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Abstract

Water scarcity, contamination, and rising operational demands require modern utilities to
adopt intelligent and sustainable water management strategies. Conventional Supervisory
Control and Data Acquisition (SCADA) systems offer real-time monitoring but lack
predictive analytics and autonomous decision-making. To overcome these limitations, this
study proposes a comprehensive Digital Twin (DT) framework that integrates Internet of
Things (IoT)-based sensing, hybrid physics—machine learning (ML) modeling, and Al-driven
control for real-time simulation, predictive optimization, and closed-loop water treatment
management. The DT continuously synchronizes with the physical infrastructure, fusing
multi-source sensor and laboratory data to model key parameters such as turbidity, pH, and
residual chlorine. An Al-based control layer employing Model Predictive Control (MPC) and
Reinforcement Learning (RL) autonomously optimizes chemical dosing and energy usage.
The framework is validated on a pilot-scale water treatment setup, demonstrating a 74%
reduction in RMSE for turbidity prediction, 12% decrease in chemical consumption, and 10%
reduction in energy usage, while improving anomaly detection accuracy to 95%. Moreover,
the system enhances compliance with SDG 6.1.1 and 6.3.2 indicators by ensuring consistent
water quality and operational efficiency. The proposed DT establishesafoundationfornext-
generationsmartwatersystemscapable of self-learning, adaptive control, and sustainable
performance aligned with global water management goals.

Key Terms—Digital Twin, Artificial Intelligence, Machine Learning, IoT, Water Quality
Monitoring, Autonomous Control, SDG 6.

1. Introduction

Water scarcity, contamination, and inefficient resource utilization represent critical
challenges to modern water utilities and sustainable urban development [1]. According to the
United Nations, over two billion people lack access to safely managed drinking water, while
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rapid industrialization and climate change exacerbate stress on fresh water resources.
Conventional Supervisory Control and Data Acquisition (SCADA) systems deployed in
water treatment and distribution networks provide real-time monitoring but are largely
reactive, lacking predictive capabilities and autonomous optimization. As a result, they
struggle to adapt to dynamic conditions such as fluctuating demand, variable source quality,
and equipment degradation.

The convergence of Internet of Things (IoT), Artificial Intelligence(Al), and Digital Twin
(DT) technologiesoffers transformative potential to address these limitations[2], [3]. [oT-
based sensors enable high-frequency, distributed data acquisition across treatment processes
and distribution networks. Al and machine learning (ML) techniques can process these large,
heterogeneous datasets to forecast quality parameters, detect anomalies, and recommend
control actions. A Digital Twin provides a continuously synchronized virtual representation
of the physical system, integrating physics- based simulations with Al-driven analytics to
enable proactive management and autonomous decision-making.

Recent studies have explored IoT-enabled water monitoring systems [1], [4], Al-based
water quality prediction [2], [5], and smart water distribution frameworks [6]. However, most
implementations remain limited to monitoring or analytics, lacking full integration with
hybrid models and real-time control. There is a pressing need for comprehensive DT
architectures that unify data fusion, hybrid modeling, and autonomous control to achieve
intelligent, self-optimizing water systems aligned with Sustainable Development Goal (SDG)
6: Clean Water and Sanitation.

To bridge this gap, this paper proposes a novel Digital Twin Framework for Intelligent
Water Treatment, Quality Monitoring, and Autonomous Control. The framework combines
IoT-based sensing, hybrid physics—ML modeling, and Al-driven control to enable real-time
simulation, predictive optimization, and closed-loop feedback. The contributions of this work
are summarized as follows:

2. Research Objectives
Develop a DT integrating IoT sensor data, laboratory testing, and Al analytics.
Model hybrid physics—ML processes for accurate real- time prediction.
Implement MPC and RL-based autonomous control for optimized operations.
Evaluate performance under SDG 6 indicators for water quality and efficiency.
3. Literature Review

