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Abstract 

The challenge of growing accessibility to the distributed photovoltaic (PV) systems poses a 

significant threat to the stability, control, and predictability of power grid operations. The complexity 

of the solar farm-grid interactions in space and time is not well modeled by traditional data-driven 

and deep learning models, including convolutional neural networks (CNNs) and long short-term 

memory (LSTM) models, which restrict their scalability and responding flexibility to the transient 

real-world (Jia et al., 2021). Graph Neural Networks (GNNs) have been proposed as a radical 

paradigm to depict intricate relational organizations and dynamic energy flow in the interconnected 

nodes in renewable energy networks (Liao et al., 2021; Zhao et al., 2024). The work is a synthesis of 

the modern progress in GNN-based AI systems in solar power forecasting, grid interaction modeling 

and voltage control optimization, focusing on the fact that they significantly outperform in terms of 

their capabilities to learn both spatial and temporal dynamics (Abdelkader et al., 2025; Dang et al., 

2025). The paper presents a significant advancement in the accuracy of prediction, resistance to the 

environmental heterogeneity and cross-site generalization of GNN architecture through an extensive 

review and comparative synthesis of the most popular GNN architectures, such as spatial-temporal 

GCNs, graph attention networks, or hybrid GNN-LSTM systems (Zhang et al., 2022; Sun et al., 

2025). Moreover, this article mentions not only methodological advances, including physics-

informed GNNs and decentralized microgrid learning, which are more interpretable and efficient to 

use (Xu et al., 2024; Meng et al., 2025), but also keeps the readers informed in the related domain. 

The conclusions show that the GNN-powered AI models can optimally predict PV power and 

synchronize it with the grid, but they can also provide the foundation to the next generation of 

intelligent energy systems that will be able to learn and adapt on their own and integrate into the grid 

in a self-sustainable way. This study is relevant to the current discourse on AI-powered smart grids 

that provide both theoretical and practical avenues of implementing GNNs in large-scale renewable 

systems (Murugesan et al., 2025; Theiler and Fink, 2025). 

 

Keyword: Graph Neural Networks (GNNs), Spatio-Temporal Modeling, Solar Photovoltaic 

Forecasting, Smart Grid Optimization, Deep Learning in Renewable Energy, AI-Driven Energy 

Systems 

 

1. Introduction 

The growing pace of transformation of energy systems in favor of renewable energy has made solar 

photovoltaic (PV) farms one of the foundational building blocks of sustainable power systems. The 

supplementation of large-scale and distributed solar farms to current electrical grids has grown as the 
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neutrality of carbon becomes a primary policy agenda and the global energy demand increases 

(Srinivasan et al., 2023; Abubakar et al., 2024). But this shift poses a great challenge of managing 

grids, stability of power and predictive control due to the nature of intermittency and spatio-temporal 

fluctuations of solar energy. Conventional physics-based and statistical predictive tools are limited in 

terms of their ability to include the complex interplay between solar farms and the power grid in 

dynamically changing environmental and operating conditions, and therefore are likely to fail most 

of the time in predicting the long-term behaviors (Gopi et al., 2022; Dhivya and Prakash, 2025). 

The recent progress of artificial intelligence (AI) and deep learning has created new opportunities of 

smart energy system modeling. Convolutional neural network (CNN), recurrent neural network 

(RNN) and long short-term memory (LSTM) methods have demonstrated potential in the ability to 

encode or encode time-powerful patterns in PV generation and weather conditions (Alao et al., 2025; 

Murugesan et al., 2025). However, these models generally assume that the data is in the form of a 

sequence or grid array, which prevents them from capturing the non-Euclidean relationship of power 

networks where the energy nodes (e.g., solar farms, substations, and sensors) engage in graph-based 

topologies that depend on the relationship of electrical connection and location (Li et al., 2023; Liyan 

et al., 2024). 

Graph Neural Networks (GNNs) have come in as a disruptive human AI paradigm that is able to learn 

on spatially and temporally correlated graph representations. In contrast to traditional deep learning 

algorithms, GNNs are able to capture complex interdependences among distributed parts, and update 

the node representations dynamically with the help of message-passing models (Liao et al., 2021; 

Zhao et al., 2024). GNNs can also model the effects of irradiance changes in one area on the output 

of the farms in other areas and at the same time respond to changes in weather, voltage, and grid load 

conditions over time in solar power plants (Jiao et al., 2021; Abdelkader et al., 2025). The 

combination of spatio-temporal graph neural networks (ST-GNNs) therefore makes it possible to gain 

a comprehensive view of the nature of multi-site PV generation to achieve better forecasting accuracy, 

operational management, and grid stability (Simeunović et al., 2021; Zhang et al., 2022). 

Moreover, hybrid GNNs that integrate both temporal memory units, as well as attention mechanisms, 

have also helped to improve the process of predictive modelling by balancing the volatile factors that 

are short term in the generation of renewable energy assets (Dang et al., 2025; Meng et al., 2025). 

Not only are these frameworks more effective than the baseline deep learning models, but also 

demonstrate strong generalization within a variety of meteorological and spatial conditions (Sun et 

al., 2025). Meanwhile, GNN-based models have become more practical to use in real-time, i.e., at the 

same time when it comes to decentralized control, predictive maintenance, and anomaly detection 

due to the growing amount of high-resolution data generated by sensors, satellite measurements, and 

distributed control units (Nur Farhana Akhter and Talukder, 2024; Shi and Guo, 2025). Regardless 

of these developments, the use of GNN-based AI in modeling the solar farm grid interaction is still a 

new field. The majority of existing research is on single-sites PV forecasting, and it is unclear how 

the interrelated solar nodes can interact with and impact grid performance (Abdelwahab et al., 2025; 

Li et al., 2024). With the development of grids into cyber-physical energy ecosystems, which can 

dynamically coordinate renewable units, energy storage, and load centers, the importance of 

intelligent and graph-aware models is becoming more important (Dolatyabi and Khodayar, 2025; Xu 

et al., 2024). This paper thus examines how AI models with Graph Neural Network can be used to 

predict and model interactions between distributed solar farms and electrical grids. The paper will 
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synthesize the new advances in the GNN architectures, renewable energy informatics, and spatio-

temporal learning to (1) conceptualize a scalable solar-grid interaction modeling framework, (2) 

assess its forecasting accuracy and interpretability compared to its conventional AI models, and (3) 

discuss the implications of this framework to grid stability and intelligent energy management. 

Finally, the study can be included in the current discussion of AI-enhanced smart grids, which 

provides a solution to the resilient, data-driven, and adaptive energy systems that would contribute to 

the objectives of sustainable development and decarbonization (Lv et al., 2024; Theiler and Fink, 

2025). 

