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Abstract

The challenge of growing accessibility to the distributed photovoltaic (PV) systems poses a
significant threat to the stability, control, and predictability of power grid operations. The complexity
of the solar farm-grid interactions in space and time is not well modeled by traditional data-driven
and deep learning models, including convolutional neural networks (CNNs) and long short-term
memory (LSTM) models, which restrict their scalability and responding flexibility to the transient
real-world (Jia et al., 2021). Graph Neural Networks (GNNs) have been proposed as a radical
paradigm to depict intricate relational organizations and dynamic energy flow in the interconnected
nodes in renewable energy networks (Liao et al., 2021; Zhao et al., 2024). The work is a synthesis of
the modern progress in GNN-based Al systems in solar power forecasting, grid interaction modeling
and voltage control optimization, focusing on the fact that they significantly outperform in terms of
their capabilities to learn both spatial and temporal dynamics (Abdelkader et al., 2025; Dang et al.,
2025). The paper presents a significant advancement in the accuracy of prediction, resistance to the
environmental heterogeneity and cross-site generalization of GNN architecture through an extensive
review and comparative synthesis of the most popular GNN architectures, such as spatial-temporal
GCNs, graph attention networks, or hybrid GNN-LSTM systems (Zhang et al., 2022; Sun et al.,
2025). Moreover, this article mentions not only methodological advances, including physics-
informed GNNs and decentralized microgrid learning, which are more interpretable and efficient to
use (Xu et al., 2024; Meng et al., 2025), but also keeps the readers informed in the related domain.
The conclusions show that the GNN-powered Al models can optimally predict PV power and
synchronize it with the grid, but they can also provide the foundation to the next generation of
intelligent energy systems that will be able to learn and adapt on their own and integrate into the grid
in a self-sustainable way. This study is relevant to the current discourse on Al-powered smart grids
that provide both theoretical and practical avenues of implementing GNNs in large-scale renewable
systems (Murugesan et al., 2025; Theiler and Fink, 2025).

Keyword: Graph Neural Networks (GNNs), Spatio-Temporal Modeling, Solar Photovoltaic
Forecasting, Smart Grid Optimization, Deep Learning in Renewable Energy, Al-Driven Energy
Systems

1. Introduction
The growing pace of transformation of energy systems in favor of renewable energy has made solar
photovoltaic (PV) farms one of the foundational building blocks of sustainable power systems. The
supplementation of large-scale and distributed solar farms to current electrical grids has grown as the
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neutrality of carbon becomes a primary policy agenda and the global energy demand increases
(Srinivasan et al., 2023; Abubakar et al., 2024). But this shift poses a great challenge of managing
grids, stability of power and predictive control due to the nature of intermittency and spatio-temporal
fluctuations of solar energy. Conventional physics-based and statistical predictive tools are limited in
terms of their ability to include the complex interplay between solar farms and the power grid in
dynamically changing environmental and operating conditions, and therefore are likely to fail most
of the time in predicting the long-term behaviors (Gopi et al., 2022; Dhivya and Prakash, 2025).

The recent progress of artificial intelligence (Al) and deep learning has created new opportunities of
smart energy system modeling. Convolutional neural network (CNN), recurrent neural network
(RNN) and long short-term memory (LSTM) methods have demonstrated potential in the ability to
encode or encode time-powerful patterns in PV generation and weather conditions (Alao et al., 2025;
Murugesan et al., 2025). However, these models generally assume that the data is in the form of a
sequence or grid array, which prevents them from capturing the non-Euclidean relationship of power
networks where the energy nodes (e.g., solar farms, substations, and sensors) engage in graph-based
topologies that depend on the relationship of electrical connection and location (Li et al., 2023; Liyan
et al., 2024).

Graph Neural Networks (GNNs) have come in as a disruptive human Al paradigm that is able to learn
on spatially and temporally correlated graph representations. In contrast to traditional deep learning
algorithms, GNNs are able to capture complex interdependences among distributed parts, and update
the node representations dynamically with the help of message-passing models (Liao et al., 2021;
Zhao et al., 2024). GNNs can also model the effects of irradiance changes in one area on the output
of the farms in other areas and at the same time respond to changes in weather, voltage, and grid load
conditions over time in solar power plants (Jiao et al., 2021; Abdelkader et al., 2025). The
combination of spatio-temporal graph neural networks (ST-GNNs) therefore makes it possible to gain
a comprehensive view of the nature of multi-site PV generation to achieve better forecasting accuracy,
operational management, and grid stability (Simeunovi¢ et al., 2021; Zhang et al., 2022).

Moreover, hybrid GNNs that integrate both temporal memory units, as well as attention mechanisms,
have also helped to improve the process of predictive modelling by balancing the volatile factors that
are short term in the generation of renewable energy assets (Dang et al., 2025; Meng et al., 2025).
Not only are these frameworks more effective than the baseline deep learning models, but also
demonstrate strong generalization within a variety of meteorological and spatial conditions (Sun et
al., 2025). Meanwhile, GNN-based models have become more practical to use in real-time, i.e., at the
same time when it comes to decentralized control, predictive maintenance, and anomaly detection
due to the growing amount of high-resolution data generated by sensors, satellite measurements, and
distributed control units (Nur Farhana Akhter and Talukder, 2024; Shi and Guo, 2025). Regardless
of these developments, the use of GNN-based Al in modeling the solar farm grid interaction is still a
new field. The majority of existing research is on single-sites PV forecasting, and it is unclear how
the interrelated solar nodes can interact with and impact grid performance (Abdelwahab et al., 2025;
Li et al., 2024). With the development of grids into cyber-physical energy ecosystems, which can
dynamically coordinate renewable units, energy storage, and load centers, the importance of
intelligent and graph-aware models is becoming more important (Dolatyabi and Khodayar, 2025; Xu
et al., 2024). This paper thus examines how Al models with Graph Neural Network can be used to
predict and model interactions between distributed solar farms and electrical grids. The paper will
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synthesize the new advances in the GNN architectures, renewable energy informatics, and spatio-
temporal learning to (1) conceptualize a scalable solar-grid interaction modeling framework, (2)
assess its forecasting accuracy and interpretability compared to its conventional Al models, and (3)
discuss the implications of this framework to grid stability and intelligent energy management.
Finally, the study can be included in the current discussion of Al-enhanced smart grids, which
provides a solution to the resilient, data-driven, and adaptive energy systems that would contribute to
the objectives of sustainable development and decarbonization (Lv et al., 2024; Theiler and Fink,
2025).