The increasing integration of Internet of Things (IoT), Machine Learning (ML), and Artificial
Intelligence (AI) technologies has transformed traditional water management systems into
intelligent, adaptive, and data-driven ecosystems. These technologies have facilitated the
transition from periodic monitoring to continuous, real-time analysis and predictive control.
However, existing studies still exhibit limitations in achieving autonomous decision-making,
hybrid data fusion, and full Digital Twin (DT) implementation for closed-loop control and
optimization.
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3.1 IoT-Based Smart Water Monitoring and Distribution

Early developments in IoT-enabled water management primarily focused on monitoring and
data acquisition. Maseeh et al. [1] reviewed IoT and ICT-based smart water management
systems that enabled real-time sensing and control but lacked Al-driven analytics. Gonc,
alves et al. [4] proposed an IoT framework for smart water supply management emphasizing
wireless data acquisition, though optimization and predictive functionalities were absent.
Similar systems by Mukta et al. [7] and Pasika et al. [8] utilized cost-effective IoT modules
(Arduino, Raspberry Pi) for water quality monitoring (pH, turbidity, TDS) but did not support
adaptive or autonomous control mechanisms. Advancements in communication protocols
such as MQTT and LoRaWAN have been explored by Gaikwad [9] to improve scalability
and energy efficiency. However, these studies largely remain reactive, providing descriptive
data rather than prescriptive, Al-based operational decisions.

3.2 Machine Learning for Water Quality Prediction

The integration of ML models has significantly enhanced water quality prediction and
anomaly detection. Ismail et al. [2] and Hasan et al. [10] presented comprehensive reviews of
ML-based techniques (Random Forest, SVM, ANN) for predicting water quality indices
(WQI). Al-Khafaji et al. [5] performed a systematic review highlighting AI’s potential for
multi-parameter water quality prediction and classification. Krishnan et al. [11] and Ngwenya
et al. [12] applied ML for resource management and SDG 6 indicator assessment but noted
challenges in generalization and real-time adaptability. El-Shafeiy et al. [13] proposed a
multivariate deep learning framework for sensor anomaly detection, improving reliability yet
lacking integration with control systems. Nowshin et al. [14] introduced physics-informed
data denoising to improve IoT data accuracy, an essential step toward trustworthy DTs.
Despite improved prediction accuracy, most ML-based systems operate in isolation and are
not coupled with hydraulic models or process simulators—Ilimiting their potential in full scale
DT environments.

3.3 Smart Water Systems and Digital Twin Concept

The concept of Digital Twin (DT) has gained traction as a dynamic, cyber-physical
representation enabling simulation, optimization, and autonomous control. Slany et al. [3]
introduced the Smart Water-IoT model integrating Al-driven analytics for efficient water
management, identifying DTs as a key enabler for real-time optimization. Quintana et al. [6]
performed a systematic review on smart water systems, emphasizing the absence of
standardized DT frameworks integrating loT data, ML predictions, and control feedback.
Okoli and Kabaso [15] discussed IoT-based smart city water applications but focused
primarily on infrastructure and monitoring. Palermo et al. [16] highlighted the role of sensors
and IoT in resource management yet lacked a simulation-driven DT approach. Bandara et al.
[17] combined IoT sensors with location-based services (LBS) for spatiotemporal monitoring
but did not employ predictive control. Similarly, reviews by Essamlali et al. [2] and Hasan et
al. [10] identified the DT paradigm as an emerging research direction for autonomous water
management. Recent innovations point toward DT implementations leveraging Al. Vlastimil
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et al. [3] and Al-Khafaji et al. [5] highlighted AI’s capability to model complex nonlinearities
in treatment processes. However, hybrid physics-ML DTs capable of real-time
synchronization with physical assets remain rare.

3.4 IoT—AI Fusion for Smart Treatment and Distribution

IoT-based systems with Al-enabled analytics have demonstrated promise for adaptive water
treatment. Forhad et al. [18] developed a real-time IoT-based water treatment monitoring
system using cloud computing, while Bogdan et al. [19] designed low-cost IoT platforms for
rural quality monitoring. Rosa et al. [20] proposed an loT-based drinking water quality
monitoring framework with cloud connectivity, but autonomous optimization was absent.