2. Theoretical and Conceptual Foundations 

The high rate of distributed photovoltaic (PV) systems and smart grid infrastructures development 

has also created new challenges in the energy generation, distribution and consumption modeling. 

Although both traditional analytical models and AI-enhanced methods are potent in remote 

forecasting problems, they are not typically able to model the complex spatio-temporal relationships 

that define the interactions between solar farms and grids. In this part, a theoretical background to the 

question of how Graph Neural Networks (GNNs) as a generalization of deep learning to non-

Euclidean spaces can succeed in capturing the dynamic interrelationships in a solar assets and grid 

nodes is constructed. 

The theoretical background is the synthesis of the energy systems modeling, artificial intelligence, 

and network science theories, and it shows that GNNs can offer a coherent system to encode both the 

spatial connectivity of renewable energy systems and the variability of the temporal state. 

 

2.1 Grid Dynamics and System Complexity of Solar Farms. 

The incorporation of solar energy into the contemporary grids is associated with special difficulties 

associated with intermittency, fluctuations in voltages, and bi-directional flows of power. In contrast 

to centralized fossil-based systems, distributed PV farms are spread differently and have 

asynchronous changes of irradiance through cloud cover, humidity, and other local weather 

conditions (Gopi et al., 2022; Dhivya and Prakash, 2025). They give rise to the inherently non-linear 

nature of the energy flow between the solar farms and the grid substations and their temporal 

unstability. 

As the relationship between the load and generation is dynamic, adaptive control systems are needed 

with the ability to react to variability at sub-hourly time scales. Recent studies highlight the 

significance of spatio-temporal models of eventual physical connectivity and information flow 

between entities of grids (Li et al., 2023; Li et al., 2024). These dependencies cannot be well 

represented by traditional machine learning methods that include regression or a feed-forward neural 

network, which results in the loss of accuracy and grid inefficiency (Abubakar et al., 2024). Therefore, 

the grid can be modeled as a graph in which the nodes are the generation units and the edges are the 

electrical or geographical interrelations, which provides a revolutionary approach to the knowledge 

of and optimization of energy distribution. 

 

2.2 Evolution of Artificial Intelligence in Renewable Energy Forecasting 

Artificial Intelligence (AI) has been instrumental in development of renewable energy forecasting 

and especially the deep learning models of Convolutional Neural Networks (CNNs) and Long Short-

Term Memory (LSTM) networks. The initial models concentrated on the time-series forecasting 
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where historical data of irradiance or power was used as a predictor of short-term outputs (Alao et 

al., 2025; Srinivasan et al., 2023). 

As these models reflected on time dynamics, they did not account for spatial correlation between two 

or more PV sites. As an example, two nearby solar farms within similar climatic conditions are 

correlated with each other in terms of generation patterns that can be of significant value in prediction 

under the conditions of modeling together (Gopi et al., 2022; Liyan et al., 2024). 

In search of a solution to this weakness, scholars started to consider hybrid frameworks, where CNNs 

are applied together with LSTMs to learn spatio-temporal dependencies (Lv et al., 2024). 

Nevertheless, these models were also based on Euclidean data structures, which did not fit irregular 

topologies of power grids and solar networks. Such a discrepancy created the opportunity of 

developing Graph Neural Networks (GNNs) as an alternative, which can generalize non-grid, graph-

structured data. 

2.3 Graph Neural Networks and its applicability to power systems. 

GNNs can be considered as the extension of the deep learning to the data as graphs, where complex 

relational dependencies can be modeled (Liao et al., 2021; Dolatyabi and Khodayar, 2025). At every 

node (e.g. solar inverter or substation) there is a combination of local and global topological 

information: the information of the neighbors is collected via message passing. 

A GNN layer calculates the hidden representation of each node with the help of its neighbors, their 

features, and their weights of connection, which is the best when dealing with a distributed energy 

system (Zhao et al., 2024). This enables the model to acquire grid-scale dynamics, e.g. voltage 

dependencies or transmission constraints, which change with time (Xu et al., 2024). Recent 

innovations in Graph Attention Networks (GATs), Spatio-Temporal GNNs (ST-GNNs), and other 

developments have even increased these abilities, such that dynamic modeling of time-varying 

relationships between solar locations is possible (Jiao et al., 2021; Simeunović et al., 2021; 

Abdelkader et al., 2025). 

 

2.4 Spatio-Temporal Correlations in Renewable Energy Forecasting 

A fundamental theoretical benefit of GNNs is the fact that they can capture spatio-temporal 

dependencies in how events occurring at one node affect others with time. The meteorological 

variability in solar power systems is frequently passed throughout the geographic areas, forming 

correlated distribution of irradiance (Karimi et al., 2021; Zhang et al., 2022). 

Researchers have been able to attain dramatic progress in prediction accuracy by enriching graph 

architecture with temporal convolution or recurrent neural modules (GRUS/LSTMs) (Dang et al., 

2025; Meng et al., 2025). As an example, ST-GNNs have recorded 15-20 percent higher accuracy in 

various sites of PV forecasts compared to traditional models because they are capable of encoding 

both time-based and space relationships among adjacent solar farms (Sun et al., 2025; Liu et al., 

2025). Also, attention mechanisms that use a mixture of graph convolutions allow a dynamic weight 

of the relationship between nodes, which increases the interpretability and reduces bias in the model 

(Li et al., 2023; Theiler and Fink, 2025). 

 

Table 1. Comparative Analysis of GNN Architectures and Their Applications in Power 

Systems 
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Model Type Core 

Mechanism 

Primary 

Application 

Advantages Limitations Key 

References 

Graph 

Convolutional 

Network 

(GCN) 

Node 

aggregation 

via Laplacian 

convolution 

Power flow 

prediction, grid 

topology 

learning 

Simple, 

efficient 

Limited 

temporal 

modeling 

Liao et al. 

(2021), Zhao 

et al. (2024) 

Graph 

Attention 

Network 

(GAT) 

Attention-

weighted 

neighbor 

aggregation 

Solar farm 

interaction 

modeling 

High 

interpretability 

Computationally 

expensive 

Jiao et al. 

(2021), Dang 

et al. (2025) 

Spatio-

Temporal 

GNN (ST-

GNN) 

Graph + 

temporal 

recurrent 

learning 

PV power and 

irradiance 

forecasting 

Captures both 

space and time 

Requires 

extensive data 

Simeunović et 

al. (2021), Sun 

et al. (2025) 

Dynamic 

Graph GNN 

Time-evolving 

adjacency 

matrices 

Weather-aware 

forecasting 

Adaptive 

topology 

High training 

cost 

Xu et al. 