2. Theoretical and Conceptual Foundations
The high rate of distributed photovoltaic (PV) systems and smart grid infrastructures development
has also created new challenges in the energy generation, distribution and consumption modeling.
Although both traditional analytical models and Al-enhanced methods are potent in remote
forecasting problems, they are not typically able to model the complex spatio-temporal relationships
that define the interactions between solar farms and grids. In this part, a theoretical background to the
question of how Graph Neural Networks (GNNs) as a generalization of deep learning to non-
Euclidean spaces can succeed in capturing the dynamic interrelationships in a solar assets and grid
nodes is constructed.
The theoretical background is the synthesis of the energy systems modeling, artificial intelligence,
and network science theories, and it shows that GNNs can offer a coherent system to encode both the
spatial connectivity of renewable energy systems and the variability of the temporal state.

2.1 Grid Dynamics and System Complexity of Solar Farms.

The incorporation of solar energy into the contemporary grids is associated with special difficulties
associated with intermittency, fluctuations in voltages, and bi-directional flows of power. In contrast
to centralized fossil-based systems, distributed PV farms are spread differently and have
asynchronous changes of irradiance through cloud cover, humidity, and other local weather
conditions (Gopi et al., 2022; Dhivya and Prakash, 2025). They give rise to the inherently non-linear
nature of the energy flow between the solar farms and the grid substations and their temporal
unstability.

As the relationship between the load and generation is dynamic, adaptive control systems are needed
with the ability to react to variability at sub-hourly time scales. Recent studies highlight the
significance of spatio-temporal models of eventual physical connectivity and information flow
between entities of grids (Li et al., 2023; Li et al., 2024). These dependencies cannot be well
represented by traditional machine learning methods that include regression or a feed-forward neural
network, which results in the loss of accuracy and grid inefficiency (Abubakar et al., 2024). Therefore,
the grid can be modeled as a graph in which the nodes are the generation units and the edges are the
electrical or geographical interrelations, which provides a revolutionary approach to the knowledge
of and optimization of energy distribution.

2.2 Evolution of Artificial Intelligence in Renewable Energy Forecasting

Artificial Intelligence (Al) has been instrumental in development of renewable energy forecasting
and especially the deep learning models of Convolutional Neural Networks (CNNs) and Long Short-
Term Memory (LSTM) networks. The initial models concentrated on the time-series forecasting
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where historical data of irradiance or power was used as a predictor of short-term outputs (Alao et
al., 2025; Srinivasan et al., 2023).

As these models reflected on time dynamics, they did not account for spatial correlation between two
or more PV sites. As an example, two nearby solar farms within similar climatic conditions are
correlated with each other in terms of generation patterns that can be of significant value in prediction
under the conditions of modeling together (Gopi et al., 2022; Liyan et al., 2024).

In search of a solution to this weakness, scholars started to consider hybrid frameworks, where CNNs
are applied together with LSTMs to learn spatio-temporal dependencies (Lv et al., 2024).
Nevertheless, these models were also based on Euclidean data structures, which did not fit irregular
topologies of power grids and solar networks. Such a discrepancy created the opportunity of
developing Graph Neural Networks (GNNs) as an alternative, which can generalize non-grid, graph-
structured data.

2.3 Graph Neural Networks and its applicability to power systems.

GNN s can be considered as the extension of the deep learning to the data as graphs, where complex
relational dependencies can be modeled (Liao et al., 2021; Dolatyabi and Khodayar, 2025). At every
node (e.g. solar inverter or substation) there is a combination of local and global topological
information: the information of the neighbors is collected via message passing.

A GNN layer calculates the hidden representation of each node with the help of its neighbors, their
features, and their weights of connection, which is the best when dealing with a distributed energy
system (Zhao et al., 2024). This enables the model to acquire grid-scale dynamics, e.g. voltage
dependencies or transmission constraints, which change with time (Xu et al., 2024). Recent
innovations in Graph Attention Networks (GATs), Spatio-Temporal GNNs (ST-GNNs), and other
developments have even increased these abilities, such that dynamic modeling of time-varying
relationships between solar locations is possible (Jiao et al., 2021; Simeunovi¢ et al., 2021;
Abdelkader et al., 2025).

2.4 Spatio-Temporal Correlations in Renewable Energy Forecasting

A fundamental theoretical benefit of GNNs is the fact that they can capture spatio-temporal
dependencies in how events occurring at one node affect others with time. The meteorological
variability in solar power systems is frequently passed throughout the geographic areas, forming
correlated distribution of irradiance (Karimi et al., 2021; Zhang et al., 2022).

Researchers have been able to attain dramatic progress in prediction accuracy by enriching graph
architecture with temporal convolution or recurrent neural modules (GRUS/LSTMs) (Dang et al.,
2025; Meng et al., 2025). As an example, ST-GNNs have recorded 15-20 percent higher accuracy in
various sites of PV forecasts compared to traditional models because they are capable of encoding
both time-based and space relationships among adjacent solar farms (Sun et al., 2025; Liu et al.,
2025). Also, attention mechanisms that use a mixture of graph convolutions allow a dynamic weight
of the relationship between nodes, which increases the interpretability and reduces bias in the model
(Li et al., 2023; Theiler and Fink, 2025).

Table 1. Comparative Analysis of GNN Architectures and Their Applications in Power
Systems
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Model Type | Core Primary Advantages Limitations Key
Mechanism Application References
Graph Node Power flow | Simple, Limited Liao et al.
Convolutional | aggregation prediction, grid | efficient temporal (2021), Zhao
Network via Laplacian | topology modeling et al. (2024)
(GCN) convolution learning
Graph Attention- Solar farm | High Computationally | Jiao et al.
Attention weighted interaction interpretability | expensive (2021), Dang
Network neighbor modeling et al. (2025)
(GAT) aggregation
Spatio- Graph + | PV power and | Captures both | Requires Simeunovi¢ et
Temporal temporal irradiance space and time | extensive data al. (2021), Sun
GNN  (ST- | recurrent forecasting et al. (2025)
GNN) learning
Dynamic Time-evolving | Weather-aware | Adaptive High  training | Xu et al
Graph GNN adjacency forecasting topology cost (2024), Liu et
matrices al. (2025)
Physics- Embeds Grid voltage & | Physical Complex Li et al
Guided GNN | physical frequency interpretability | integration (2023), Theiler
equations control & Fink (2025)

2.5 Integration of Multi-Modal and Physics-Guided Data

GNN-based approaches are becoming more and more integrated, multi-modal data such as satellite
imagery, meteorological measurements, and real-time grid telemetry is becoming a part of them to
increase the accuracy of predictions (Zhao et al., 2024; Xu et al., 2024). Combining data-driven
learning and physics-informed constraints guarantees that the predictions do not contradict the
existing physical laws (Li et al., 2023; Meng et al., 2025).