Zubaidah et al. [21] applied IoT for ecological monitoring in tropical rivers, and Liu et al.
[22] introduced a self-powered pH sensing approach. These demonstrate hardware
advancements but lack unified AI-DT integration.

3.5 Alignment with SDG 6 and Research Gaps

The literature emphasizes the critical role of digital transformation in achieving Sustainable
Development Goal 6(Clean Water and Sanitation). Studies such as Ngwenya et al. [12] and
Krishnan et al. [11] link IoT—AI systems to SDG indicators 6.3 (ambient water quality) and
6.4 (efficiency). Nevertheless, comprehensive DT frameworks addressing data fusion,
predictive modeling, and autonomous control across treatment and distribution stages are
sparse. Table 1 summarizes the representative literature, their focus areas, and identified
research gaps.

TABLE 1 EXTENDED SUMMARY OF RELATED WORKS IN SMART WATER
MANAGEMENT

Study Focus Area Identified Gap

Limited intelligence; no predictive

Maseeh et al. (2021) [1] IoT and ICT-based smart | .. ¢ 0 oe
water systems

control

Gonce, alves et al. (2020) | [oT-based smart water

No integration with Al or DTs
[4] supply

ML for water quality | Lack of hybrid physics-ML

Ismail et al. (2024) [2] _ . .
monitoring integration

Al-Khafaji et al. (2025)
[5]

Al-based WQI modeling | No real-time DT feedback

Slany et al. (2025) [3] Al and IoT for efficient | Identifies DT need; lacks practical
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water management implementation
Al-driven smart water ' '
Krishnan et al. (2022) [11] | resource No clf)sed-loop or simulation
Integration
management

Ngwenya et al. (2025)
[12]

ML and IoT for ambient
water

Monitoring only; lacks adaptive
control

quality
El-Shafeiy et al. (2023) Deep learning for | No  connection to  control
[13] anomaly detection mechanisms
IoT-based real-time water o
Forhad et al. (2024) [18] | treatment Absent autonomous  decision-
making
monitoring

Pasika & Gandla (2020)
[8]

Cost-effective IoT system

Reactive monitoring; no Al or DT

Bandara et al. (2025) [17]

IoT + LBS for monitoring

Lacks self-optimizing DT layer

Bogdan et al. (2023) [19]

IoT system for rural areas

Missing Al-based analytics

Quintana et al. (2025) [6]

Systematic review on
smart systems

Calls for unified DT framework

Okoli & Kabaso (2024) Smart water city IoT | Focused on monitoring; lacks Al-
[15] technologies based optimization
hnologi
Palermo et al. (2022) [16] Smart. technologies No DT implementation
overview

Hasan et al. (2024) [10]

Review on ML + IoT for
WQM

No real-world DT integration

Nowshin et al. (2025) [14]

Physics-informed ML

denoising

Improves data reliability; lacks

control layer
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Liu et al. (2025) [22] Self-powered sensing | Hardware focus; no Al-driven DT
' hardware integration

3.6 Synthesis
From the above analysis, three primary research gaps are evident:

Lack of integrated Digital Twin architectures combining IoT sensing, physics-based models,
and Al analytics for real-time synchronization and decision-making.

Absence of autonomous control mechanisms such as MPC and reinforcement learning to
enable self optimization of treatment and distribution.

Limited SDG 6 alignment with existing systems, particularly in quantifying water-use
efficiency, quality compliance, and equitable distribution. To bridge these gaps, this study
proposes a novel DT framework that unifies IoT sensing, hybrid modeling, and Al-driven
control for intelligent water treatment, quality monitoring, and autonomous decision-making.
Proposed Framework

To address the identified research gaps, this study proposes a comprehensive Digital Twin
(DT) Framework for intelligent water treatment, quality monitoring, and autonomous control.
The proposed architecture unifies IoT sensing, hybrid modeling, and Al-based control to
achieve real-time simulation, predictive optimization, and SDG 6-aligned performance. The
system design is modular, scalable, and adaptable to both urban and rural water
infrastructures.

4.1 System Architecture Overview

The DT framework comprises three interconnected layers— Physical, Digital, and Control—
as illustrated in Fig. 1.

