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Abstract 

Water scarcity, contamination, and rising operational demands require modern utilities to 

adopt intelligent and sustainable water management strategies. Conventional Supervisory 

Control and Data Acquisition (SCADA) systems offer real-time monitoring but lack 

predictive analytics and autonomous decision-making. To overcome these limitations, this 

study proposes a comprehensive Digital Twin (DT) framework that integrates Internet of 

Things (IoT)-based sensing, hybrid physics–machine learning (ML) modeling, and AI-driven 

control for real-time simulation, predictive optimization, and closed-loop water treatment 

management. The DT continuously synchronizes with the physical infrastructure, fusing 

multi-source sensor and laboratory data to model key parameters such as turbidity, pH, and 

residual chlorine. An AI-based control layer employing Model Predictive Control (MPC) and 

Reinforcement Learning (RL) autonomously optimizes chemical dosing and energy usage. 

The framework is validated on a pilot-scale water treatment setup, demonstrating a 74% 

reduction in RMSE for turbidity prediction, 12% decrease in chemical consumption, and 10% 

reduction in energy usage, while improving anomaly detection accuracy to 95%. Moreover, 

the system enhances compliance with SDG 6.1.1 and 6.3.2 indicators by ensuring consistent 

water quality and operational efficiency. The proposed DT establishesafoundationfornext-

generationsmartwatersystemscapable of self-learning, adaptive control, and sustainable 

performance aligned with global water management goals. 

Key Terms—Digital Twin, Artificial Intelligence, Machine Learning, IoT, Water Quality 

Monitoring, Autonomous Control, SDG 6. 

1. Introduction 

Water scarcity, contamination, and inefficient resource utilization represent critical 

challenges to modern water utilities and sustainable urban development [1]. According to the 

United Nations, over two billion people lack access to safely managed drinking water, while 
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rapid industrialization and climate change exacerbate stress on fresh water resources. 

Conventional Supervisory Control and Data Acquisition (SCADA) systems deployed in 

water treatment and distribution networks provide real-time monitoring but are largely 

reactive, lacking predictive capabilities and autonomous optimization. As a result, they 

struggle to adapt to dynamic conditions such as fluctuating demand, variable source quality, 

and equipment degradation. 

The convergence of Internet of Things (IoT), Artificial Intelligence(AI), and Digital Twin 

(DT) technologiesoffers transformative potential to address these limitations[2], [3]. IoT-

based sensors enable high-frequency, distributed data acquisition across treatment processes 

and distribution networks. AI and machine learning (ML) techniques can process these large, 

heterogeneous datasets to forecast quality parameters, detect anomalies, and recommend 

control actions. A Digital Twin provides a continuously synchronized virtual representation 

of the physical system, integrating physics- based simulations with AI-driven analytics to 

enable proactive management and autonomous decision-making. 

Recent studies have explored IoT-enabled water monitoring systems [1], [4], AI-based 

water quality prediction [2], [5], and smart water distribution frameworks [6]. However, most 

implementations remain limited to monitoring or analytics, lacking full integration with 

hybrid models and real-time control. There is a pressing need for comprehensive DT 

architectures that unify data fusion, hybrid modeling, and autonomous control to achieve 

intelligent, self-optimizing water systems aligned with Sustainable Development Goal (SDG) 

6: Clean Water and Sanitation. 

To bridge this gap, this paper proposes a novel Digital Twin Framework for Intelligent 

Water Treatment, Quality Monitoring, and Autonomous Control. The framework combines 

IoT-based sensing, hybrid physics–ML modeling, and AI-driven control to enable real-time 

simulation, predictive optimization, and closed-loop feedback. The contributions of this work 

are summarized as follows: 

2. Research Objectives 

▪ Develop a DT integrating IoT sensor data, laboratory testing, and AI analytics. 

▪ Model hybrid physics–ML processes for accurate real- time prediction. 

▪ Implement MPC and RL-based autonomous control for optimized operations. 

▪ Evaluate performance under SDG 6 indicators for water quality and efficiency. 

3.  Literature Review 

The increasing integration of Internet of Things (IoT), Machine Learning (ML), and Artificial 

Intelligence (AI) technologies has transformed traditional water management systems into 

intelligent, adaptive, and data-driven ecosystems. These technologies have facilitated the 

transition from periodic monitoring to continuous, real-time analysis and predictive control. 