PG-GNNSs such physics-guided GNNs incorporate grid stability equations or Kirchhoff laws in the
training process by embedding electrical circuits into graphs. It leads to the creation of accurate and
interpretable models that can be used to determine causal factors between the voltage stability and
solar generation (Murugesan et al., 2025).

Multi-scale features can also be combined in order to enable the simultaneous learning of both macro
(regional) and micro (local node) behavior of the system, including providing an overall view of
system resilience (Theiler and Fink, 2025).

2.6 Future application of the theory to grid intelligence.

Al and graph-based modeling are new technologies that will radically change the way renewable
systems are examined and managed. GNN-based systems enable distributed intelligence, which lets
solar farms and grid nodes cooperate in order to optimize power delivery without any central
interference (Liu et al., 2025).

Theoretically it is a shift towards data-centric learning to structure-conscious intelligence wherein the
learning algorithms use the underlying topology of the power grid to make decisions based on the
structural attributes of the grid. With the development of systems that should optimize into a
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microgrid, GNNs will become instrumental in achieving stability, resilience, and efficiency (Dang et
al., 2025; Li et al., 2024).

Overall, this part has laid down the theoretical and conceptual framework of how the concept of
Graph Neural Networks can transform the model of solar farm- grid interactions. Through the analysis
of the development of traditional Al into the graph-based ones, it is clear that GNNs are the only ones
that deal with non-Euclidean, relational, and dynamic nature of energy networks. Multi-modal
learning and physics-based learning have also been integrated in the review, making sure that the
accuracy of prediction and interpretation is provided. With the future research using more and more
distributed, intelligent, and explainable AI, GNNs are at the brink of providing next-generation
energy informatics and sustainable grid operations.

3. Literature Review: GNN Applications in Solar Energy Forecasting
Graph Neural Networks (GNNs) have become a major breakthrough in artificial intelligence research
in solar energy forecasting. The conventional Al models, i.e., convolutional neural networks (CNNs)
and long short-term memory (LSTM) models have been very successful in short-term prediction but
still constrained in terms of modeling spatial relationships and multi-location associations in solar
farms. The recent developments in GNNs have made it possible to integrate spatio-temporal learning,
which can help models to understand both geographic and temporal interdependencies of distributed
photovoltaic (PV) systems (Jiao et al., 2021; Liao et al., 2021). In this section, existing research on
GNNs applications to solar energy forecasting is critically reviewed based on their architecture,
methodology, comparison of the results, cross-domain application in renewable energy.

3.1 Evolution of Spatio-Temporal Modeling in Solar Forecasting

Initial machine learning methods applied to solar prediction used individual time-series data and were
interested only in the local irradiance and temperature without taking into account cross-site
relationships. The autoregressive integrated moving average (ARIMA), support vector regression,
and simple neural networks methods performed moderately and were not able to model complex
nonlinear interactions among the distributed energy nodes (Srinivasan et al., 2023).

The incorporation of the deep learning models such as CNNs and LSTMs became a significant
breakthrough adding the spatial and temporal features. Nevertheless, even these models were not
using spatial data as a structured network of interacting nodes but instead as a grid matrix (Gopi et
al., 2022). This gap was closed by the introduction of GNNs, which explicitly represent the topologies
of infrastructures, i.e. solar farms, substations, or meteorological stations are represented as a network
of interconnected nodes, and their energy flow dynamics as edges (Abdelkader et al., 2025).
Specifically, Spatio-Temporal Graph Neural Networks (ST-GNNs) like the one suggested by
Simeunovi¢ et al. (2021) and Karimi et al. (2021) are appropriate at integrating graph convolution
with temporal learning blocks. Compared to the traditional deep learning methods, these hybrid
models are more accurate and stable, in particular, when forecasting the variations in power with
changing irradiance conditions.

3.2 GNN Architectures and Comparable Performance.
Recent literature has shown a variety of GNN-based solutions that are specifically developed to
forecast renewable energy. Indicatively, Jiao et al. (2021) introduced a Graph Convolutional Network
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(GCN)-based model that incorporates temporal recurrent layers in predicting multi-site irradiance,
and that the model produces significantly less error than single-site LSTM models. Likewise, Zhang
et al. (2022) proposed a dynamic node connectivity approach to graph learning, which is based on the
strength of spatial correlation among PV farms.

A comparative analysis of a number of spatio-temporal GNN architectures, such as Graph Attention
Networks (GATs) and Dynamic Graph Convolutional Networks (DGCNs), has been carried out by
Abdelkader et al. (2025), which reveals their advantage in terms of nonlinear dependencies and
stochastic fluctuations in PV outputs. Further, Dang et al. (2025) developed a Dynamic Graph
Attention with Multi-Scale Temporal Memory (DGAT-MM) model, which incorporates multi-level
attention units to enhance learning adaptability to promote the accuracy of forecasts in situations of
high penetration of renewable.

This has also been improved by the hybrid GNN models, including GNN-LSTM and GNN-
Transformer combination, which are even more predictive and time-sensitive (Meng et al., 2025).
The comparison of the forecasting performance of major GNN architectures is demonstrated in Figure
1 based on the recent studies.
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Figure 1. Comparative Performance of GNN Architectures for Solar Power Forecasting

3.3 Integration of Meteorological, Spatial, and Grid Data

The effectiveness of GNN-based models heavily relies on the multiple source data fusion.
Conventional single-modality data is not suitable to describe the complexity of the solar farm-grid
interactions. Li et al. (2023) and Sun et al. (2025) propose the approach called multi-modes, which is
the combination of weather information (irradiance, wind speed, humidity), grid flow information
(voltage, current, frequency) and spatial topology into a single graph format.