Physical Layer: Represents the real-world water infrastructure including raw water intakes,
treatment units (coagulation, sedimentation, filtration, disinfection), distribution networks,
and end-use points. It is instrumented with IoT-based sensors measuring key water quality
parameters such as pH, turbidity, Total Dissolved Solids (TDS), Dissolved Oxygen (DO),
temperature, and residual chlorine.

Digital Layer: Serves as a high-fidelity virtual replica that continuously mirrors the physical
layer. It integrates real-time data streams with simulation models—combining physics-based
process equations and ML-based soft sensors to predict unmeasured variables and system
responses.

Control Layer: Employs advanced Al algorithms, including Model Predictive Control (MPC)
and Reinforcement Learning (RL), to optimize operational parameters such as chemical
dosing, flow rates, and pump scheduling. Control actions are sent back to actuators in the
physical system, creating a closed feedback loop.
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Fig. 1. Proposed Digital Twin Framework Architecture
4.2 Functional Modules
The framework integrates the following key modules:

Sensing and Data Acquisition: Deployed IoT sensors (connected via MQTT/LoRaWAN)
capture continuous multi-parameter data streams. Edge devices preprocess data (filtering,
calibration) before transmitting to the cloud.

Data Fusion Engine: A probabilistic data fusion layer combines sensor, laboratory, and
historical data using Bayesian and ML-based techniques, improving reliability and
compensating for missing values.

Hybrid Modeling Unit: Incorporates:
Physics-based models for hydraulic flow, chemical kinetics, and chlorine decay.

Machine Learning models (e.g., LSTM, Random Forest, Physics-Informed Neural Networks)
for real time prediction of water quality indicators and process optimization.

Simulation and Prediction: The DT continuously simulates system states and forecasts
future conditions (e.g., turbidity trends, chlorine residual levels) based on dynamic inputs.

. Autonomous Control: An MPC layer optimizes control actions (chemical dosage, pump
speed) over a prediction horizon, constrained by regulatory limits. A reinforcement learning
agent enhances adaptability by learning optimal policies from operational feedback.

. Visualization and Decision Support: A cloud-based dashboard provides operators with real-
time status, alerts, predictions, and SDG 6 indicators.
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4.3 Data Flow and Synchronization

Fig. 2 shows the data flow between layers. Sensor data are transmitted to the digital layer for
analysis; predictive results feed into the control module, which generates optimal set points
and sends commands to actuators in the physical system. Bidirectional synchronization
ensures that DT states remain consistent with physical conditions.

Fig. 2. Closed-Loop Data Flow in the Digital Twin Framework

4.4 Mathematical Formulation

The system dynamics can be expressed as:

xt+1 = f(xt, ut, dt) + €t (1)
Where, xt represents state variables (e.g., turbidity, chlorine),
ut denotes control inputs (e.g., dosing rate),
dt external disturbances (e.g., demand, inflow), and

€t model uncertainty.

The MPC optimization problem is formulated as:

. N
min Zk:o Xt+k — Xref||Q%+|lurskl|R?
ut:t+ N

2)

St Xptpe41™ (410 U i)
3)
Received: August 10, 2025 572



International Journal of Applied Mathematics

Volume 38 No. 7s, 2025
ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

uminf ut+k§ Umax> Xmin =< xt+k§ Xmax (4)

Where, Xqr are desired quality targets and Q,R weighting matrices.
4.5 Integration with SDG 6 Indicators

The proposed Digital Twin Framework aligns directly with the targets of the United Nations
Sustainable Development Goal 6 (SDG 6): Clean Water and Sanitation, by enabling real-time
monitoring, predictive control, and data driven decision support. Through IoT-enabled
sensing, Al driven analytics, and closed-loop optimization, the framework ensures
transparency, accountability, and sustainability across the water lifecycle.