However, existing studies still exhibit limitations in achieving autonomous decision-making, 

hybrid data fusion, and full Digital Twin (DT) implementation for closed-loop control and 

optimization. 
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3.1 IoT-Based Smart Water Monitoring and Distribution 

Early developments in IoT-enabled water management primarily focused on monitoring and 

data acquisition. Maseeh et al. [1] reviewed IoT and ICT-based smart water management 

systems that enabled real-time sensing and control but lacked AI-driven analytics. Gonc, 

alves et al. [4] proposed an IoT framework for smart water supply management emphasizing 

wireless data acquisition, though optimization and predictive functionalities were absent. 

Similar systems by Mukta et al. [7] and Pasika et al. [8] utilized cost-effective IoT modules 

(Arduino, Raspberry Pi) for water quality monitoring (pH, turbidity, TDS) but did not support 

adaptive or autonomous control mechanisms. Advancements in communication protocols 

such as MQTT and LoRaWAN have been explored by Gaikwad [9] to improve scalability 

and energy efficiency. However, these studies largely remain reactive, providing descriptive 

data rather than prescriptive, AI-based operational decisions. 

3.2 Machine Learning for Water Quality Prediction 

The integration of ML models has significantly enhanced water quality prediction and 

anomaly detection. Ismail et al. [2] and Hasan et al. [10] presented comprehensive reviews of 

ML-based techniques (Random Forest, SVM, ANN) for predicting water quality indices 

(WQI). Al-Khafaji et al. [5] performed a systematic review highlighting AI’s potential for 

multi-parameter water quality prediction and classification. Krishnan et al. [11] and Ngwenya 

et al. [12] applied ML for resource management and SDG 6 indicator assessment but noted 

challenges in generalization and real-time adaptability. El-Shafeiy et al. [13] proposed a 

multivariate deep learning framework for sensor anomaly detection, improving reliability yet 

lacking integration with control systems. Nowshin et al. [14] introduced physics-informed 

data denoising to improve IoT data accuracy, an essential step toward trustworthy DTs. 

Despite improved prediction accuracy, most ML-based systems operate in isolation and are 

not coupled with hydraulic models or process simulators—limiting their potential in full scale 

DT environments. 

3.3 Smart Water Systems and Digital Twin Concept 

The concept of Digital Twin (DT) has gained traction as a dynamic, cyber-physical 

representation enabling simulation, optimization, and autonomous control. Slany et al. [3] 

introduced the Smart Water-IoT model integrating AI-driven analytics for efficient water 

management, identifying DTs as a key enabler for real-time optimization. Quintana et al. [6] 

performed a systematic review on smart water systems, emphasizing the absence of 

standardized DT frameworks integrating IoT data, ML predictions, and control feedback. 

Okoli and Kabaso [15] discussed IoT-based smart city water applications but focused 

primarily on infrastructure and monitoring. Palermo et al. [16] highlighted the role of sensors 

and IoT in resource management yet lacked a simulation-driven DT approach. Bandara et al. 

[17] combined IoT sensors with location-based services (LBS) for spatiotemporal monitoring 

but did not employ predictive control. Similarly, reviews by Essamlali et al. [2] and Hasan et 

al. [10] identified the DT paradigm as an emerging research direction for autonomous water 

management. Recent innovations point toward DT implementations leveraging AI. Vlastimil 
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et al. [3] and Al-Khafaji et al. [5] highlighted AI’s capability to model complex nonlinearities 

in treatment processes. However, hybrid physics-ML DTs capable of real-time 

synchronization with physical assets remain rare. 

3.4 IoT–AI Fusion for Smart Treatment and Distribution 

IoT-based systems with AI-enabled analytics have demonstrated promise for adaptive water 

treatment. Forhad et al. [18] developed a real-time IoT-based water treatment monitoring 

system using cloud computing, while Bogdan et al. [19] designed low-cost IoT platforms for 

rural quality monitoring. Rosa et al. [20] proposed an IoT-based drinking water quality 

monitoring framework with cloud connectivity, but autonomous optimization was absent. 

Zubaidah et al. [21] applied IoT for ecological monitoring in tropical rivers, and Liu et al. 

[22] introduced a self-powered pH sensing approach. These demonstrate hardware 

advancements but lack unified AI–DT integration. 