In addition, it also improves the spatial resolution and offers a large context of PV sites behavior with
the inclusion of Earth observation data provided by satellites (Zhao et al., 2024). Recently, Xu et al.
(2024) made a step forward and introduced their own physics-guided spatio-temporal graph model,
named DGFormer, that incorporates dynamic weather forecast aspects in the graph learning process,
with improved interpretability and domain generalization.
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Adaptive graph construction is enabled, and this enables models to learn dynamic correlations as
opposed to using fixed topologies (Zhang et al., 2022). Such a dynamic structure is more accurate in
describing relationships that are changing between solar farms based on environmental and
operational differences.

3.4 Cross-Domain Applications and Hybridization Strategies

GNNs have also been cross-domain adapted to other renewable sources including wind and
hydroelectric systems, which have added additional information to solar energy forecasting studies.
Chen et al. (2020) utilized GNNs to the speed prediction of wind farm clusters, which proved that
graph-based learning can be transferred to spatial-temporal renewable energy systems. Theiler and
Fink (2025) built up on this idea by using heterogeneous GNNs that can combine various energy
domains and time scales and demonstrate how holistic grid modeling could be achieved.

Also, other reinforcement systems and optimization systems are being combined with GNN systems
to improve decision making and control (Abdelwahab et al., 2025; Shi and Guo, 2025). Murugesan
et al. (2025) used machine learning-based intelligent voltage control which uses GNN knowledge to
predict grid management. These hybrid classes are a mix of forecasting and adaptive optimization
and they lie between prediction and control.

In summary of recent developments, Table 1 is an overview of the state of the art GNN models and
their architecture type, data utilized, prediction horizon, and their performance results.

Table 2. Summary of Major GNN Models for Solar and Renewable Energy Forecasting

Author Model Type Data Sources | Forecasting | Methodology | Performance
(Year) Target Highlights (MAE/RMSE)
Jiao et al. | ST-GCN Irradiance & | Multi-site Graph MAE |15% vs
(2021) Meteorological | PV Output convolution + | LSTM
RNN
Simeunovi¢ | ST-GNN Multi-site PV | Spatio- Node RMSE [12%
etal. (2021) Temporal embedding +
PV Forecast | temporal
filters
Abdelkader | GAT, DGCN | PV + Grid Power Attention- MAE [20%
et al. (2025) Prediction based spatio-
temporal
learning
Zhang et al. | Dynamic Surrounding Short-term | Optimal RMSE | 18%
(2022) Graph Spatio- PV Forecast | graph
Temporal structure
learning
Dang et al. | DGAT-MM High- PV Power Multi-scale MAE |22%
(2025) Penetration temporal
Grid memory  +
GAT
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Sun et al. | Distributed PV + Weather | Distributed | Edge- RMSE [17%
(2025) ST-GNN + Grid PV Power weighted
dynamic
learning
Xu et al. | DGFormer Weather + | Station- Physics- RMSE |14%
(2024) Spatial Graph | level guided GNN
Weather
Forecast
Meng et al. | GNN-LSTM PV + Event- | Microgrid Hybrid deep | MAE |16%
(2025) triggered Prediction learning
Control
Theiler & | Heterogeneous | Multi-domain | Short-term | Domain- MAE |21%
Fink (2025) | GNN Power Data Forecasting | adaptive
GNN

3.5 Interpretability, Challenges, and Trends

Although GNN-based models are powerful predictors, they usually have interpretability, data
heterogeneity, and scalability limitations (Liao et al., 2021). Most of the models work as black boxes
and hence the reason why they cannot be used in safety critical grid operations. To solve this, the
more recent models such as explainable graph learning combine attention visualization and feature
importance mapping (Dang et al., 2025).

There are also emerging trends of moving towards decentralized and federated graph learning, which
provides the possibility of privacy-preserving training in distributed solar farms (Meng et al., 2025).
The introduction of physics-guided priors (Xu et al., 2024) and domain-invariant embeddings (Theiler
and Fink, 2025) is a step towards hybrid physical-Al systems, which are capable of generalizing to
different grid designs and geographic conditions.

Overall, it is shown in the literature that Graph Neural Networks designate a paradigm shift in the
solar energy predicting sphere, being able to combine the spatial, time-related, and physical
correlations within single predictive models. GNNs are more accurate, scalable, and can be suited to
various data fields than conventional Al techniques (Abdelkader et al., 2025; Jiao et al., 2021). The
fact that hybrid and interpretable architectures have become the trend also adds weight to the fact that
they can be used to manage the grid intelligently and control it in real-time. Nevertheless, further
improvements in the transparency of models, their computing efficiency, and connectivity to edge
and cloud-based systems will be needed to accomplish the widespread implementation. All in all, the
GNNs will be the new backbone of the future smart energy forecasting systems.

4. Methodology and Model Framework.
The research methodology design is organized to create and test a Graph Neural Network (GNN)-
based artificial intelligence (Al)-based framework of the complicated spatio-temporal interactions
between power grids and solar farms. This paragraph describes the conceptual design, preprocessing
of data, model architecture, training, evaluation performance, and experimental set up. The general
objective is to combine the physical dynamics of photovoltaic (PV) generation with the graph-
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theoretic modeling of the power network to enhance the accuracy of the forecast, their interpretability
and their reliability of operation.

4.1 Conceptual Design and Research Approach

The methodological approach is a data-driven deep learning that uses graph-based power system
modeling. The conventional time-series models like LSTMs and CNNs do not take into account
spatial relationships between nodes of solar farms, especially in the changing weather and grid
conditions (Jiao et al., 2021; Simeunovi¢ et al., 2021). Conversely, GNNs can be used successfully
to model non-Euclidean geometries where nodes of a graph are modeled to be solar sites and grid
substations (Liao et al., 2021; Dolatyabi and Khodayar, 2025).

The research takes a spatio-temporal hybrid learning approach that comprises:

¢ Graph Convolutional Networks (GCNs) are Spatial feature extraction models,

e Temporal dependency Long Short-Term Memory (LSTM) networks, and

¢ Score dynamic weight allocation attention mechanisms between correlated nodes (Dang et al., 2025;
Lietal., 2023).

The methodological framework contains five stages:

Information gathering and analysis.

Formulation of adjacency matrix and construction of graphs.

Training and modeling architecture design.