Specifically, the system supports monitoring and reporting of the following SDG 6
indicators:

SDG 6.1.1 — Access to Safely Managed Drinking Water:

Continuous monitoring of water quality parameters (pH, turbidity, chlorine residuals) and
predictive analytics ensure compliance with WHO and local drinking water  standards.
The Digital Twin provides real-time status dashboards showing the proportion of water
supply zones meeting safety thresholds, thereby aiding utilities in tracking population
coverage with safe drinking water services.

SDG 6.3.2 — Proportion of Water Bodies with Good Ambient Quality:

The DT integrates upstream and downstream water quality sensors with forecasting models to
assess ambient water quality in rivers, reservoirs, and effluents. It calculates composite
indices (e.g., Water Quality Index, WQI) and supports early warning of pollution events,
enabling regulatory reporting on the percentage of water bodies in good ecological condition.

SDG 6.4.1 — Change in Water Use Efficiency Over Time:

By implementing Model Predictive Control (MPC) and Reinforcement Learning (RL), the
system optimizes pumping schedules, chemical dosing, and energy consumption. This leads
to quantifiable improvements in water use efficiency (liters per unit energy or cost)
,supporting benchmarking against SDG 6.4.1 indicators and reducing the overall carbon
footprint of operations.

SDG 6.5.1 — Implementation of Integrated Water Resources Management (IWRM):

The DT serves as a digital platform for integrating multisource data (surface water,
groundwater, reuse systems), supporting participatory management. Scenario simulations
and predictive analytics enable policymakers to test strategies for equitable allocation,
resilience planning, and long-term sustainability in line with IWRM principles.

SDG 6.6.1 — Change in the Extent of Water-Related Ecosystems:

By fusing ecological sensors (DO, conductivity, nutrient levels) with environmental models,
the framework provides insights into ecosystem health trends and supports adaptive
management of aquatic habitats. In addition, the integrated dashboard enables:
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Automated reporting for SDG 6 indicators via standardized KPIs.

Visualization of spatial and temporal trends in water quality and consumption.

Decision support for local governments and utilities in prioritizing interventions and
investments. By embedding these indicators into its architecture, the proposed framework not
only enhances operational efficiency but also ensures measurable contributions toward
achieving SDG 6 targets and associated sustainability outcomes.

4.6 Advantages

The proposed Digital Twin (DT) framework offers several key advantages over
conventional Supervisory Control and Data Acquisition (SCADA) and IoT-only water
management systems, by combining real-time sensing, hybrid modeling, and Al-driven
control. The major benefits include:

*Real-time Predictive Simulation: The DT continuously mirrors the state of the physical
water system, simulating hydraulic and treatment processes in real time. This enables
proactive decision-making and early detection of deviations before they impact water quality
or supply reliability.

*Autonomous Optimization: Integration of Model Predictive Control (MPC) and
Reinforcement Learning (RL) allows the system to self-adjust operational parameters such as
chemical dosing, pump scheduling, and energy usage—achieving optimal performance with
minimal human intervention.

*Enhanced Reliability via Data Fusion: Multi-source data fusion combines IoT sensor
readings, laboratory measurements, and historical datasets to improve data completeness and
accuracy. This robust data backbone supports machine learning models that detect sensor
drift, anomalies, and outliers in real time.

*Scalability and Interoperability: The modular architecture is designed to integrate
seamlessly with existing SCADA, 10T, and cloud platforms, ensuring scalability across
multiple treatment plants, distribution zones, and geographic regions.

*Continuous Learning and Adaptation: Al-based components iteratively improve
predictive accuracy and control efficiency through continuous feedback, supporting adaptive
management under varying demand, seasonal, and environmental conditions.

*Operational Efficiency and Cost Reduction: By optimizing energy use, chemical
consumption, and maintenance scheduling, the framework contributes to significant
operational savings while maintaining regulatory compliance and service reliability.

*Enhanced Transparency and Decision Support: Real time dashboards provide operators
and policymakers with actionable insights, scenario analyses, and SDG aligned performance
metrics, improving accountability and evidence-based governance.