3.5 Alignment with SDG 6 and Research Gaps 

The literature emphasizes the critical role of digital transformation in achieving Sustainable 

Development Goal 6(Clean Water and Sanitation). Studies such as Ngwenya et al. [12] and 

Krishnan et al. [11] link IoT–AI systems to SDG indicators 6.3 (ambient water quality) and 

6.4 (efficiency). Nevertheless, comprehensive DT frameworks addressing data fusion, 

predictive modeling, and autonomous control across treatment and distribution stages are 

sparse. Table 1 summarizes the representative literature, their focus areas, and identified 

research gaps. 

TABLE 1 EXTENDED SUMMARY OF RELATED WORKS IN SMART WATER 

MANAGEMENT 

Study   Focus Area Identified Gap 

Maseeh et al. (2021) [1] 
IoT and ICT-based smart 

water systems 

Limited intelligence; no predictive 

or autonomous 

control 

Gonc，alves et al. (2020) 

[4] 

IoT-based smart water 

supply 
No integration with AI or DTs 

Ismail et al. (2024) [2] 
ML for water quality 

monitoring 

Lack of hybrid physics-ML 

integration 

Al-Khafaji et al. (2025) 

[5] 
AI-based WQI modeling No real-time DT feedback 

Slany et al. (2025) [3] AI and IoT for efficient Identifies DT need; lacks practical 
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water management implementation 

Krishnan et al. (2022) [11] 

AI-driven smart water 

resource 

management 

No closed-loop or simulation 

integration 

Ngwenya et al. (2025) 

[12] 

ML and IoT for ambient 

water 

quality 

Monitoring only; lacks adaptive 

control 

El-Shafeiy et al. (2023) 

[13] 

Deep learning for 

anomaly detection 

No connection to control 

mechanisms 

Forhad et al. (2024) [18] 

IoT-based real-time water 

treatment 

monitoring 

Absent autonomous decision-

making 

Pasika & Gandla (2020) 

[8] 
Cost-effective IoT system Reactive monitoring; no AI or DT 

Bandara et al. (2025) [17] IoT + LBS for monitoring Lacks self-optimizing DT layer 

Bogdan et al. (2023) [19] IoT system for rural areas Missing AI-based analytics 

Quintana et al. (2025) [6] 
Systematic review on 

smart systems 
Calls for unified DT framework 

Okoli & Kabaso (2024) 

[15] 

Smart water city IoT 

technologies 

Focused on monitoring; lacks AI-

based optimization 

Palermo et al. (2022) [16] 
Smart technologies 

overview 
No DT implementation 

Hasan et al. (2024) [10] 
Review on ML + IoT for 

WQM 
No real-world DT integration 

Nowshin et al. (2025) [14] 
Physics-informed ML 

denoising 

Improves data reliability; lacks 

control layer 
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Liu et al. (2025) [22] 
Self-powered sensing 

hardware 

Hardware focus; no AI-driven DT 

integration 

3.6 Synthesis 

From the above analysis, three primary research gaps are evident: 

• Lack of integrated Digital Twin architectures combining IoT sensing, physics-based models, 

and AI analytics for real-time synchronization and decision-making. 

• Absence of autonomous control mechanisms such as MPC and reinforcement learning to 

enable self optimization of treatment and distribution. 

• Limited SDG 6 alignment with existing systems, particularly in quantifying water-use 

efficiency, quality compliance, and equitable distribution. To bridge these gaps, this study 

proposes a novel DT framework that unifies IoT sensing, hybrid modeling, and AI-driven 

control for intelligent water treatment, quality monitoring, and autonomous decision-making. 

4. Proposed Framework 

To address the identified research gaps, this study proposes a comprehensive Digital Twin 

(DT) Framework for intelligent water treatment, quality monitoring, and autonomous control. 

The proposed architecture unifies IoT sensing, hybrid modeling, and AI-based control to 

achieve real-time simulation, predictive optimization, and SDG 6-aligned performance. The 

system design is modular, scalable, and adaptable to both urban and rural water 

infrastructures. 

4.1  System Architecture Overview 

The DT framework comprises three interconnected layers— Physical, Digital, and Control—

as illustrated in Fig. 1. 