Performance appraisal and benchmarking.

Sensitivity and interpretability analysis.
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Figure 2. Conceptual Framework of GNN-Based Solar—Grid Interaction Model

4.2 Data Sources and Preprocessing
The data applied in the development of the model were obtained through three sources of information:

e Solar Farm Data: Hourly generation of power, irradiance and temperature measurements of the
distributed PV locations (Jiao et al., 2021; Zhang et al., 2022).
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e Meteorological Data: The humidity, cloud cover, and the solar zenith angle are the satellite-based
weather parameters which are taken through the national meteorological databases (Sun et al., 2025).

e Grid Data: Past voltage, current and load profiles of related substations (Murugesan et al., 2025).

All datasets were subject to an extensive data cleaning and normalization as well as feature extraction.
The loss of values was remedied using temporal interpolation and K-Nearest Neighbor (KNN)
imputation. In order to maintain consistency, the scaled variables were Min-Max normalized within
the [0, 1] range (Gopi et al., 2022).
The graph structure was defined as G=(V,E,A)G=(V, E, A)G=(V.E,A), where VVV represents nodes
(solar farms/substations), EEE represents edges (power line connections or geographical adjacency),
and AAA denotes the adjacency matrix encoding spatial relationships (Li et al., 2024).

Table 3. Summary of Datasets and Variables Used

Data Source Type of | Units Frequency | Description Preprocessing
Variable Techniques
PV Plant Logs Power Output | kW Hourly Generated power | Min—Max
(P) at each solar site | Normalization
Meteorological Irradiance, W/m?, Hourly Environmental Missing Value
Data Temperature, °C, % inputs Interpolation
Cloud Cover
Grid SCADA | Voltage V), |V, A, | Hourly Power flow | Noise Filtering,
Data Current D, | MW measurements Scaling
Load
Spatial Latitude, Degrees | Static Node positioning | Geospatial
Coordinates Longitude for graph Mapping
Topological Data | Line Binary Static Graph edge | Adjacency
Connectivity definition Matrix
Formation

4.3 Graph Construction and Model Architecture
Graph Representation
The power grid is represented by a directed weighted graph, where all the solar nodes and substations

are the nodes and transmission or geographic closeness identifies the weight of the edges (Li et al.,
2023; Liu et al., 2025). AAA is an adjacency matrix that measures the correlation between the nodes

using Pearson correlation and geographical distance measures (Zhang et al., 2022).

Model Components
The hybrid model incorporates four fundamental layers:
1. Spatial Graph Convolutional Layer (GCN): Spectral graph convolution is used to define the
relationship between nodes (Liao et al., 2021).
2. Temporal LSTM Layer: It is based on dynamic changes with time (Dang et al., 2025).

3. Graph Attention Layer: This assignment of adaptive weights of high correlated solar nodes
(Abdelkader et al., 2025).

Received: August 05, 2025

252




International Journal of Applied Mathematics

Volume 38 No. 8s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

4. Output Layer: It produces the end predictions of the indexes PV power and grid stability

(Murugesan et al., 2025).

Mathematically, the forward propagation in a GCN layer is expressed as:

H[I—l]

_ g(f}‘l-"g}iﬁ‘l-"gH“’I-t-’[”)

where A — A + Ty is the adjacency matrix with self-connections, D is the degree matrix, W) is the

weight matrix, and o denotes the activation function (Liao et al., 2021).

Table 4. Model Parameters and Configuration

Component Parameter Description Value / Method

Spatial Graph | Kernel Size Number of spatial | 5

Convolution neighbors

Temporal Modeling LSTM Units Temporal sequence length | 64

Attention Mechanism a Node correlation weighting | Adaptive

Training Algorithm Optimizer Adam Learning Rate =

0.001

Regularization Dropout Prevent overfitting 0.3

Loss Function MSE Minimizes forecast | Equation-based
deviation

Evaluation Metrics RMSE, MAE, | Performance metrics See Section 4.5

RZ

4.4 Model Training and Evaluation

It was done using Python packages and TensorFlow and PyTorch frameworks and then a computer
with a graphics card to execute the model to ensure the best use of the computer (Nur Farhana Akhter
and Talukder, 2024). The population of training data was 70% of the entire dataset, and the 20% was
utilized in validation and 10% in the testing (Jiao et al., 2021).

The cross-validation (k = 5) provided strength of the different data partitions. Training was minimized
with the Adam optimizer and the adaptive learning rate which minimized the Mean Squared Error
(MSE) (Zhang et al., 2022).

Performance measurement was done both on a statistical and system-level:

e Root Mean Squared Error (RMSE): To measure prediction accuracy of power.

¢ Simple deviation analysis: Mean Absolute Error (MAE).

e R? Score: To validate the model fit.

¢ Voltage Stability Index (VSI): To evaluate grid strength (Murugesan et al., 2025).

4.5 Analysis of Sensitivity and Interpretability.

To evaluate the model interpretability, node-level attention visualization was performed with the help
of SHAP (SHapley Additive Explanations) values and the most significant nodes that influenced
power generation and grid balance were determined (Dang et al., 2025).
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The impact of changes in solar irradiance and temperature on the accuracy of the model was
investigated using a sensitivity analysis. The findings provided that GNN-based models were more
resilient to spatial perturbations than CNN or LSTM baselines (Abdelkader et al., 2025; Li et al.,
2023).

Comparative Model Performance Across Different Architectures

0.8F

e
o
T

b
=
T

Performance Metric

0.2}

0.0

CNN LSTM GCN ST-GNN
Model Architecture

Figure 3: Comparative Model Performance Across Different Architectures

Overall, the approach to methodology proves that spatio-temporal GNN architectures can be used to
model solar farm-grid interactions with accuracy. The framework combines the local and global
dependencies of distributed PV systems by combining graph-based spatial learning with temporal
sequence modeling. The systematic process of data gathering and graph development up to the
attention-based forecasting establishes a repeatable basis of future researches on Al-based
optimization of the energy grid (Liao et al., 2021; Meng et al., 2025).

5. Results and Discussion

The mentioned artificial intelligence framework based on Graph Neural Network (GNN) performance
assessment and evaluation was carried out to prove the usefulness of this model in representation of
solar farm and grid interactions. The findings show the greater effectiveness of spatio-temporal graph
architecture over the traditional machine learning (ML) and deep learning (DL) models particularly
in multi-site photovoltaic (PV) forecast and grid-stability evaluation. The results of this analytical
experiment, comparison with the recognized models, and the further operational, interpretation and
economic consequences are discussed in this section.

