed as:

E.(2) = Tk T 1) aeC, Ra)>0
k=0

This function plays an important role in fractional calculus and is
used to describe solutions to fractional differential equations. Here,
I'(-) denotes the Gamma function, which generalizes the factorial
function. Additionally, Wiman introduced a two-parameter gener-
alization of the Mittag-Leffler function, which further expands its
utility in solving more complex fractional equations. This variant
of the Mittag-Leffler function allows for greater flexibility in mod-
eling and solving fractional differential equations with additional
parameters.

00 Zk
Eaﬁ(Z) = kz:; m, a, B S C, Re(a) >0 (3)

Similarly, Prabhakar [5] introduced an even more general version
of the Mittag-Leffler function known as the three-parameter Prab-
hakar function or the Prabhakar Mittag-Leffler function. This func-
tion generalizes the Mittag-Leffler function even further, and it is
defined as follows:

1o~ T(R+EK)2F

na(z) = R 2 T (k1 5)’ a,f,XNe C,Re(a) >0 (4)
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Definition 6. The Bicomplex Mittag-Leffler £, (¢) is defined
by

B©= Y rrryy E€Cn lma)l <Rl 6)

Furthermore, Ritu Agarwal created a two-parameter variant of the
Bicomplex Mittag-Leffler function, which is as follows:

o0 k
Eaﬁ(g) = ng— O‘aﬁaf € C?a |Zm](avﬁ)| < |R€(Oé,6)|
(6)

Similarly, we have defined the three-parameter TM function or the
Bicomplex Mittag-Leffler function, which is described as follows:

1S T(R 4 ke

R — — - 7
Faslt) =g kI (ak + )’

a, 3,8, § € Oy, lim;(a, B, R)| < |Re(a, 5, R)]
(7)

Definition 7. [19, 20] The Laplace transform of the function
y with respect to the function ¢ is defined as

Llyle)] =Y () = [ e @puiade, Vs € (9

where y : [0,00) — R is areal-valued function and % is an increasing
positive function with ¢ (0) = 0.

Definition 8. The Bicomplex Laplace transform of the func-
tion y with respect to the function v is defined as

Lyly(x)] = Y(€) = / T eSO (oyp(a)de, VEECy  (9)

y : [0,00) = R is a real-valued function and 1 is an increasing
positive function with ¢ (0) = 0.
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Theorem 9. The composition of operations involving v or ¢~
can be used to define the generalized Bicomplex Laplace transform,
as shown below.

Ly = Loy

where the definition of the functional operator 1)y, is

Wy f)(x) = f(4(2)) (11)

Corollary 10. The inverse generalized Bicomplex Laplace
transform can be expressed as:

(10)

L' = ¢yoL ™ (12)
or, to put it another way as,
. 1 c+1i00
LY©) =5 [ v (13)

Table 1 provides the general - Bicomplex Laplace transforms
of some basic functions.

Table 1: The - Bicomplex Laplace transform of certain functions

y(x) Lyly(z)] =Y (§)
1 & >0
e (@) 5 for |£] > a
(¢)(x))? gmi% for [¢] > 0
Es(A(¥(2))?) £ for Re(8) > 0 and |2 < 1
V()" Eps(A\(¥(x))”) 551 5 for Re(f) > 0 and [&] <1
(¥(2))° " B} A\@(@))") | 5555 for Re(B) > 0 and [&] < 1

Theorem 11. Let y be a piecewise continuous function defined
on each finite interval, with -exponential order. As a result, for

y(x)} = & Ly (y(a)).

every (3 > 0,

Ly {157
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Theorem 12. Assume 8 > 0, n = |B] + 1, and let y be
a function such that y(x), Ig_ﬁ’w(x)y@), Dé’w(x)lg_ﬁ’w(m)y(x), ce
Dg’w(x)lg_ﬁ’w(x)y(x) are continuous and exhibit y-exponential order

over the interval (0,00). Additionally, assume that RDg’w(a:)y(x) is
piecewise continuous on [0, 00). Then,