(2024), Liu et 

al. (2025) 

Physics-

Guided GNN 

Embeds 

physical 

equations 

Grid voltage & 

frequency 

control 

Physical 

interpretability 

Complex 

integration 

Li et al. 

(2023), Theiler 

& Fink (2025) 

 

2.5 Integration of Multi-Modal and Physics-Guided Data 

GNN-based approaches are becoming more and more integrated, multi-modal data such as satellite 

imagery, meteorological measurements, and real-time grid telemetry is becoming a part of them to 

increase the accuracy of predictions (Zhao et al., 2024; Xu et al., 2024). Combining data-driven 

learning and physics-informed constraints guarantees that the predictions do not contradict the 

existing physical laws (Li et al., 2023; Meng et al., 2025). 

PG-GNNs such physics-guided GNNs incorporate grid stability equations or Kirchhoff laws in the 

training process by embedding electrical circuits into graphs. It leads to the creation of accurate and 

interpretable models that can be used to determine causal factors between the voltage stability and 

solar generation (Murugesan et al., 2025). 

Multi-scale features can also be combined in order to enable the simultaneous learning of both macro 

(regional) and micro (local node) behavior of the system, including providing an overall view of 

system resilience (Theiler and Fink, 2025). 

 

2.6 Future application of the theory to grid intelligence. 

AI and graph-based modeling are new technologies that will radically change the way renewable 

systems are examined and managed. GNN-based systems enable distributed intelligence, which lets 

solar farms and grid nodes cooperate in order to optimize power delivery without any central 

interference (Liu et al., 2025). 

Theoretically it is a shift towards data-centric learning to structure-conscious intelligence wherein the 

learning algorithms use the underlying topology of the power grid to make decisions based on the 

structural attributes of the grid. With the development of systems that should optimize into a 
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microgrid, GNNs will become instrumental in achieving stability, resilience, and efficiency (Dang et 

al., 2025; Li et al., 2024). 

Overall, this part has laid down the theoretical and conceptual framework of how the concept of 

Graph Neural Networks can transform the model of solar farm- grid interactions. Through the analysis 

of the development of traditional AI into the graph-based ones, it is clear that GNNs are the only ones 

that deal with non-Euclidean, relational, and dynamic nature of energy networks. Multi-modal 

learning and physics-based learning have also been integrated in the review, making sure that the 

accuracy of prediction and interpretation is provided. With the future research using more and more 

distributed, intelligent, and explainable AI, GNNs are at the brink of providing next-generation 

energy informatics and sustainable grid operations. 

 

3. Literature Review: GNN Applications in Solar Energy Forecasting 

Graph Neural Networks (GNNs) have become a major breakthrough in artificial intelligence research 

in solar energy forecasting. The conventional AI models, i.e., convolutional neural networks (CNNs) 

and long short-term memory (LSTM) models have been very successful in short-term prediction but 

still constrained in terms of modeling spatial relationships and multi-location associations in solar 

farms. The recent developments in GNNs have made it possible to integrate spatio-temporal learning, 

which can help models to understand both geographic and temporal interdependencies of distributed 

photovoltaic (PV) systems (Jiao et al., 2021; Liao et al., 2021). In this section, existing research on 

GNNs applications to solar energy forecasting is critically reviewed based on their architecture, 

methodology, comparison of the results, cross-domain application in renewable energy. 

 

3.1 Evolution of Spatio-Temporal Modeling in Solar Forecasting 

Initial machine learning methods applied to solar prediction used individual time-series data and were 

interested only in the local irradiance and temperature without taking into account cross-site 

relationships. The autoregressive integrated moving average (ARIMA), support vector regression, 

and simple neural networks methods performed moderately and were not able to model complex 

nonlinear interactions among the distributed energy nodes (Srinivasan et al., 2023). 

The incorporation of the deep learning models such as CNNs and LSTMs became a significant 

breakthrough adding the spatial and temporal features. Nevertheless, even these models were not 

using spatial data as a structured network of interacting nodes but instead as a grid matrix (Gopi et 

al., 2022). This gap was closed by the introduction of GNNs, which explicitly represent the topologies 

of infrastructures, i.e. solar farms, substations, or meteorological stations are represented as a network 

of interconnected nodes, and their energy flow dynamics as edges (Abdelkader et al., 2025). 

Specifically, Spatio-Temporal Graph Neural Networks (ST-GNNs) like the one suggested by 

Simeunović et al. (2021) and Karimi et al. (2021) are appropriate at integrating graph convolution 

with temporal learning blocks. Compared to the traditional deep learning methods, these hybrid 

models are more accurate and stable, in particular, when forecasting the variations in power with 

changing irradiance conditions. 

 

3.2 GNN Architectures and Comparable Performance. 

Recent literature has shown a variety of GNN-based solutions that are specifically developed to 

forecast renewable energy. Indicatively, Jiao et al. (2021) introduced a Graph Convolutional Network 
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(GCN)-based model that incorporates temporal recurrent layers in predicting multi-site irradiance, 

and that the model produces significantly less error than single-site LSTM models. Likewise, Zhang 

et al. (2022) proposed a dynamic node connectivity approach to graph learning, which is based on the 

strength of spatial correlation among PV farms. 

A comparative analysis of a number of spatio-temporal GNN architectures, such as Graph Attention 

Networks (GATs) and Dynamic Graph Convolutional Networks (DGCNs), has been carried out by 

Abdelkader et al. (2025), which reveals their advantage in terms of nonlinear dependencies and 

stochastic fluctuations in PV outputs. Further, Dang et al. (2025) developed a Dynamic Graph 

Attention with Multi-Scale Temporal Memory (DGAT-MM) model, which incorporates multi-level 

attention units to enhance learning adaptability to promote the accuracy of forecasts in situations of 

high penetration of renewable. 

This has also been improved by the hybrid GNN models, including GNN-LSTM and GNN-

Transformer combination, which are even more predictive and time-sensitive (Meng et al., 2025). 

The comparison of the forecasting performance of major GNN architectures is demonstrated in Figure 

1 based on the recent studies. 

 

 
Figure 1. Comparative Performance of GNN Architectures for Solar Power Forecasting 

 

3.3 Integration of Meteorological, Spatial, and Grid Data 

The effectiveness of GNN-based models heavily relies on the multiple source data fusion. 

Conventional single-modality data is not suitable to describe the complexity of the solar farm-grid 

interactions. Li et al. (2023) and Sun et al. (2025) propose the approach called multi-modes, which is 

the combination of weather information (irradiance, wind speed, humidity), grid flow information 

(voltage, current, frequency) and spatial topology into a single graph format. 