• Physical Layer: Represents the real-world water infrastructure including raw water intakes, 

treatment units (coagulation, sedimentation, filtration, disinfection), distribution networks, 

and end-use points. It is instrumented with IoT-based sensors measuring key water quality 

parameters such as pH, turbidity, Total Dissolved Solids (TDS), Dissolved Oxygen (DO), 

temperature, and residual chlorine.  

• Digital Layer: Serves as a high-fidelity virtual replica that continuously mirrors the physical 

layer. It integrates real-time data streams with simulation models—combining physics-based 

process equations and ML-based soft sensors to predict unmeasured variables and system 

responses. 

• Control Layer: Employs advanced AI algorithms, including Model Predictive Control (MPC) 

and Reinforcement Learning (RL), to optimize operational parameters such as chemical 

dosing, flow rates, and pump scheduling. Control actions are sent back to actuators in the 

physical system, creating a closed feedback loop. 
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Fig. 1. Proposed Digital Twin Framework Architecture 

4.2 Functional Modules 

The framework integrates the following key modules: 

1. Sensing and Data Acquisition: Deployed IoT sensors (connected via MQTT/LoRaWAN) 

capture continuous multi-parameter data streams. Edge devices preprocess data (filtering, 

calibration) before transmitting to the cloud. 

2. Data Fusion Engine: A probabilistic data fusion layer combines sensor, laboratory, and 

historical data using Bayesian and ML-based techniques, improving reliability and 

compensating for missing values. 

3. Hybrid Modeling Unit: Incorporates: 

•     Physics-based models for hydraulic flow, chemical kinetics, and chlorine decay. 

• Machine Learning models (e.g., LSTM, Random Forest, Physics-Informed Neural Networks) 

for real time prediction of water quality indicators and process optimization. 

4. Simulation and Prediction: The DT continuously simulates system states and forecasts 

future conditions (e.g., turbidity trends, chlorine residual levels) based on dynamic inputs. 

5. Autonomous Control: An MPC layer optimizes control actions (chemical dosage, pump 

speed) over a prediction horizon, constrained by regulatory limits. A reinforcement learning 

agent enhances adaptability by learning optimal policies from operational feedback. 

6. Visualization and Decision Support: A cloud-based dashboard provides operators with real-

time status, alerts, predictions, and SDG 6 indicators. 
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4.3  Data Flow and Synchronization 

 

Fig. 2 shows the data flow between layers. Sensor data are transmitted to the digital layer for 

analysis; predictive results feed into the control module, which generates optimal set points 

and sends commands to actuators in the physical system. Bidirectional synchronization 

ensures that DT states remain consistent with physical conditions. 

 

 

 

Fig. 2. Closed-Loop Data Flow in the Digital Twin Framework 

4.4 Mathematical Formulation 

The system dynamics can be expressed as: 

 

    xt+1 = f(xt, ut, dt) + ϵt        (1)  

  Where, xt represents state variables (e.g., turbidity, chlorine), 

               ut denotes control inputs (e.g., dosing rate),  

               dt external disturbances (e.g., demand, inflow), and 

               ϵt model uncertainty. 

 

The MPC optimization problem is formulated as: 

                                    
min

𝑢𝑡: 𝑡 + 𝑁

∑ 𝑥𝑡+𝑘 − 𝑥𝑟𝑒𝑓||𝑄2+||𝑢𝑡+𝑘||𝑅2
𝑁
𝑘=0                                               

(2) 

                                s.t. 𝑥𝑡+𝑘+1= f(𝑥𝑡+𝑘, 𝑢𝑡+𝑘),                     

  (3) 
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                               𝑢𝑚𝑖𝑛≤ 𝑢𝑡+𝑘≤ 𝑢𝑚𝑎𝑥, 𝑥min ≤ 𝑥𝑡+𝑘≤ 𝑥𝑚𝑎𝑥      (4) 

 

Where,  xref   are desired quality targets and Q,R weighting matrices. 

4.5 Integration with SDG 6 Indicators 

The proposed Digital Twin Framework aligns directly with the targets of the United Nations 

Sustainable Development Goal 6 (SDG 6): Clean Water and Sanitation, by enabling real-time 

monitoring, predictive control, and data driven decision support. Through IoT-enabled 

sensing, AI driven analytics, and closed-loop optimization, the framework ensures 

transparency, accountability, and sustainability across the water lifecycle.  