LDy (@)} = P Lufy(@)} — Y€ () 0),
" (15)

Theorem 13. Let 8 > 0 and definen = ||+ 1. Assume that
the function y(x), along with its 1-Caputo fractional derivatives
CDé’w(x)y(x), CD§’¢(x)y(m), . ,CDg_l’Mx)y(x), is continuous and of
W-exponential order on the interval [0,00). Further, suppose that

CDéB’w(z)y(m) is piecewise continuous on [0, 00). Under these condi-
tions, the i-Laplace transform of the 1)-Caputo fractional derivative
of order (3 is given by:

Lo { D5 y(@)} = & Lyfy(@)} — fsﬂ—l—j (D8*y) (0).
- (16)

3 Fundamental Description of - BLADM
for Solving y-FDEs

In this section, we will solve initial value problems (IVPs) for -
fractional differential equations (FDEs) that involve ¥-Caputo deriva-
tives using the ¢-BLADM. To introduce this method, we begin by
considering a generalized IVP for FDEs with respect to an arbitrary
function 1, as outlined below.

“DIy(x) = f(z,y(x), =€ [a,b], (17)
and limited by the basic conditions listed below.
y(a) = ya, yff](a) =y k=1,2...,n—1, (18)
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where f(x,y(x)) is an arbitrary continuous nonlinear function, y(z)
is the solution to be known, and CDf ’fp indicates the -Caputo
fractional operator of order f3.

The problem presented in 17 is solved using the ¢¥-BLADM by
applying the ¢-Laplace transform (LT) to both sides, resulting in:

LoD y(2)} = Ly{f(z,y(x))}. (19)

Furthermore, when 16 is combined with the specified initial condi-
tions, the result is:

& Ly{y(a)} — Zsﬁl“‘* = Ly{f(z,y(2))},
(20)

|_|

Ly{y(x)} — (@) = = Lo f( y(x)}

~ 1
2 gh 8

The inverse ¥-LT applied to both sides of the resulting equation
yields:

Ly Ly{y(x)}} — L1{25k+1y[’“] a)} = Ll{ Lo {f(z,y(x))}}

1{2 £k+13/ a); + L, 1{ 5 Ly{f(x, y(x))}}.
(21)
The following infinite series is used by the standard ADM to express

the solution y(z):
= Z Yn (). (22)
n=0

In contrast, the nonlinear term is represented using the decomposed
series of Adomian polynomials A,, as follows:

s o
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The equation below provides a precise expression for A,,:

n—1

1 dn |
e — J . —
A=l aw {N(ijo A %)] , n=0,12_. (24)

Equation 21 is thus rewritten as follows using the decomposed series
defined earlier.

Zyn( = 1{Z§k+1y }+L¢1{ Lw{ZA H(25)

This leads to the following formal recursive relation:

n—1 1
= Lil{z éTHyl[f](a)}

Yn(T) = { Lw{An 3 o>l

(26)

Finally, considering the following m-term approximations provides
a reasonable solution.

=Yy (27)

with the closed-from solution looking like

y(®) = lim Yol zyj 3)

4 Applications

This section assesses the performance of the proposed ¥-BLADM
scheme on several test problems. It considers both nonlinear and
linear -FDEs, with a particular focus on a real-world application
in pharmacokinetics, where a mathematical model describing the
fluctuation of drug concentration in human blood is analyzed.
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4.1 Numerical Illustration

The -BLADM technique is further applied to explore a few in-
teresting ¥-FDEs presented as numerical examples in this section.
Specifically, both linear and nonlinear initial value problems (IVPs)
involving 1-fractional derivatives are considered.

Example 14. Consider the IVP for ¢-FDE in the manner
described in [12].