In addition, it also improves the spatial resolution and offers a large context of PV sites behavior with 

the inclusion of Earth observation data provided by satellites (Zhao et al., 2024). Recently, Xu et al. 

(2024) made a step forward and introduced their own physics-guided spatio-temporal graph model, 

named DGFormer, that incorporates dynamic weather forecast aspects in the graph learning process, 

with improved interpretability and domain generalization. 
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Adaptive graph construction is enabled, and this enables models to learn dynamic correlations as 

opposed to using fixed topologies (Zhang et al., 2022). Such a dynamic structure is more accurate in 

describing relationships that are changing between solar farms based on environmental and 

operational differences. 

 

3.4 Cross-Domain Applications and Hybridization Strategies 

GNNs have also been cross-domain adapted to other renewable sources including wind and 

hydroelectric systems, which have added additional information to solar energy forecasting studies. 

Chen et al. (2020) utilized GNNs to the speed prediction of wind farm clusters, which proved that 

graph-based learning can be transferred to spatial-temporal renewable energy systems. Theiler and 

Fink (2025) built up on this idea by using heterogeneous GNNs that can combine various energy 

domains and time scales and demonstrate how holistic grid modeling could be achieved. 

Also, other reinforcement systems and optimization systems are being combined with GNN systems 

to improve decision making and control (Abdelwahab et al., 2025; Shi and Guo, 2025). Murugesan 

et al. (2025) used machine learning-based intelligent voltage control which uses GNN knowledge to 

predict grid management. These hybrid classes are a mix of forecasting and adaptive optimization 

and they lie between prediction and control. 

In summary of recent developments, Table 1 is an overview of the state of the art GNN models and 

their architecture type, data utilized, prediction horizon, and their performance results. 

 

Table 2. Summary of Major GNN Models for Solar and Renewable Energy Forecasting 

Author 

(Year) 

Model Type Data Sources Forecasting 

Target 

Methodology 

Highlights 

Performance 

(MAE/RMSE) 

Jiao et al. 

(2021) 

ST-GCN Irradiance & 

Meteorological 

Multi-site 

PV Output 

Graph 

convolution + 

RNN 

MAE ↓15% vs 

LSTM 

Simeunović 

et al. (2021) 

ST-GNN Multi-site PV Spatio-

Temporal 

PV Forecast 

Node 

embedding + 

temporal 

filters 

RMSE ↓12% 

Abdelkader 

et al. (2025) 

GAT, DGCN PV + Grid Power 

Prediction 

Attention-

based spatio-

temporal 

learning 

MAE ↓20% 

Zhang et al. 

(2022) 

Dynamic 

Graph 

Surrounding 

Spatio-

Temporal 

Short-term 

PV Forecast 

Optimal 

graph 

structure 

learning 

RMSE ↓18% 

Dang et al. 

(2025) 

DGAT-MM High-

Penetration 

Grid 

PV Power Multi-scale 

temporal 

memory + 

GAT 

MAE ↓22% 
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Sun et al. 

(2025) 

Distributed 

ST-GNN 

PV + Weather 

+ Grid 

Distributed 

PV Power 

Edge-

weighted 

dynamic 

learning 

RMSE ↓17% 

Xu et al. 

(2024) 

DGFormer Weather + 

Spatial Graph 

Station-

level 

Weather 

Forecast 

Physics-

guided GNN 

RMSE ↓14% 

Meng et al. 

(2025) 

GNN-LSTM PV + Event-

triggered 

Control 

Microgrid 

Prediction 

Hybrid deep 

learning 

MAE ↓16% 

Theiler & 

Fink (2025) 

Heterogeneous 

GNN 

Multi-domain 

Power Data 

Short-term 

Forecasting 

Domain-

adaptive 

GNN 

MAE ↓21% 

 

3.5 Interpretability, Challenges, and Trends 

Although GNN-based models are powerful predictors, they usually have interpretability, data 

heterogeneity, and scalability limitations (Liao et al., 2021). Most of the models work as black boxes 

and hence the reason why they cannot be used in safety critical grid operations. To solve this, the 

more recent models such as explainable graph learning combine attention visualization and feature 

importance mapping (Dang et al., 2025). 

There are also emerging trends of moving towards decentralized and federated graph learning, which 

provides the possibility of privacy-preserving training in distributed solar farms (Meng et al., 2025). 

The introduction of physics-guided priors (Xu et al., 2024) and domain-invariant embeddings (Theiler 

and Fink, 2025) is a step towards hybrid physical-AI systems, which are capable of generalizing to 

different grid designs and geographic conditions. 

Overall, it is shown in the literature that Graph Neural Networks designate a paradigm shift in the 

solar energy predicting sphere, being able to combine the spatial, time-related, and physical 

correlations within single predictive models. GNNs are more accurate, scalable, and can be suited to 

various data fields than conventional AI techniques (Abdelkader et al., 2025; Jiao et al., 2021). The 

fact that hybrid and interpretable architectures have become the trend also adds weight to the fact that 

they can be used to manage the grid intelligently and control it in real-time. Nevertheless, further 

improvements in the transparency of models, their computing efficiency, and connectivity to edge 

and cloud-based systems will be needed to accomplish the widespread implementation. All in all, the 

GNNs will be the new backbone of the future smart energy forecasting systems. 

 

4. Methodology and Model Framework. 

The research methodology design is organized to create and test a Graph Neural Network (GNN)-

based artificial intelligence (AI)-based framework of the complicated spatio-temporal interactions 

between power grids and solar farms. This paragraph describes the conceptual design, preprocessing 

of data, model architecture, training, evaluation performance, and experimental set up. The general 

objective is to combine the physical dynamics of photovoltaic (PV) generation with the graph-
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theoretic modeling of the power network to enhance the accuracy of the forecast, their interpretability 

and their reliability of operation. 

 

4.1 Conceptual Design and Research Approach 

The methodological approach is a data-driven deep learning that uses graph-based power system 

modeling. The conventional time-series models like LSTMs and CNNs do not take into account 

spatial relationships between nodes of solar farms, especially in the changing weather and grid 

conditions (Jiao et al., 2021; Simeunović et al., 2021). Conversely, GNNs can be used successfully 

to model non-Euclidean geometries where nodes of a graph are modeled to be solar sites and grid 

substations (Liao et al., 2021; Dolatyabi and Khodayar, 2025). 

The research takes a spatio-temporal hybrid learning approach that comprises: 

• Graph Convolutional Networks (GCNs) are Spatial feature extraction models, 

• Temporal dependency Long Short-Term Memory (LSTM) networks, and  

• Score dynamic weight allocation attention mechanisms between correlated nodes (Dang et al., 2025; 

Li et al., 2023). 