Specifically, the system supports monitoring and reporting of the following SDG 6 

indicators: 

     SDG 6.1.1 – Access to Safely Managed Drinking Water:  

Continuous monitoring of water quality parameters (pH, turbidity, chlorine residuals) and 

predictive analytics ensure compliance with WHO and local drinking  water standards. 

The Digital Twin provides real-time status dashboards showing the proportion of water 

supply zones meeting safety thresholds, thereby aiding utilities in tracking population 

coverage with safe drinking water services. 

     SDG 6.3.2 – Proportion of Water Bodies with Good Ambient Quality:  

The DT integrates upstream and downstream water quality sensors with forecasting models to 

assess ambient water quality in rivers, reservoirs, and effluents. It calculates composite 

indices (e.g., Water Quality Index, WQI) and supports early warning of pollution events, 

enabling regulatory reporting on the percentage of water bodies in good ecological condition. 

    SDG 6.4.1 – Change in Water Use Efficiency Over Time:  

By implementing Model Predictive Control (MPC) and Reinforcement Learning (RL), the 

system optimizes pumping schedules, chemical dosing, and energy consumption. This leads 

to quantifiable improvements in water use efficiency (liters per unit energy or cost) 

,supporting benchmarking against SDG 6.4.1 indicators and reducing the overall carbon 

footprint of operations. 

    SDG 6.5.1 – Implementation of Integrated Water Resources Management (IWRM): 

The DT serves as a digital platform for integrating multisource data (surface water, 

groundwater,  reuse systems), supporting participatory management. Scenario simulations 

and predictive analytics enable policymakers to test strategies for equitable allocation, 

resilience planning, and long-term sustainability in line with  IWRM principles. 

    SDG 6.6.1 – Change in the Extent of Water-Related Ecosystems:  

By fusing ecological sensors (DO, conductivity, nutrient levels) with environmental models, 

the framework provides insights into ecosystem health trends  and supports adaptive 

management of aquatic habitats. In addition, the integrated  dashboard enables: 
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• Automated reporting for SDG 6 indicators via standardized KPIs. 

• Visualization of spatial and temporal trends in water quality and consumption. 

• Decision support for local governments and utilities in prioritizing interventions and 

investments. By embedding these indicators into its architecture, the proposed framework not 

only enhances operational efficiency but also ensures measurable contributions toward 

achieving SDG 6 targets and associated sustainability outcomes. 

   4.6  Advantages 

The proposed Digital Twin (DT) framework offers several key advantages over 

conventional Supervisory Control and Data Acquisition (SCADA) and IoT-only water 

management systems, by combining real-time sensing, hybrid modeling, and AI-driven 

control. The major benefits include: 

• Real-time Predictive Simulation: The DT continuously mirrors the state of the physical 

water system, simulating hydraulic and treatment processes in real time. This enables 

proactive decision-making and early detection of deviations before they impact water quality 

or supply reliability. 

• Autonomous Optimization: Integration of Model Predictive Control (MPC) and 

Reinforcement Learning (RL) allows the system to self-adjust operational parameters such as 

chemical dosing, pump scheduling, and energy usage—achieving optimal performance with 

minimal human intervention. 

• Enhanced Reliability via Data Fusion: Multi-source data fusion combines IoT sensor 

readings, laboratory measurements, and historical datasets to improve data completeness and 

accuracy. This robust data backbone supports machine learning models that detect sensor 

drift, anomalies, and outliers in real time. 

• Scalability and Interoperability: The modular architecture is designed to integrate 

seamlessly with existing SCADA, IoT, and cloud platforms, ensuring scalability across 

multiple treatment plants, distribution zones, and geographic regions. 

• Continuous Learning and Adaptation: AI-based components iteratively improve 

predictive accuracy and control efficiency through continuous feedback, supporting adaptive 

management under varying demand, seasonal, and environmental conditions. 

• Operational Efficiency and Cost Reduction: By optimizing energy use, chemical 

consumption, and maintenance scheduling, the framework contributes to significant 

operational savings while maintaining regulatory compliance and service reliability. 

• Enhanced Transparency and Decision Support: Real time dashboards provide operators 

and policymakers with actionable insights, scenario analyses, and SDG aligned performance 

metrics, improving accountability and evidence-based governance. 