D" y(x) = y(a),y(0) =1, y(0) = 0. (29)

We use the 1)-BLT on both sides of the equation to solve 29 with
the ¥»-BLADM, and when combined with 16, it gives:

Lo{C D2 Py(a)} = Ly{y(x)}

&2 Lyfy(x)} — €7y(0) = Ly{y()} (30)
1 1
Ly{y(z)} - £= g—ng{y(l“)}
Upon applying the inverse -L'T' to both sides of the equation, we
get:
1 1
y(z) = L;1{5}+L;1{€—%Lw{y(w)}}- (31)

By applying the ADM, it is transformed into:

00 - 1 - 1 00
> yulx) = L¢1{E}+Lwl{£—ng{Zyn(fc)}}- (32)
n=0 n=0
The recursive relations

olx) = Lwl{é},
1 (33)
o) = 1 g oty 0}, n =1
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and the 1- BLADM provide
yo(z) =1
z) = 1 i _ <¢(Q3))%
(@) = g1} = U
()2, ()
r'(3)

yo(z) = L;l{gigw{

When the aforementioned components are summed, the exact so-
lution to problem 35 is finally obtained as follows.

P, @)
TR e

where Eg is the Mittag-Leffler function previously mentioned. Fur-
thermore, by calculating the first, third, and fifth terms, Almeida
et al. [12] applied the Picard iteration method to approximate the
solution of the ¥-FDE model described in 29. A graphical repre-
sentation of the solution for the model, along with the following
kernels, is also displayed in Figure 1: (a) ¢(z) = z, (b) ¥(z) = 22,
and (c) ¥(x) = /x. As is well known, in case (a), the problem 29
simplifies to the Caputo fractional derivative.
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40

40

30

Z 20 X 20
10 110
0 0
0 1 2 3 4 [} 0.5 1 1.5 2
(a) ¥(z) = 2 (b) W(z) = 2?
15
10
5
0
0 2 4 & 8 10
(¢) ¥(z) = Vv
Figure 1: ¢-BLADM solutions with respect to different kernels for
29

Example 15. To analyze the IVP for the 1)-FDE as described
in [20)].

We apply the ¥-LT to both sides of the equation 35. Using the
1-BLADM, which, when combined with 16, results in:

L{°Dy" y(x)} — Lo{y(x)} = Ly{1}
1 1 (36)

Ly{y(2)} - % - Lo} + oy
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The inverse 1-BLT is now applied to both sides of the latter equa-
tion, and

T B8
() R RO (37)

On applying the ADM,

> ala) = 1+ s 4 LG LA @) 39)

The formal recursive relation and the 1)- BLADM yield

o, @@y
S (GRS
_ gl (¢(x))” B (¥(x))? (1(z))?
nle) =L tg Ll oy = T+ T TR+
x))’ z))?8 )28 2))38
O B P Co) ) N (1) I C0)

rg+1) TI'(26+1) res+1) TB+1)

By combining the previously mentioned components, the exact so-
lution to 35 is finally obtained as follows.

_ (p(x)?  (W(x))* (p(x)?  (Y(x))*
y(z) = (1 ECESV R TC ES ) + (F(ﬁ 0T T@E+D )

y(2) = Es((2))” + (¥(2)) Eg s (1 ())".

(39)

where Eg and Egpgyi represent the Mittag-Leffler fu nctions with
one and two parameters, respectively. The following solutions per-
taining to the selection of function i are presented for specific ker-
nels. Furthermore, Figure 2 presents the graphical representations
of the 1-BLADM solutions for various kernels and fractional-order
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Table 2: Kernels and the corresponding solutions

Kernel Solution
V() == y(x) = Bs(x)’ + (2)" B g1 (2)”
V() = Vo | yle) = Bs(Va)’ + (Vo) Eg g (V)P

Y(z) =a? | y(z) = Es(a”)" + (2%)7Ep i (2?)”

1 values. Accordingly, we illustrate the solution across a range of

parameters. (a) ¥ (z) =z, (b) ¥(x) = 22, and (c) ¥(x) = /.