*Alignment with SDG 6 Targets: The DT supports sustainable and equitable water
management by directly addressing SDG 6 indicators such as safe drinking water access
(6.1.1), ambient water quality (6.3.2), resource efficiency (6.4.1), and integrated resource
management (6.5.1). This modular, intelligent DT framework lays the foundation for the next
generation of smart, self-optimizing water infrastructure, capable of continuous improvement
through feedback, learning, and sustainable resource management.
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5 Implementation and Evaluation

The proposed Digital Twin (DT) Framework has been implemented as a modular
prototype integrating loT-based data acquisition, cloud-based analytics, and Al-driven
control. This section presents the implementation architecture, technologies used,
datasets, and evaluation methodology adopted to assess the performance of the framework.

System Setup

The experimental setup (Fig.3) was developed for a pilot-scale water treatment system
consisting of coagulation, sedimentation, filtration, and disinfection stages. Each stage was
instrumented with [oT sensors for multi -parameter monitoring, including:

pH, turbidity, and TDS sensors (analog probes with 4-20 mA outputs),

Dissolved Oxygen (DO) and temperature sensors for process and environmental
conditions,

Flowrate, pressure, and chlorine residual sensors for distribution monitoring.

Data are collected using an ESP32 based edge node, transmitted via MQTT over
Wi-Fi to a cloud platform (AWS IoT Core). The cloud layer hosts the Digital Twin
simulation environment, developed using: The proposed system integrates multiple
tools and platforms to ensure comprehensive modeling, prediction

and monitoring capabilities. Simulink is employed for process simulation and Model
Predictive Control (MPC) to optimize operational parameters and system stability. Python,
utilizing libraries such as Tensor Flow and Scikit-Learn, is used to develop machine
learning models for anomaly detection and predictive analytics. The EPANETAPI
supports hydraulic and water quality modeling, enabling accurate simulation of flow
dynamics and contaminant propagation within the network. Finally, a Grafana dashboard
provides real-time visualization of sensor data, model outputs, and Sustain- able
Development Goal (SDG) indicators, ensuring transparent performance tracking and
informed decision-making.
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Figure3: Implementation Architecture of the Digital Twin Prototype

5.2 Dataset and Model Training
The DT was trained and validated using:

*Historical plant data: 12 months of archived sensor readings from a municipal treatment
facility.

*Laboratory data: Weekly lab test results (chemical oxygen demand, BOD, residual chlorine).

eSimulated data: EPANET-generated hydraulic and quality data under variable demand
conditions. A hybrid modeling approach was used:

*Physics-based submodels capture chemical and hydraulic dynamics.

*Machine Learning submodels (LSTM and Random Forest) predict parameters such as
turbidity and chlorine residuals based on multivariate sensor inputs.

5.3 Evaluation Methodology
The DT framework was evaluated on the following performance dimensions:

1. Prediction Accuracy: Comparison of predicted water quality parameters with ground
truth lab measurements using metrics:

. Mean Absolute Error (MAE)
. Root Mean Square Error (RMSE)
. Coefficient of Determination (R2)

2) Autonomous Control Performance: Effectiveness of MPC and RL in maintaining
desired set points under varying inflow conditions. Evaluation metrics include:

. Settling time,
. Overshoot (%),
. Control energy consumption.

3) Operational Efficiency: Reduction in chemical usage and energy consumption compared
to baseline SCADA control.

4) System Reliability: Data availability and uptime, accuracy of anomaly detection, and
latency between sensing and control.

5) SDG 6 Compliance Metrics: Improvements in water safety (6.1.1), ambient quality
(6.3.2), and resource efficiency (6.4.1).

5.4 Experimental Results

Table 2 summarizes the comparative performance between the conventional baseline control
system (SCADA-based) and the proposed Digital Twin (DT) Framework evaluated on the
pilot-scale test bed. The evaluation focused on prediction accuracy, resource efficiency,
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responsiveness, and SDG 6 compliance.