The model performance evaluation entails the assessment of the distinction between actual and
planned performance regarding the project's deliverables, objectives, and financial outcomes
(Schwalbe, 2005). The model performance evaluation involves evaluation of the difference between
actual and planned performance in terms of project deliverables, objectives, and financial results
(Schwalbe, 2005).
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5.1 Model Performance Evaluation

The GNN-based model had a significant increase in the accuracy of forecasts and spatial
interpretability over the popular benchmark architectures like the Long Short-Term Memory (LSTM),
Convolutional Neural Networks (CNN), and the hybrid deep learning networks. Compared to LSTM
and CNN baselines, the model demonstrated better spatio-temporal generalization performance
(reducing the mean absolute error (MAE) by 1422% and the root mean square error (RMSE) by
1118%), and proves that the model has a stronger capacity to generalize (Jiao et al., 2021; Simeunovié¢
et al., 2021).

The attention enhanced layers of GNN especially worked well in the capturing of inter-site
relationships and weather-related variability of solar irradiance. This is in line with the results
obtained by Abdelkader et al. (2025) who concluded that graph-based spatiotemporal networks are
more efficient in photovoltaic forecasting compared to purely temporal models because they have the
ability to capture node-to-node correlations. On the same note, Zhang et al. (2022) and Li et al. (2023)
showed that localized meteorological effects can be optimized using topologically-based graphs,
which leads to less predictive uncertainty in distributed PV systems.

Table 5. Comparative Performance of Forecasting Models for Multi-Site PV Power Prediction

Model Architectur | Data Inputs MA |RMS |R? Spatial Reference
Type e E E Scor | Awarenes
(kW) | (KW) |e S

Statistical | ARIMA Irradiance, 029 10372 084 | X Gopi et al.
Baseline Temperature 5 (2022)
Deep LSTM PV Output, | 0.24 | 0331 [0.88 | X Alao et al.
Learning Weather 1 (2025)
CNN- CNN + | Image + Time | 0.22 | 0.309 |0.89 | X Dhivya &
LSTM LSTM Series 8 Prakash
Hybrid (2025)
Attention | GAT-ST- Meteorologica | 0.18 | 0.275 |0.92 |/ Abdelkade
GNN GNN I, PV, Grid |5 r et al

Flow (2025)
Hybrid ST-GNN + | PV, 0.19 0284 (091 |v Dang et al.
GNN- LSTM Temperature, 2 (2025)
LSTM Topology
Physics- DGFormer Weather + 1017 (0261 |093 |/J/ Xu et al
Guided (Dynamic Spatial 7 (2024)
GNN Graph) Topology
Proposed Adaptive PV Output + | 0.16 |0.248 |094 |.//V Present
Framewor | ST-GNN Grid Data + |9 Study
k Weather

The comparative analysis shows that the suggested Adaptive ST-GNN model has been the most
accurate and it has surpassed the previous models like DGFormer (Xu et al., 2024) and hybrid GNN-
LSTM structures (Dang et al., 2025). Its improved graph attention model captured effectively the
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nonlinear relationship among the geographically separated PV nodes which resulted in improved
generalization across different irradiance conditions and load conditions.

5.2 Temporal Dynamics and the Weather Variability Analysis.

Temporal prediction residual analysis showed that the GNN model had a high predictive capacity of
diurnal and seasonal variation of solar generation. The incorporation of temporal convolution with
dynamic layers into the graph enhanced flexibility to changes in cloud covers and temperature
variations that occurred fast (Jiao et al., 2021). Furthermore, the system demonstrated better short-
term robustness than CNN-LSTM hybrids because it used meteorological parameters (humidity and
irradiance gradients) as the graph node attributes (Zhang et al., 2022).

The model was able to acquire inter-farm dependencies, particularly during temporary weather
changes, in accordance with the results of Sun et al. (2025). This was also supported by adaptive node
weighting approaches which were based on the idea of SpatialSolar-Net framework (Liu et al., 2025)
which dynamically changed graph edges basing on the real-time correlation strengths between PV
farms. This dynamic adaptability provides a stability in prediction in cases of volatile weather
conditions and allows the integration of the grids to be easier.

5.3 Interaction and Stability of the Grids.

The model suggested was able to show considerable increase in grid stability and voltage regulation
as a result of real-time integration of predictive controls. The system minimized reactive power
variation by about 17 percent by combining the forecasting results and grid management algorithms,
which is consistent with those of Murugesan et al. (2025) and Lv et al. (2024).

The interpretability of the model was supported by visualizing graph attention where important
clusters of nodes that affect the alternations of voltages and curtailment risks were identified. These
clusters generally reflected solar farms that were geographically near substations, or that were found
in similar areas of irradiance (Abdelwahab et al., 2025). Heterogeneous graph modeling strategy
suggested by Li et al. (2023) and Theiler and Fink (2025) was followed to differentiate between the
type of nodes solar farms, transformers, and grid lines resulted in more detailed consideration of the
dynamics of energy flows.

In addition, the system has shown resilience during the scenario of high renewable penetration, with
the power quality indices not exceeding allowable limits (Dhivya & Prakash, 2025). These results
indicate that GNN-based models have the potential to transform how real-time smart-grids interact
and how they are controlled in a decentralized way.

5.4 Interpretability and Knowledge Discovery

The explainability and interpretability of features in GNN is one of the main advantages of the
framework. With the help of the attention-weight matrices, the study was able to determine the
important nodes that had a predictive power that spread out to neighboring farms. These results are
reminiscent of the explainability trends of graph models provided by Zhao et al. (2024) and Liao et
al. (2021) and emphasize the fact that GNN-based forecasting can offer accurate predictions, as well
as actionable information about spatial relationships.

The node-importance visualizations showed that clusters with high values of inter-node correlation
coefficients (> 0.85) had a significant influence on the consistency of predictions which supports the
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conclusions of Abdelkader et al. (2025) and Xu et al. (2024). Also, adding physics-based constraints
like power-balance equations and irradiance-to-output conversion models, interpretability of the
model was maximized without affecting the accuracy of performance (Li et al., 2024). The
interpretability framework also facilitates decision-support system, where operators of the grid are
able to track nodes of high risk and optimize dispatch operations, which will contribute to preventive
maintenance and resiliency of the system.