20 140
— 7= 0.8
— = (].0 / 1201
5=1.0
15 100}
— _. 80
210 ey
= = 50|
5 40
20+
0 0

o
o
w
—
e
w
¥
o

(a) ¥(z) ==
10 =
3=08]~
: el
6
X
>
4
2
5 .
ol 0.5 1 1.5 2
X
(c) ¥(z) = Va

Figure 2: ¢-LADM solutions of (35) for different kernels and £.
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Example 16. To examine the ¢-FDE IVP [17]

DR Oy(w) +y(w) = (W) = S0 ~ g @)
2 )t (40)
5 (¥(x))

y(O):O, 1'6[0,1], Oﬁﬁgl

By applying the y-Bicomplex Laplace Transform (1}-BLT) to both

sides of the governing equation and utilizing equation (16), equation
(52) can be solved using the ¥»-BLADM, ultimately leading to the
desired solution.

Lolu(@)} + g Lol(@)}

L e = R — ot 2

- stfwo) - J0e) - s we) +F(5_5)(<w§ )
41

This, when applied to the later equation, produces the inverse -
BLT

y@»::—L¢%52L¢ﬁxxn};ngﬁmxn

n L;{;Lw{ww‘* — %(w(fﬂ))g - r(43— )

)35 24 )45
() + gy ) .

(42)

Additionally, using the conventional ADM, the equation above now
becomes

}jyax»——L;%QZAA}ijm»};Jw&Mx»
n=0 n=0

+L${ém{@@ﬁ—;@@w_ruim

)35 24 A8
(W) + o ) |

(43)

Finally, summing the above equation reveals a general recurring
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pattern, expressed as follows:

() = L g Ll (6@ = 5(0(a)” -

@) = L g Lot @)}, 021,
(14)

Similarly, a few ¥-BLADM terms are computed using the recur-
rence techniques described above, as demonstrated below.

2))4+8 2))3+8
i) = () — o)y + CORD S
i (z) = _LE@@)™? 3@ @)™ TE)@ @)™ 3((@))™>
! T'(5+f) I'(4+p) T'(5+20) T'(4+2p)

(45)

Interestingly, it is important to note that some noise terms appear
in the model’s recurrence solution, especially with regard to the

))4+8 2))3+8
yo(x) and y;(x) components as F(5¥(1g(+23)) — 3(?((44)36) . There-

fore, the noise terms will finally be eliminated when just these two

elements are added, leaving the precise solution to problem 52 as
follows.

1
W) (16)
Furthermore, Sunthrayuth et al. [17] solved the linear version of
the model represented by equation (52) using the 1-Haar wavelet
operational matrix approach. They obtained an approximate solu-
tion by calculating the first six terms. However, by computing just
two terms, the current ¥-BLADM yields an exact solution. Ad-
ditionally, Figure 3 presents the solution graphically for variety of
kernels: (a) (x) = x, (b) ¥(x) = 2?, and (c) ¥(x) = \/x. The

usual Caputo fractional derivative case is represented by (a).

[
=
&
=

y()
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Figure 3: ¥-LADM solutions with respect to the different kernels

for 40

Example 17. Examine the following IVP for the v¥-Caputo

Riccati differential equation [17].

CDPYE) = P (2)+1, 0<B<1, x€[0,1y(0) =1,

Consequently, we apply 1-BLT to both sides of the model in order
to solve this by - BLADM, which, with the aid of 16, produces

1 1
L @) +

Ly{y(z)} =
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Now, the inverse 1)-BLT is applied to both sides of the latter equa-
tion, and

B
Vo) = LG L@ + g e )

such that upon applying the ADM, it reduces to

o B
> o) = LM Lw{ZA}H i 60

where A, are the Adomian polynomials for the nonlinear term
y*(x), which has the following form when calculated iteratively:

AO - yga
A = 2y,

Ay =2 + 12,
2 YolY2 T Y1 (51)

Moreover, the following is the general recurrent scheme for the gov-
erning model.