TABLE 2 PERFORMANCE EVALUATION RESULTS OF THE PROPOSED DT
FRAMEWORK

Metric Baseline | Proposed DT
Turbidity Prediction RMSE (NTU) 0.85 0.22
Chlorine Residual R2 0.76 0.93
Chemical Usage (mg/L) 100% 88% (-12%)
Energy Consumption 100% 90% (-10%)
Control Latency (s) 5.6 2.1

Anomaly Detection Accuracy 78% 95%

SDG 6.1.1 Compliance Rate 90% 98%

The results clearly demonstrate the superior performance of the DT-enabled control system
across multiple key indicators:

The hybrid predictive models achieved high accuracy for turbidity and chlorine residual
forecasts, with a 74%reduction in RMSE compared to the baseline.

The autonomous optimization layer reduced chemical dosing by 12% and energy usage by
10%, demonstrating improved operational efficiency and sustainability.

The response latency for control decisions was reduced by more than 60%, enabling faster
corrective actions under variable conditions.

The anomaly detection module using ML-based fusion achieved a 95% detection accuracy,
enhancing fault tolerance and early warning capability.

The overall SDG 6.1.1 compliance rate increased from 90% to 98%, indicating more
consistent delivery of safely managed drinking water.

5.5 Discussion

Received: August 10, 2025

577



International Journal of Applied Mathematics

Volume 38 No. 7s, 2025
ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

The experimental findings confirm that the proposed Digital Twin Framework delivers
significant advantages over conventional static control systems. By continuously
synchronizing with the physical plant and leveraging both physics-based and machine
learning submodels, the DT enables:

Adaptive operation: Real-time updates of process parameters and predictive state estimation
improve resilience to fluctuating inflows, temperature, and load variations.

Closed-loop intelligence: The Model Predictive Controller dynamically adjusts chemical
dosing and pump operations to maintain optimal set points with minimal overshoot and delay.
Resource sustainability: Reduced energy and chemical consumption aligns with SDG 6.4.1
on water-use efficiency, while improved quality compliance supports SDG 6.1.1 and 6.3.2.
Operational transparency: The DT dashboard provides a holistic view of water quality trends,
control performance, and SDG metrics, aiding data-driven governance. The results also
reveal that hybrid physics—ML integration significantly improves predictive fidelity
compared to standalone models. Moreover, the reduced latency in decision execution
highlights the feasibility of deploying such DT-based control in real-time industrial settings.

Future work will focus on:

Extending the DT across multiple treatment facilities and distribution networks for cross-site
synchronization.

Incorporating multi-objective reinforcement learning for trade-off optimization among water
quality, cost, and energy usage.

Enhancing interoperability with national SDG 6 reporting platforms and open data
ecosystems. Overall, the findings validate the DT framework as aviable and scalable
approach for achieving intelligent, autonomous, and sustainable water management systems.

6. CONCLUSION

This paper presented a comprehensive Digital Twin (DT) framework that integrates loT-
based sensing, hybrid physics—machine learning modeling, and Al-driven autonomous
control to enable intelligent and sustainable water treatment and distribution operations. The
proposed system creates a continuously synchronized digital replica of the physical plant,
capable of real-time simulation, predictive analytics, and closed-loop optimization.

Experimental evaluation on a pilot-scale setup demonstrated substantial improvements over
conventional SCADA-based systems, including:

74% reduction in prediction error for key quality parameters (turbidity, chlorine residuals),
12% decrease in chemical usage and 10% lower energy consumption,

95% accuracy in anomaly detection and fault identification, and

enhanced compliance with SDG 6.1.1 and 6.3.2 targets for safe and clean water.

The DT architecture facilitates continuous learning and adaptive control, ensuring operational
resilience and efficiency under dynamic conditions. By aligning with Sustainable
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Development Goal 6 (Clean Water and Sanitation), the framework contributes to measurable
progress in access, quality, efficiency, and governance of water resources.

Future work will focus on:

Large-scale deployment across multiple treatment facilities and urban distribution networks,
Integration with cloud-based platforms and edge—fog computing for scalability,
Implementation of multi-objective reinforcement learning for trade-off optimization between
quality, cost, and energy,

and interoperability with national SDG reporting frameworks for automated sustainability
tracking. Overall, the proposed DT framework establishes a foundation for the next
generation of autonomous, data-driven, and sustainable water management systems, bridging
the gap between physical operations and digital intelligence.
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