• Alignment with SDG 6 Targets: The DT supports sustainable and equitable water 

management by directly addressing SDG 6 indicators such as safe drinking water access 

(6.1.1), ambient water quality (6.3.2), resource efficiency (6.4.1), and integrated resource 

management (6.5.1). This modular, intelligent DT framework lays the foundation for the next 

generation of smart, self-optimizing water infrastructure, capable of continuous improvement 

through feedback, learning, and sustainable resource management. 
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      5 Implementation and Evaluation 

The proposed Digital Twin (DT) Framework has been implemented as a modular 

prototype integrating IoT-based data acquisition, cloud-based analytics, and AI-driven 

control. This section presents the implementation architecture, technologies used, 

datasets, and evaluation methodology adopted to assess the performance of the framework. 

5.1 System Setup 

The experimental setup (Fig.3) was developed for a pilot-scale water treatment system 

consisting of coagulation, sedimentation, filtration, and disinfection stages. Each stage was 

instrumented with IoT sensors for multi -parameter monitoring, including: 

• pH, turbidity, and TDS sensors (analog probes with 4–20 mA outputs), 

• Dissolved Oxygen (DO) and temperature sensors for process and environmental 

conditions, 

• Flowrate, pressure, and chlorine residual sensors for distribution monitoring. 

Data are collected using an ESP32 based edge node, transmitted via MQTT over 

Wi-Fi to a cloud platform (AWS IoT Core). The cloud layer hosts the Digital Twin 

simulation environment, developed using: The proposed system integrates multiple 

tools and platforms to ensure comprehensive modeling, prediction

and monitoring capabilities. Simulink is employed for process simulation and Model 

Predictive Control (MPC) to optimize operational parameters and system stability. Python, 

utilizing libraries such as Tensor Flow and Scikit-Learn, is used to develop machine 

learning models for anomaly detection and predictive analytics. The EPANETAPI 

supports hydraulic and water quality modeling, enabling accurate simulation of flow 

dynamics and contaminant propagation within the network. Finally, a Grafana dashboard 

provides real-time visualization of sensor data, model outputs, and Sustain- able 

Development Goal (SDG) indicators, ensuring transparent performance tracking and 

informed decision-making. 
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Figure3: Implementation Architecture of the Digital Twin Prototype 

 

             5.2 Dataset and Model Training 

The DT was trained and validated using: 

• Historical plant data: 12 months of archived sensor readings from a municipal treatment 

facility. 

• Laboratory data: Weekly lab test results (chemical oxygen demand, BOD, residual chlorine). 

• Simulated data: EPANET-generated hydraulic and quality data under variable demand 

conditions. A hybrid modeling approach was used: 

• Physics-based submodels capture chemical and hydraulic dynamics. 

• Machine Learning submodels (LSTM and Random Forest) predict parameters such as 

turbidity and chlorine residuals based on multivariate sensor inputs. 

5.3 Evaluation Methodology 

The DT framework was evaluated on the following performance dimensions: 

1. Prediction Accuracy: Comparison of predicted water quality parameters with ground 

truth lab measurements using metrics: 

• Mean Absolute Error (MAE) 

• Root Mean Square Error (RMSE) 

• Coefficient of Determination (R2) 

2) Autonomous Control Performance: Effectiveness of MPC and RL in maintaining 

desired set points under varying inflow conditions. Evaluation metrics include: 

• Settling time, 

• Overshoot (%), 

• Control energy consumption. 

 

3) Operational Efficiency: Reduction in chemical usage and energy consumption compared 

to baseline SCADA control. 

4) System Reliability: Data availability and uptime, accuracy of anomaly detection, and 

latency between sensing and control. 

5) SDG 6 Compliance Metrics: Improvements in water safety (6.1.1), ambient quality 

(6.3.2), and resource efficiency (6.4.1). 

5.4 Experimental Results 

Table 2 summarizes the comparative performance between the conventional baseline control 

system (SCADA-based) and the proposed Digital Twin (DT) Framework evaluated on the 

pilot-scale test bed. The evaluation focused on prediction accuracy, resource efficiency, 



 
 
International Journal of Applied Mathematics  

Volume 38 No. 7s, 2025  
ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)  
  

Received: August 10, 2025  577 

responsiveness, and SDG 6 compliance. 