_ <w<x>>ﬁ

yn( ) { Lw{An 1}}
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with the following few elements:

(W)’
Yo(w) = m
(z) = T(26 +1)(¢(x))*
h T(B+ 1238+ 1)
yo(z) = 2046 + 1)T(26 + 1)(¢(x))*”

CT(B+1B3CBB+DI(BA+1)

As a result, the problem’s approximate solution is derived from the

3
first three components as follows: 13 = Y y,(x). Furthermore,
n=0

Figure 4 illustrates how this solution behaves in relation to different
fractional-order 3 values and functions .

b

I B e g ) =
SESE () =T v Srm ) =t ¢
i i B vlx) = 3 .
v = x* "- i = x* L
06 : 06 -
z ¥
E El
0.4 0.4
0.2 0.2
1o - [ -
ok S ; ; ; ok == ; ; ;
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X
(a) 8=10.9 (b) B=1

Figure 4: ¢-LADM solutions with respect to the different g
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4.2 Application of Pharmacokinetics

The proposed approach is further extended in this section to explore
a practical application involving the ¥-Caputo fractional derivative
[27]. The effectiveness of this approach has been demonstrated by
Almaida [23] using real-world datasets in several physical applica-
tions, including gross domestic product modeling and Newton’s law
of cooling. The method’s application to population growth analysis
using the logistic equation [24] is also noteworthy.

This study focuses on pharmacokinetics, which examines how drug
concentrations change in human blood. Specifically, we consider
a one-compartment open system, as illustrated in Figure 5, which
shows how drug concentration changes and is eliminated from the
human body. In Figure 5, VD and k represent the drug’s volume
of distribution and elimination rate, respectively. In this model,
the body is treated as a homogeneous entity, allowing the drug to
easily enter and exit the body.

k
(¥ don vt ~(eimanaeio)
Figure 5: IV bolus, one-compartment open model

Additionally, the following is the form of the mathematical equa-
tion that uses classical calculus to describe the whole process:

d
= —ky(@). u(0) = u (52)
It allows the precise solution that follows.

y(x) = yoe ™ (53)

The exact solution derived above represents the drug level in the
human body at any given time x. However, in modern non-classical
calculus, the mathematical equation describing the movement of
drug concentration in human blood, using the application of the -
Caputo fractional derivative from equation (52), takes the following
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form:

Dy, (x)y(x) = —ky(z) (54)

Using the proposed ¢-BLADM, we now turn our attention to the
1-Caputo fractional equation introduced earlier. The dataset from
[30] will be used as a benchmark for the numerical simulations. For
more details, refer to the recent study by Awadalla et al. [27], in
which the authors applied the - Caputo fractional derivative to
fit the dataset from [30]. Accordingly, we examine the following
pharmacokinetic situations based on the findings of [27] and [30]:

Case I: Consider the following pharmacokinetics IVP for ¢-FDE:
OprIssaTey (p) = —0.51749y(x), y(0) = 20, (55)

where § = 1.13327,k = 0.51749, and ¢(x) = z, with the body’s
first dosage being y(0) = 20.

With the aid of 16, we apply the ©-BLT to both sides of the model
in order to solve 55 using ¥- BLADM, thus obtaining

Ly{y(@)} — 22 - & o 1,{0.51749y(x)). (56)

The following is the result of applying the inverse ¥-BLT to the
latter equation.

y(z) = 1{ Uy 5111,327@{051749@1( DY 67)

Using the conventlonal ADM procedure results in

- 4,20 1 =
> ylz) = Lwl{?} - Lwl{m%{()ﬁ”@zy(iﬁ)}}- (58)
n=0 n=0

This demonstrates the following recurring relation

i) = LT =20

1
yn( ) =1L 1{51 13327Lw{0.51749yn,1($)}}, n Z 1.