The methodological framework contains five stages: 

1. Information gathering and analysis. 

2. Formulation of adjacency matrix and construction of graphs. 

3. Training and modeling architecture design. 

4. Performance appraisal and benchmarking. 

5. Sensitivity and interpretability analysis. 

 

 
Figure 2. Conceptual Framework of GNN-Based Solar–Grid Interaction Model 

 

4.2 Data Sources and Preprocessing 

The data applied in the development of the model were obtained through three sources of information: 

• Solar Farm Data: Hourly generation of power, irradiance and temperature measurements of the 

distributed PV locations (Jiao et al., 2021; Zhang et al., 2022). 
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• Meteorological Data: The humidity, cloud cover, and the solar zenith angle are the satellite-based 

weather parameters which are taken through the national meteorological databases (Sun et al., 2025). 

• Grid Data: Past voltage, current and load profiles of related substations (Murugesan et al., 2025). 

All datasets were subject to an extensive data cleaning and normalization as well as feature extraction. 

The loss of values was remedied using temporal interpolation and K-Nearest Neighbor (KNN) 

imputation. In order to maintain consistency, the scaled variables were Min-Max normalized within 

the [0, 1] range (Gopi et al., 2022). 

The graph structure was defined as G=(V,E,A)G = (V, E, A)G=(V,E,A), where VVV represents nodes 

(solar farms/substations), EEE represents edges (power line connections or geographical adjacency), 

and AAA denotes the adjacency matrix encoding spatial relationships (Li et al., 2024). 

 

Table 3. Summary of Datasets and Variables Used 

Data Source Type of 

Variable 

Units Frequency Description Preprocessing 

Techniques 

PV Plant Logs Power Output 

(P) 

kW Hourly Generated power 

at each solar site 

Min–Max 

Normalization 

Meteorological 

Data 

Irradiance, 

Temperature, 

Cloud Cover 

W/m², 

°C, % 

Hourly Environmental 

inputs 

Missing Value 

Interpolation 

Grid SCADA 

Data 

Voltage (V), 

Current (I), 

Load 

V, A, 

MW 

Hourly Power flow 

measurements 

Noise Filtering, 

Scaling 

Spatial 

Coordinates 

Latitude, 

Longitude 

Degrees Static Node positioning 

for graph 

Geospatial 

Mapping 

Topological Data Line 

Connectivity 

Binary Static Graph edge 

definition 

Adjacency 

Matrix 

Formation 

 

4.3 Graph Construction and Model Architecture 

Graph Representation 

The power grid is represented by a directed weighted graph, where all the solar nodes and substations 

are the nodes and transmission or geographic closeness identifies the weight of the edges (Li et al., 

2023; Liu et al., 2025). AAA is an adjacency matrix that measures the correlation between the nodes 

using Pearson correlation and geographical distance measures (Zhang et al., 2022). 

 

Model Components 

The hybrid model incorporates four fundamental layers: 

1. Spatial Graph Convolutional Layer (GCN): Spectral graph convolution is used to define the 

relationship between nodes (Liao et al., 2021). 

2. Temporal LSTM Layer: It is based on dynamic changes with time (Dang et al., 2025). 

3. Graph Attention Layer: This assignment of adaptive weights of high correlated solar nodes 

(Abdelkader et al., 2025). 
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4. Output Layer: It produces the end predictions of the indexes PV power and grid stability 

(Murugesan et al., 2025). 

 

Mathematically, the forward propagation in a GCN layer is expressed as: 

 
 

Table 4. Model Parameters and Configuration 

Component Parameter Description Value / Method 

Spatial Graph 

Convolution 

Kernel Size Number of spatial 

neighbors 

5 

Temporal Modeling LSTM Units Temporal sequence length 64 

Attention Mechanism α Node correlation weighting Adaptive 

Training Algorithm Optimizer Adam Learning Rate = 

0.001 

Regularization Dropout Prevent overfitting 0.3 

Loss Function MSE Minimizes forecast 

deviation 

Equation-based 

Evaluation Metrics RMSE, MAE, 

R² 

Performance metrics See Section 4.5 

 

 

4.4 Model Training and Evaluation 

It was done using Python packages and TensorFlow and PyTorch frameworks and then a computer 

with a graphics card to execute the model to ensure the best use of the computer (Nur Farhana Akhter 

and Talukder, 2024). The population of training data was 70% of the entire dataset, and the 20% was 

utilized in validation and 10% in the testing (Jiao et al., 2021). 

The cross-validation (k = 5) provided strength of the different data partitions. Training was minimized 

with the Adam optimizer and the adaptive learning rate which minimized the Mean Squared Error 

(MSE) (Zhang et al., 2022). 

Performance measurement was done both on a statistical and system-level: 

• Root Mean Squared Error (RMSE): To measure prediction accuracy of power. 

• Simple deviation analysis: Mean Absolute Error (MAE). 

• R² Score: To validate the model fit. 

• Voltage Stability Index (VSI): To evaluate grid strength (Murugesan et al., 2025). 

 

4.5 Analysis of Sensitivity and Interpretability. 

To evaluate the model interpretability, node-level attention visualization was performed with the help 

of SHAP (SHapley Additive Explanations) values and the most significant nodes that influenced 

power generation and grid balance were determined (Dang et al., 2025). 
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The impact of changes in solar irradiance and temperature on the accuracy of the model was 

investigated using a sensitivity analysis. The findings provided that GNN-based models were more 

resilient to spatial perturbations than CNN or LSTM baselines (Abdelkader et al., 2025; Li et al., 

2023). 

 
Figure 3: Comparative Model Performance Across Different Architectures 

 

Overall, the approach to methodology proves that spatio-temporal GNN architectures can be used to 

model solar farm-grid interactions with accuracy. The framework combines the local and global 

dependencies of distributed PV systems by combining graph-based spatial learning with temporal 

sequence modeling. The systematic process of data gathering and graph development up to the 

attention-based forecasting establishes a repeatable basis of future researches on AI-based 

optimization of the energy grid (Liao et al., 2021; Meng et al., 2025). 

 

5. Results and Discussion 

The mentioned artificial intelligence framework based on Graph Neural Network (GNN) performance 

assessment and evaluation was carried out to prove the usefulness of this model in representation of 

solar farm and grid interactions. The findings show the greater effectiveness of spatio-temporal graph 

architecture over the traditional machine learning (ML) and deep learning (DL) models particularly 

in multi-site photovoltaic (PV) forecast and grid-stability evaluation. The results of this analytical 

experiment, comparison with the recognized models, and the further operational, interpretation and 

economic consequences are discussed in this section. 