 

 

 

TABLE 2 PERFORMANCE EVALUATION RESULTS OF THE PROPOSED DT 

FRAMEWORK 

 

Metric Baseline Proposed DT 

Turbidity Prediction RMSE (NTU) 0.85   0.22 

Chlorine Residual R2  0.76  0.93 

Chemical Usage (mg/L)  100%   88% (-12%) 

Energy Consumption 100%  90% (-10%) 

Control Latency (s)  5.6  2.1 

Anomaly Detection Accuracy 78% 95% 

SDG 6.1.1 Compliance Rate 90%   98% 

 

The results clearly demonstrate the superior performance of the DT-enabled control system 

across multiple key indicators: 

• The hybrid predictive models achieved high accuracy for turbidity and chlorine residual 

forecasts, with a 74%reduction in RMSE compared to the baseline. 

• The autonomous optimization layer reduced chemical dosing by 12% and energy usage by 

10%, demonstrating improved operational efficiency and sustainability. 

• The response latency for control decisions was reduced by more than 60%, enabling faster 

corrective actions under variable conditions. 

• The anomaly detection module using ML-based fusion achieved a 95% detection accuracy, 

enhancing fault tolerance and early warning capability. 

• The overall SDG 6.1.1 compliance rate increased from 90% to 98%, indicating more 

consistent delivery of safely managed drinking water. 

5.5 Discussion 
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The experimental findings confirm that the proposed Digital Twin Framework delivers 

significant advantages over conventional static control systems. By continuously 

synchronizing with the physical plant and leveraging both physics-based and machine 

learning submodels, the DT enables: 

• Adaptive operation: Real-time updates of process parameters and predictive state estimation 

improve resilience to fluctuating inflows, temperature, and load variations. 

• Closed-loop intelligence: The Model Predictive Controller dynamically adjusts chemical 

dosing and pump operations to maintain optimal set points with minimal overshoot and delay. 

• Resource sustainability: Reduced energy and chemical consumption aligns with SDG 6.4.1 

on water-use efficiency, while improved quality compliance supports SDG 6.1.1 and 6.3.2. 

• Operational transparency: The DT dashboard provides a holistic view of water quality trends, 

control performance, and SDG metrics, aiding data-driven governance. The results also 

reveal that hybrid physics–ML integration significantly improves predictive fidelity 

compared to standalone models. Moreover, the reduced latency in decision execution 

highlights the feasibility of deploying such DT-based control in real-time industrial settings. 

Future work will focus on: 

• Extending the DT across multiple treatment facilities and distribution networks for cross-site 

synchronization. 

• Incorporating multi-objective reinforcement learning for trade-off optimization among water 

quality, cost, and energy usage. 

• Enhancing interoperability with national SDG 6 reporting platforms and open data 

ecosystems. Overall, the findings validate the DT framework as aviable and scalable 

approach for achieving intelligent, autonomous, and sustainable water management systems. 

 

6. CONCLUSION 

This paper presented a comprehensive Digital Twin (DT) framework that integrates IoT-

based sensing, hybrid physics–machine learning modeling, and AI-driven autonomous 

control to enable intelligent and sustainable water treatment and distribution operations. The 

proposed system creates a continuously synchronized digital replica of the physical plant, 

capable of real-time simulation, predictive analytics, and closed-loop optimization. 

Experimental evaluation on a pilot-scale setup demonstrated substantial improvements over 

conventional SCADA-based systems, including: 

• 74% reduction in prediction error for key quality parameters (turbidity, chlorine residuals), 

• 12% decrease in chemical usage and 10% lower energy consumption, 

• 95% accuracy in anomaly detection and fault identification, and  

• enhanced compliance with SDG 6.1.1 and 6.3.2 targets for safe and clean water. 

The DT architecture facilitates continuous learning and adaptive control, ensuring operational 

resilience and efficiency under dynamic conditions. By aligning with Sustainable 
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Development Goal 6 (Clean Water and Sanitation), the framework contributes to measurable 

progress in access, quality, efficiency, and governance of water resources.  

Future work will focus on: 

• Large-scale deployment across multiple treatment facilities and urban distribution networks, 

• Integration with cloud-based platforms and edge–fog computing for scalability, 

• Implementation of multi-objective reinforcement learning for trade-off optimization between 

quality, cost, and energy, 

• and interoperability with national SDG reporting frameworks for automated sustainability 

tracking. Overall, the proposed DT framework establishes a foundation for the next 

generation of autonomous, data-driven, and sustainable water management systems, bridging 

the gap between physical operations and digital intelligence. 
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