(59)
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As a result, we obtain the following results.
yo(x) = 20
yi(z) = L, 1{51 13327Lw{0.51749(20)}}
=—9. 728392289(@/}(1’) — (0))1327 = —9.728392289 1337
ya(w) = =Ly, 1{51 13327Lw{0.51749(—9.728392289x1'13327)}}

= 2.065825777(1h(x) — 1(0))**°%" = 2.0658257772>29%1

(60)
which, when added together, provide the same answer 52 as

y(x) = 20 — 9.728392289x "% + 2.0658257772> % + |

y(x) = yoEsl(—k) (¥ (z) — ¥(0))°] = 20EL13327[(—0.51749)(37)1'1(3327))]7
61

where E ) is the one-parameter Mittag-Leffler function; the derived
exact solution is graphically shown in Figure 6a, in comparison with
the physical dataset from [30].

Case II: Following is the pharmacokinetics IVP for ¢-FDE:
CprHshetly () — —0.49621y(x), y(0) = 20, (62)

where § = 1.11080, k = 0.49621, and ¢(z) = x+ 1, with the body’s
first dosage being y(0) = 20.

With the aid of 16, we apply the ¢-BLT to both sides of the model
in order to solve 62 using - BLADM, thus obtaining

20 1

Lyfy(z)} — ? £1.11080

——_,{0.49621y(z)}. (63)
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The following is the result of applying the inverse ¢-BLT to the
latter equation.

( ) 1{ } Lz/; 51 11080L¢{0 49621y( )}} (64)

Additionally, using the conventional ADM procedure results in

> ylw) = 1{ } LY 5111080L¢{049621Zy z)}}. (65)

n=0

This demonstrates the subsequent recurring relationship

yo(x) = L;l{@} — 20

66
yn(2) = =L & 11080Lw{o 49621y, _1(x)}}, n>1. o
As a result, we obtain
yo(x) = 20
(z) = ~L5 o Lo (04962120)})
= —9.433446716(x () — 1(0))"1%0 = —9.4334467162119%°
ya(x) = —Ly'{ & 111080 L,{0.49621(—9.433446716211%9)}}

= 1.988051839(2)(x) — 1(0))*?*% = 1.9880518397%2216

(67)
which, when added together, provide the same answer 52 as

y(r) = 20 — 9.4334467162" 1190 4 1.98805183972% 1% + ...,

y(@) = Yo Bsl(—R) (W (z) — $(0))°) = zoa‘nogo[(—o.zx%zn<x>1'1<1080>>1,
68
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where E() represents the one-parameter Mittag-Leffler function; the
derived solution is graphically presented in Figure 6a, together with
the physical dataset from [30].

70 100
o [ original data I Original data
= 60 = = = Classical method i = = = Classical method
80 s
= = yix) = x s vhd=x+1
. 50 \
5 5 60f
(=]
2 40 s
o 0
= 30 = 40T
[} Q
2 20 2
5 i 6 20
; 10 4.,_.__‘_:: ; B
g SR e g BfF———1 e
(] (]
18 . L -20
0 2 4 [} 0 2 4 5
Time in hours Time in hours
(a) (b)

Figure 6: ¢-LADM solutions for the fractional pharmacokinetics
IVP

5 Conclusion

Fractional differential equations (FDEs) are powerful tools for mod-
eling a wide range of physical phenomena encountered in the real
world, where high-precision solutions are often essential. The in-
corporation of -Caputo fractional derivatives enhances the flexi-
bility of these models, allowing them to capture hidden dynamics
in complex real-world processes. In this work, a -based Laplace
Decomposition Method (»-BLADM) was proposed for solving -
Caputo differential e quations. T he proposed scheme was first vali-
dated through several test initial value problems (IVPs) involving
fractional differential e quations. Furthermore, the method was ex-
tended to practical applications, particularly in pharmacokinetic
modeling. The results demonstrated a strong agreement with em-
pirical data and yielded solutions that closely matched the known
exact solutions in the test cases. In summary, the proposed ap-
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proach is effective and versatile, making it suitable for a broad
class of ¢-FDEs under various initial and boundary conditions.
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