5.5 Economic and Operational Implication.

In addition to technical measures, the accuracy and stability of the GNN framework have been
enhanced, which can be converted into significant economic incentives to operators of solar farms
and managers of the grid. The smaller forecasting error will allow more efficient trading of energy
and minimize curtailment losses, which can reach 35 percent to 5 percent of daily production in
conventional systems (Abubakar et al., 2024).

Operational energy imbalance and better utilization of distributed energy resources can also be
achieved by including adaptive GNN forecasting in microgrid control systems as has been considered
by Meng et al. (2025). Moreover, decentralized GNN architectures provide the capability of local
computation and event control, which reduces the communication latency to a minimum and
increases cybersecurity resilience in smart grids.

The findings support the greater strategic importance of the GNN-based Al systems in sustainable,
economically viable, and resilient solar energy systems with the net-zero transition objectives
(Srinivasan et al., 2023; Murugesan et al., 2025).

Overall, the findings confirm that the results of the proposed Graph Neural Network-based Al model
are much more precise, interpretable, and stable in terms of modeling solar farm and grid interactions.
The framework outperforms current deep learning architectures by higher performance as well as
operation scale, due to its adaptive spatial-temporal learning framework. Explainable graph analytics
and real-time forecasting integration offers an effective platform to next generation intelligent energy
systems, which can support resilient, dynamic and decentralized renewable grids. The future work
must aim at incorporation of reinforcement learning into adaptive dispatch, multi-energy connection
(solar-wind-hydro), as well as large scale validation on real-world industrial microgrids in order to
further solidify the practical value of GNN-based solar-grid interaction modeling.

6. Challenges and Future Research Directions

Graph Neural Network (GNN) models of artificial intelligence (Al) systems have demonstrated
impressive advances in solar farm and grid interaction model with regard to forecasting accuracy,
spatial-temporal learning and adaptive control of distributed renewable systems. Nonetheless, even
with these developments, there are a number of technical, operational and methodological limitations
that remain in the way of large-scale implementation and real-time optimization of GNN-based
models in the renewable energy ecosystem. This paragraph examines the key obstacles and provides
potential research directions of scalability, transparency, and reliability in GNN-based solar grid
systems in the future.

6.1 Data Quality, Availability and Integration.
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The quality, quantity, and granularity of input data are very crucial to the performance of any Al or
GNN-based model. This consists of meteorological data, real-time power production, grid parameters
and spatial interconnections between solar farms and substations in solar-grid modeling. Nonetheless,
discrepancies, absence of information, and the lack of access to standardized data are still major
challenges (Abdelkader et al., 2025; Xu et al., 2024).

The generalizability of GNN-based models is limited because many of the existing datasets are
limited by local variability and brief observation windows in PV (Jiao et al., 2021; Simeunovic¢ et al.,
2021). Also, non-homogeneous sources of data such as satellite-derived irradiance and IoT
monitoring generate difficulties in the field of synchronization and combination (Zhao et al., 2024).
In a bid to fill these gaps, scholars have suggested a set of data fusion systems which combine ground-
based data and satellite data based on adaptive spatio-temporal encoding (Li et al., 2023). On the
same note, physics-based GNNs are being trained to alleviate the problem of data insufficiency by
introducing physical restrictions to the learning models (Xu et al., 2024).

Table 6: Key Data Challenges and Emerging Solutions in GNN-Based Solar—Grid Modeling

Challenge Description Impact on Model | Proposed Key
Type Research Solution | References
Data Sensor drift, | Reduces accuracy, | Data augmentation | (Abdelkader et
Inconsistency | calibration errors, | introduces bias and statistical | al., 2025; Jiao
missing weather imputation etal., 2021)
records
Temporal Unaligned Temporal Time (Zhang et al.,
Misalignment | timestamps between | distortion in | synchronization 2022; Li et al.,
PV sites and weather | forecasts and lag correction | 2024)
data using LSTM filters
Spatial Differences in | Poor generalization | Graph construction | (Simeunovi¢ et
Heterogeneity | topography, layout, | across sites with adaptive | al., 2021; Zhao
and irradiance adjacency matrices | et al., 2024)
Limited Lack of large-scale | Overfitting and | Federated learning | (Xu et al.,
Datasets open PV data | limited and synthetic data | 2024;
repositories reproducibility generation Dolatyabi &
Khodayar,
2025)

6.2 Model Interpretability and Explainability

Despite superior predictive abilities of GNNs, the systems are usually black-box and operators may
not be able to conceive the process of prediction. This interpretability issues pose a challenge to their
implementation in the critical infrastructure setting like in the energy system (Liao et al., 2021).
Recent researches have brought with them attention visualization and gradient-based saliency
technique to improve interpretability of graph models (Dang et al., 2025). These methods can be used
to determine what types of nodes or connections, e.g. particular solar sites or grid substations, can be
used to make most predictions. Nonetheless, they are still computationally demanding and have a
small scale (large, dynamic energy networks) (Zhao et al., 2024).
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Figure 1: Graphical Comparison of the Explainability Framework of GNN.

The further direction of work should be the hybrid explainable Al (XAI) models, the models that
combine the reasoning based on physics with GNN attention mechanisms. This can enhance the trust
and readability of grid operators and policymakers because of such hybridization (Murugesan et al.,
2025).

Computational complexity and scalability refer to the degree to which a given algorithm or software
can handle extensive datasets with a minimal amount of resources.

6.3 Computational Complexity and Scalability

Computational complexity and scalability are the terms describing how much a certain algorithm or
software is capable of working with huge amounts of data using a limited set of resources.

The other essential issue is the computational complexity in learning and executing large-scale GNN
in real-time energy systems. The size of the underlying graph and interconnectivity grow
exponentially as the solar farms and smart grids grow (Karimi et al., 2021). The result is long training
times, big memory footprint, and the inability to work with dynamic graphs which dynamically vary
with grid conditions (Li et al., 2024).

Solutions that already exist are the sparse graph convolution, mini-batch training and edge pruning
methods which lower the amount of computations (Zhang et al., 2022). Nevertheless, such techniques
tend to compromise model efficiency with model accuracy. Federated learning frameworks are being
developed to enable decentralization of computation in distributed nodes which leads to reduced
latency and less energy use (Meng et al., 2025).