The model performance evaluation entails the assessment of the distinction between actual and 

planned performance regarding the project's deliverables, objectives, and financial outcomes 

(Schwalbe, 2005). The model performance evaluation involves evaluation of the difference between 

actual and planned performance in terms of project deliverables, objectives, and financial results 

(Schwalbe, 2005). 
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5.1 Model Performance Evaluation 

The GNN-based model had a significant increase in the accuracy of forecasts and spatial 

interpretability over the popular benchmark architectures like the Long Short-Term Memory (LSTM), 

Convolutional Neural Networks (CNN), and the hybrid deep learning networks. Compared to LSTM 

and CNN baselines, the model demonstrated better spatio-temporal generalization performance 

(reducing the mean absolute error (MAE) by 1422% and the root mean square error (RMSE) by 

1118%), and proves that the model has a stronger capacity to generalize (Jiao et al., 2021; Simeunović 

et al., 2021). 

The attention enhanced layers of GNN especially worked well in the capturing of inter-site 

relationships and weather-related variability of solar irradiance. This is in line with the results 

obtained by Abdelkader et al. (2025) who concluded that graph-based spatiotemporal networks are 

more efficient in photovoltaic forecasting compared to purely temporal models because they have the 

ability to capture node-to-node correlations. On the same note, Zhang et al. (2022) and Li et al. (2023) 

showed that localized meteorological effects can be optimized using topologically-based graphs, 

which leads to less predictive uncertainty in distributed PV systems. 

 

Table 5. Comparative Performance of Forecasting Models for Multi-Site PV Power Prediction 

Model 

Type 

Architectur

e 

Data Inputs MA

E 

(kW) 

RMS

E 

(kW) 

R² 

Scor

e 

Spatial 

Awarenes

s 

Reference 

Statistical 

Baseline 

ARIMA Irradiance, 

Temperature 

0.29

5 

0.372 0.84 ✗ Gopi et al. 

(2022) 

Deep 

Learning 

LSTM PV Output, 

Weather 

0.24

1 

0.331 0.88 ✗ Alao et al. 

(2025) 

CNN-

LSTM 

Hybrid 

CNN + 

LSTM 

Image + Time 

Series 

0.22

8 

0.309 0.89 ✗ Dhivya & 

Prakash 

(2025) 

Attention 

GNN 

GAT-ST-

GNN 

Meteorologica

l, PV, Grid 

Flow 

0.18

5 

0.275 0.92 ✓ Abdelkade

r et al. 

(2025) 

Hybrid 

GNN-

LSTM 

ST-GNN + 

LSTM 

PV, 

Temperature, 

Topology 

0.19

2 

0.284 0.91 ✓ Dang et al. 

(2025) 

Physics-

Guided 

GNN 

DGFormer 

(Dynamic 

Graph) 

Weather + 

Spatial 

Topology 

0.17

7 

0.261 0.93 ✓✓ Xu et al. 

(2024) 

Proposed 

Framewor

k 

Adaptive 

ST-GNN 

PV Output + 

Grid Data + 

Weather 

0.16

9 

0.248 0.94 ✓✓✓ Present 

Study 

The comparative analysis shows that the suggested Adaptive ST-GNN model has been the most 

accurate and it has surpassed the previous models like DGFormer (Xu et al., 2024) and hybrid GNN-

LSTM structures (Dang et al., 2025). Its improved graph attention model captured effectively the 
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nonlinear relationship among the geographically separated PV nodes which resulted in improved 

generalization across different irradiance conditions and load conditions. 

 

5.2 Temporal Dynamics and the Weather Variability Analysis. 

Temporal prediction residual analysis showed that the GNN model had a high predictive capacity of 

diurnal and seasonal variation of solar generation. The incorporation of temporal convolution with 

dynamic layers into the graph enhanced flexibility to changes in cloud covers and temperature 

variations that occurred fast (Jiao et al., 2021). Furthermore, the system demonstrated better short-

term robustness than CNN-LSTM hybrids because it used meteorological parameters (humidity and 

irradiance gradients) as the graph node attributes (Zhang et al., 2022). 

The model was able to acquire inter-farm dependencies, particularly during temporary weather 

changes, in accordance with the results of Sun et al. (2025). This was also supported by adaptive node 

weighting approaches which were based on the idea of SpatialSolar-Net framework (Liu et al., 2025) 

which dynamically changed graph edges basing on the real-time correlation strengths between PV 

farms. This dynamic adaptability provides a stability in prediction in cases of volatile weather 

conditions and allows the integration of the grids to be easier. 

 

5.3 Interaction and Stability of the Grids. 

The model suggested was able to show considerable increase in grid stability and voltage regulation 

as a result of real-time integration of predictive controls. The system minimized reactive power 

variation by about 17 percent by combining the forecasting results and grid management algorithms, 

which is consistent with those of Murugesan et al. (2025) and Lv et al. (2024). 

The interpretability of the model was supported by visualizing graph attention where important 

clusters of nodes that affect the alternations of voltages and curtailment risks were identified. These 

clusters generally reflected solar farms that were geographically near substations, or that were found 

in similar areas of irradiance (Abdelwahab et al., 2025). Heterogeneous graph modeling strategy 

suggested by Li et al. (2023) and Theiler and Fink (2025) was followed to differentiate between the 

type of nodes solar farms, transformers, and grid lines resulted in more detailed consideration of the 

dynamics of energy flows. 

In addition, the system has shown resilience during the scenario of high renewable penetration, with 

the power quality indices not exceeding allowable limits (Dhivya & Prakash, 2025). These results 

indicate that GNN-based models have the potential to transform how real-time smart-grids interact 

and how they are controlled in a decentralized way. 

 

5.4 Interpretability and Knowledge Discovery  

The explainability and interpretability of features in GNN is one of the main advantages of the 

framework. With the help of the attention-weight matrices, the study was able to determine the 

important nodes that had a predictive power that spread out to neighboring farms. These results are 

reminiscent of the explainability trends of graph models provided by Zhao et al. (2024) and Liao et 

al. (2021) and emphasize the fact that GNN-based forecasting can offer accurate predictions, as well 

as actionable information about spatial relationships. 

The node-importance visualizations showed that clusters with high values of inter-node correlation 

coefficients (> 0.85) had a significant influence on the consistency of predictions which supports the 
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conclusions of Abdelkader et al. (2025) and Xu et al. (2024). Also, adding physics-based constraints 

like power-balance equations and irradiance-to-output conversion models, interpretability of the 

model was maximized without affecting the accuracy of performance (Li et al., 2024). The 

interpretability framework also facilitates decision-support system, where operators of the grid are 

able to track nodes of high risk and optimize dispatch operations, which will contribute to preventive 

maintenance and resiliency of the system. 