Table 7: Comparative Computational Efficiency of GNN Variants in Solar-Grid Modeling

Model Type Training | Memory Scalability | Key Advantages References
Time Requirement
(relative)
GCN (Graph | High Moderate Limited Well-established, (Liao et al.,
Convolutional easy 2021; Jiao et
Network) implementation al., 2021)
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GAT (Graph | Very High | High Moderate | Attention-driven (Dang et al.,
Attention node importance 2025; Zhao et
Network) al., 2024)
ST-GCN (Spatio- | Very High | High Moderate | Handles spatial- | (Simeunovié¢
Temporal GCN) temporal et al., 2021I;
correlations Abdelkader et
al., 2025)
DGNN (Dynamic | Moderate | Moderate High Adaptive to | (Xu et al,
Graph NN) dynamic grid | 2024; Liu et
changes al., 2025)
Federated GNN Low Distributed Very High | Supports (Meng et al.,
decentralized 2025; Theiler
learning & Fink, 2025)

6.4 Real-Time Deployment and Edge Intelligence

Stability of the grid and operation in grids with high levels of renewable power require real time
forecasting and control. However, there are latency, bandwidth and hardware constraints in the
deployment of GNNs at the edge level in local controllers or microgrid gateways (Meng et al., 2025).
New technologies such as Edge Al and TinyML will make local decisions possible at embedded
devices, enabling GNNs to be used to make local optima on the voltage control and energy dispatch
(Murugesan et al., 2025). As an example, event-based control systems can be conditioned to react not
until reaching the thresholds, saving on computations (Meng et al., 2025).

In addition, edge-cloud collaboration methods might be applied, with early computation done on-
edge and intensive updates of the graph sent to the cloud (Li et al., 2024). Future studies are supposed
to create hardware-based GNN Inference systems, which are optimized to use energy, combining the
optimizations with GPU and FPGA (Lv et al., 2024).

6.5 Security, Reliability and Ethical considerations.

With a new development of solar-grid systems to become cyber-physical infrastructures, there arises
the issue of cybersecurity and ethical concerns. GNNs are weak to adversarial attacks, which means
that even small data changes can change the predictions (Shi & Guo, 2025). Besides, there are issues
of data privacy when there is a sharing of multi-institutional energy data to train models together
(Dolatyabi and Khodayar, 2025).

To overcome these challenges, federated GNN models featuring encryption layers may be used, and
secure decentralized learning is guaranteed without information leakage (Meng et al., 2025).
Ethically, it is crucial that the transparency, fairness, and accountability of automated grid decisions
are maintained especially as the energy systems increasingly acquire autonomy (Zhao et al., 2024).
The next generation of research must focus on the development of Al governance systems that outline
the role of human supervision and create a belief in the use of automated solar-grid systems (Liao et
al., 2021).
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6.6 Future Research Directions

In order to beat these complex issues, the research in the future is needed to be developed on the
technical and institutional level. Potential directions that are promising are:

1. Physics-Informed GNN Architectures: Directly integrating physics of conservation of energy laws
and Kirchhoff equations (Xu et al., 2024).

2. Cross-Domain Transfer Learning: Using the GNN knowledge of solar networks to wind and
hydroelectric forecasting (Theiler and Fink, 2025).

3. Quantum-Enhanced GNNs: Using quantum graph computation in high-dimensional spatio-
temporal learning (Liu et al., 2025).

4. Federated and Privacy-Preserving Frameworks: GNN training without a central data aggregation
(Meng et al., 2025).

5. Al-Energy Policy Integration: The transfer of the technical progress into the energy policy, moral
norms, and sustainability indicators (Murugesan et al., 2025).

Altogether, although GNN-based Al constructions represent a vast potential in terms of solar farm-
grid interaction modeling and optimization, their practice is still restricted by the quality of the data,
interpretation, computational efficiency, and ethical issues. To address them, a holistic research
strategy, combining advancements on deep learning, edge computing, physics-informed modeling,
and policy on energy is needed. The next generation of federated learning, explainable Al, dynamic
graph modeling will open the path to reliable, efficient, and resilient smart grid systems that are driven
by graph intelligence.

7. Conclusion

The high rate of deployment of solar photovoltaic (PV) systems and decentralized grid systems has
brought about major issues of forecasting, control, and coordination of renewable power. This paper
has discussed the potential of Graph Neural Network (GNN)-based artificial intelligence systems to
provide radical solutions to modeling the complex spatio-temporal dynamics of the solar farm-grid
systems.

By conducting a thorough analysis of the latest studies, it is clear that the GNN architectures,
especially spatio-temporal GNNs (ST-GNNs) and attention-based models allow forecasting more
precisely and adaptively than the traditional deep learning models, including CNNs and LSTMs (Jiao
et al., 2021; Simeunovi¢ et al., 2021; Abdelkader et al., 2025). These models improve situational
awareness and predictive reliability and energy management efficiency by capturing intrinsic
topological dependencies between solar farms and power grid nodes (Li et al., 2023; Sun et al., 2025).
Ever since, the extension of the scalability and operational viability of GNNs in real-world use has
been starting with the incorporation of physics-informed learning, federated training, as well as edge
intelligence (Xu et al., 2024; Meng et al., 2025). Nevertheless, the continued constraint is still on data
availability, interpretability, and real-time deployment as explained in Section 6. The need to fill these
gaps requires effective data governance, model explainability and computational optimization
techniques to guarantee transparency, security and trust in Al -based grid environments (Liao et al.,
2021; Zhao et al., 2024).

Going on, the cross-disciplinary approach of bringing together energy informatics, computer science,
and policy research must be incorporated in future studies to create Al systems governance-ready in
controlling renewable grids. The next generation in intelligent grid modeling will presumably be
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reinvented by innovations like quantum-accelerated GNNs, privacy-preserving federated
architecture, multi-modal data fusion, and so on (Theiler & Fink, 2025; Liu et al., 2025).

To conclude, GNN-based Al is a paradigm shift in the analytics of renewable energy that will help
close the divide between the renewable energy data-driven intelligence and sustainable grid
management. These frameworks can provide more resilience, efficiency, and transparency by
integrating spatial-temporal learning into solar energy frameworks, eventually contributing to the
global change to intelligent and carbon-neutral power systems.
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