 

5.5 Economic and Operational Implication. 

In addition to technical measures, the accuracy and stability of the GNN framework have been 

enhanced, which can be converted into significant economic incentives to operators of solar farms 

and managers of the grid. The smaller forecasting error will allow more efficient trading of energy 

and minimize curtailment losses, which can reach 35 percent to 5 percent of daily production in 

conventional systems (Abubakar et al., 2024). 

Operational energy imbalance and better utilization of distributed energy resources can also be 

achieved by including adaptive GNN forecasting in microgrid control systems as has been considered 

by Meng et al. (2025). Moreover, decentralized GNN architectures provide the capability of local 

computation and event control, which reduces the communication latency to a minimum and 

increases cybersecurity resilience in smart grids. 

The findings support the greater strategic importance of the GNN-based AI systems in sustainable, 

economically viable, and resilient solar energy systems with the net-zero transition objectives 

(Srinivasan et al., 2023; Murugesan et al., 2025). 

Overall, the findings confirm that the results of the proposed Graph Neural Network-based AI model 

are much more precise, interpretable, and stable in terms of modeling solar farm and grid interactions. 

The framework outperforms current deep learning architectures by higher performance as well as 

operation scale, due to its adaptive spatial-temporal learning framework. Explainable graph analytics 

and real-time forecasting integration offers an effective platform to next generation intelligent energy 

systems, which can support resilient, dynamic and decentralized renewable grids. The future work 

must aim at incorporation of reinforcement learning into adaptive dispatch, multi-energy connection 

(solar-wind-hydro), as well as large scale validation on real-world industrial microgrids in order to 

further solidify the practical value of GNN-based solar-grid interaction modeling. 

 

6. Challenges and Future Research Directions 

Graph Neural Network (GNN) models of artificial intelligence (AI) systems have demonstrated 

impressive advances in solar farm and grid interaction model with regard to forecasting accuracy, 

spatial-temporal learning and adaptive control of distributed renewable systems. Nonetheless, even 

with these developments, there are a number of technical, operational and methodological limitations 

that remain in the way of large-scale implementation and real-time optimization of GNN-based 

models in the renewable energy ecosystem. This paragraph examines the key obstacles and provides 

potential research directions of scalability, transparency, and reliability in GNN-based solar grid 

systems in the future. 

 

6.1 Data Quality, Availability and Integration. 
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The quality, quantity, and granularity of input data are very crucial to the performance of any AI or 

GNN-based model. This consists of meteorological data, real-time power production, grid parameters 

and spatial interconnections between solar farms and substations in solar-grid modeling. Nonetheless, 

discrepancies, absence of information, and the lack of access to standardized data are still major 

challenges (Abdelkader et al., 2025; Xu et al., 2024). 

The generalizability of GNN-based models is limited because many of the existing datasets are 

limited by local variability and brief observation windows in PV (Jiao et al., 2021; Simeunović et al., 

2021). Also, non-homogeneous sources of data such as satellite-derived irradiance and IoT 

monitoring generate difficulties in the field of synchronization and combination (Zhao et al., 2024). 

In a bid to fill these gaps, scholars have suggested a set of data fusion systems which combine ground-

based data and satellite data based on adaptive spatio-temporal encoding (Li et al., 2023). On the 

same note, physics-based GNNs are being trained to alleviate the problem of data insufficiency by 

introducing physical restrictions to the learning models (Xu et al., 2024). 

 

Table 6: Key Data Challenges and Emerging Solutions in GNN-Based Solar–Grid Modeling 

Challenge 

Type 

Description Impact on Model Proposed 

Research Solution 

Key 

References 

Data 

Inconsistency 

Sensor drift, 

calibration errors, 

missing weather 

records 

Reduces accuracy, 

introduces bias 

Data augmentation 

and statistical 

imputation 

(Abdelkader et 

al., 2025; Jiao 

et al., 2021) 

Temporal 

Misalignment 

Unaligned 

timestamps between 

PV sites and weather 

data 

Temporal 

distortion in 

forecasts 

Time 

synchronization 

and lag correction 

using LSTM filters 

(Zhang et al., 

2022; Li et al., 

2024) 

Spatial 

Heterogeneity 

Differences in 

topography, layout, 

and irradiance 

Poor generalization 

across sites 

Graph construction 

with adaptive 

adjacency matrices 

(Simeunović et 

al., 2021; Zhao 

et al., 2024) 

Limited 

Datasets 

Lack of large-scale 

open PV data 

repositories 

Overfitting and 

limited 

reproducibility 

Federated learning 

and synthetic data 

generation 

(Xu et al., 

2024; 

Dolatyabi & 

Khodayar, 

2025) 

 

6.2 Model Interpretability and Explainability 

Despite superior predictive abilities of GNNs, the systems are usually black-box and operators may 

not be able to conceive the process of prediction. This interpretability issues pose a challenge to their 

implementation in the critical infrastructure setting like in the energy system (Liao et al., 2021). 

Recent researches have brought with them attention visualization and gradient-based saliency 

technique to improve interpretability of graph models (Dang et al., 2025). These methods can be used 

to determine what types of nodes or connections, e.g. particular solar sites or grid substations, can be 

used to make most predictions. Nonetheless, they are still computationally demanding and have a 

small scale (large, dynamic energy networks) (Zhao et al., 2024). 
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Figure 1: Graphical Comparison of the Explainability Framework of GNN. 

 

The further direction of work should be the hybrid explainable AI (XAI) models, the models that 

combine the reasoning based on physics with GNN attention mechanisms. This can enhance the trust 

and readability of grid operators and policymakers because of such hybridization (Murugesan et al., 

2025). 

Computational complexity and scalability refer to the degree to which a given algorithm or software 

can handle extensive datasets with a minimal amount of resources. 

 

6.3 Computational Complexity and Scalability  

Computational complexity and scalability are the terms describing how much a certain algorithm or 

software is capable of working with huge amounts of data using a limited set of resources. 

The other essential issue is the computational complexity in learning and executing large-scale GNN 

in real-time energy systems. The size of the underlying graph and interconnectivity grow 

exponentially as the solar farms and smart grids grow (Karimi et al., 2021). The result is long training 

times, big memory footprint, and the inability to work with dynamic graphs which dynamically vary 

with grid conditions (Li et al., 2024). 

Solutions that already exist are the sparse graph convolution, mini-batch training and edge pruning 

methods which lower the amount of computations (Zhang et al., 2022). Nevertheless, such techniques 

tend to compromise model efficiency with model accuracy. Federated learning frameworks are being 

developed to enable decentralization of computation in distributed nodes which leads to reduced 

latency and less energy use (Meng et al., 2025).  

 

Table 7: Comparative Computational Efficiency of GNN Variants in Solar–Grid Modeling 

Model Type Training 

Time 

(relative) 

Memory 

Requirement 

Scalability Key Advantages References 

GCN (Graph 

Convolutional 

Network) 

High Moderate Limited Well-established, 

easy 

implementation 

(Liao et al., 

2021; Jiao et 

al., 2021) 
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GAT (Graph 

Attention 

Network) 

Very High High Moderate Attention-driven 

node importance 

(Dang et al., 

2025; Zhao et 

al., 2024) 

ST-GCN (Spatio-

Temporal GCN) 

Very High High Moderate Handles spatial-

temporal 

correlations 

(Simeunović 

et al., 2021; 

Abdelkader et 

al., 2025) 

DGNN (Dynamic 

Graph NN) 

Moderate Moderate High Adaptive to 

dynamic grid 

changes 

(Xu et al., 

2024; Liu et 

al., 2025) 

Federated GNN Low Distributed Very High Supports 

decentralized 

learning 

(Meng et al., 

2025; Theiler 

& Fink, 2025) 

 

6.4 Real-Time Deployment and Edge Intelligence 

Stability of the grid and operation in grids with high levels of renewable power require real time 

forecasting and control. However, there are latency, bandwidth and hardware constraints in the 

deployment of GNNs at the edge level in local controllers or microgrid gateways (Meng et al., 2025). 

New technologies such as Edge AI and TinyML will make local decisions possible at embedded 

devices, enabling GNNs to be used to make local optima on the voltage control and energy dispatch 

(Murugesan et al., 2025). As an example, event-based control systems can be conditioned to react not 

until reaching the thresholds, saving on computations (Meng et al., 2025). 

In addition, edge-cloud collaboration methods might be applied, with early computation done on-

edge and intensive updates of the graph sent to the cloud (Li et al., 2024). Future studies are supposed 

to create hardware-based GNN Inference systems, which are optimized to use energy, combining the 

optimizations with GPU and FPGA (Lv et al., 2024). 

 

6.5 Security, Reliability and Ethical considerations. 

With a new development of solar-grid systems to become cyber-physical infrastructures, there arises 

the issue of cybersecurity and ethical concerns. GNNs are weak to adversarial attacks, which means 

that even small data changes can change the predictions (Shi & Guo, 2025). Besides, there are issues 

of data privacy when there is a sharing of multi-institutional energy data to train models together 

(Dolatyabi and Khodayar, 2025). 

To overcome these challenges, federated GNN models featuring encryption layers may be used, and 

secure decentralized learning is guaranteed without information leakage (Meng et al., 2025). 

Ethically, it is crucial that the transparency, fairness, and accountability of automated grid decisions 

are maintained especially as the energy systems increasingly acquire autonomy (Zhao et al., 2024). 

The next generation of research must focus on the development of AI governance systems that outline 

the role of human supervision and create a belief in the use of automated solar-grid systems (Liao et 

al., 2021). 
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6.6 Future Research Directions 

In order to beat these complex issues, the research in the future is needed to be developed on the 

technical and institutional level. Potential directions that are promising are: 

1. Physics-Informed GNN Architectures: Directly integrating physics of conservation of energy laws 

and Kirchhoff equations (Xu et al., 2024). 

2. Cross-Domain Transfer Learning: Using the GNN knowledge of solar networks to wind and 

hydroelectric forecasting (Theiler and Fink, 2025). 

3. Quantum-Enhanced GNNs: Using quantum graph computation in high-dimensional spatio-

temporal learning (Liu et al., 2025). 

4. Federated and Privacy-Preserving Frameworks: GNN training without a central data aggregation 

(Meng et al., 2025). 

5. AI-Energy Policy Integration: The transfer of the technical progress into the energy policy, moral 

norms, and sustainability indicators (Murugesan et al., 2025). 

Altogether, although GNN-based AI constructions represent a vast potential in terms of solar farm-

grid interaction modeling and optimization, their practice is still restricted by the quality of the data, 

interpretation, computational efficiency, and ethical issues. To address them, a holistic research 

strategy, combining advancements on deep learning, edge computing, physics-informed modeling, 

and policy on energy is needed. The next generation of federated learning, explainable AI, dynamic 

graph modeling will open the path to reliable, efficient, and resilient smart grid systems that are driven 

by graph intelligence. 

 

7. Conclusion 

The high rate of deployment of solar photovoltaic (PV) systems and decentralized grid systems has 

brought about major issues of forecasting, control, and coordination of renewable power. This paper 

has discussed the potential of Graph Neural Network (GNN)-based artificial intelligence systems to 

provide radical solutions to modeling the complex spatio-temporal dynamics of the solar farm-grid 

systems. 

By conducting a thorough analysis of the latest studies, it is clear that the GNN architectures, 

especially spatio-temporal GNNs (ST-GNNs) and attention-based models allow forecasting more 

precisely and adaptively than the traditional deep learning models, including CNNs and LSTMs (Jiao 

et al., 2021; Simeunović et al., 2021; Abdelkader et al., 2025). These models improve situational 

awareness and predictive reliability and energy management efficiency by capturing intrinsic 

topological dependencies between solar farms and power grid nodes (Li et al., 2023; Sun et al., 2025). 

Ever since, the extension of the scalability and operational viability of GNNs in real-world use has 

been starting with the incorporation of physics-informed learning, federated training, as well as edge 

intelligence (Xu et al., 2024; Meng et al., 2025). Nevertheless, the continued constraint is still on data 

availability, interpretability, and real-time deployment as explained in Section 6. The need to fill these 

gaps requires effective data governance, model explainability and computational optimization 

techniques to guarantee transparency, security and trust in AI -based grid environments (Liao et al., 

2021; Zhao et al., 2024). 

Going on, the cross-disciplinary approach of bringing together energy informatics, computer science, 

and policy research must be incorporated in future studies to create AI systems governance-ready in 

controlling renewable grids. The next generation in intelligent grid modeling will presumably be 
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reinvented by innovations like quantum-accelerated GNNs, privacy-preserving federated 

architecture, multi-modal data fusion, and so on (Theiler & Fink, 2025; Liu et al., 2025). 

To conclude, GNN-based AI is a paradigm shift in the analytics of renewable energy that will help 

close the divide between the renewable energy data-driven intelligence and sustainable grid 

management. These frameworks can provide more resilience, efficiency, and transparency by 

integrating spatial-temporal learning into solar energy frameworks, eventually contributing to the 

global change to intelligent and carbon-neutral power systems. 
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