
International Journal of Applied Mathematics

Volume 38 No. 1s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

64 Received: July 18, 2025

DESIGN AND DEVELOPMENT OF AN ATTACK-RESISTANT

IOT CLOUD CONVERGENCE ALGORITHM USING

ATTRIBUTE-BASED ENCRYPTION

Deepak D. Sapkal, Ritesh.V. Patil, Parikshit.N. Mahalle,

Surendra A. Mahajan, Lalit V. Patil

Research Scholar, Smt. Kashibai Navale College Engineering (SKNCOE),

Pune, Maharashtra, India.

PVG'S College Of Engineering, Technology and Management, Pune,

Maharashtra, India.

Pune District Education Association's College of Engineering, Pune,

Maharashtra, India.

Vishwakarma Institute of Technology, Pune, Maharashtra, India.

PVG'S College Of Engineering, Technology and Management, Pune,

Maharashtra, India.

Smt. Kashibai Navale College Engineering (SKNCOE), Pune, Maharashtra,

India.

ddsapkal@gmail.com, rvpatil3475@yahoo.com, aalborg.pnm@gmail.com,

sa_mahajan@yahoo.com, lvpatil@sinhgad.edu

Abstract

As the number of Internet of Things (IoT) devices grows quickly, it becomes harder to keep

data handling and communication safe in cloud settings. This paper describes how an attack-

proof IoT cloud convergence method was designed and built. It uses Ciphertext-Policy

Attribute-Based Encryption (CP-ABE) to provide strong security and fine-grained, attribute-

based access control. The suggested framework uses CP-ABE based on the Bethencourt-Sahai-

Waters (BSW) method to make key generation, sharing, encryption, and decoding safe and

user-attribute-aligned. This makes sure that only authorised users can access critical data. To

make sure the encryption is strong and works well, the method uses the JPBC library to perform

pairing-based cryptography processes. Using attribute-based registration and login, the user

module makes sure that users are who they say they are and that they have the right permissions.

The system handles files by encrypting them with lightweight AES for privacy, hashing them

with SHA-256 for integrity checks, and letting you securely share and download files with

reporting support. The Third Party Auditor (TPA) tool also makes sure that files are real and

manages user termination to stop people from getting in without permission after a key has

International Journal of Applied Mathematics

Volume 38 No. 1s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

65 Received: July 18, 2025

been compromised or a characteristic has been changed. A performance study shows that the

suggested method works by comparing how much time and memory are used for decrypting

both insourced and outsourced files of different sizes. The results show that the system strikes

a good balance between security and speed. This means that it can be used in real-life IoT-

cloud situations where resources are limited and changing access control is important. The

comparison study shows that attribute-based encryption is better at protecting against different

types of threats while still having a reasonable amount of extra work to do.

Keywords: IoT Security, Attribute-Based Encryption, Ciphertext-Policy ABE, Cloud Data

Protection, Attack-Resistant Algorithm

I. Introduction

The fast growth of Internet of Things (IoT) devices has changed how data is gathered, handled,

and used in many areas, including smart cities, healthcare, home automation, and industrial

automation. IoT devices create huge amounts of private data that needs to be stored and

managed safely. Cloud computing offers storage and computing power that can be scaled up

or down to support these large-scale IoT operations. But when IoT and cloud computing come

together, they create big security and privacy problems. This is mostly because IoT devices are

spread out, users are different, and access needs to change all the time. Making sure that safe

and fine-grained data access control can work in these kinds of settings is still a very important

study problem. Most traditional encryption methods use identity- or role-based access controls,

which aren't flexible enough to work with the complicated and changing attribute-based rules

that are needed in IoT-cloud ecosystems [1]. Because the cloud has multiple tenants and can

be attacked from both inside and outside, it is very important to create security systems that

can handle a wide range of attack methods. Current methods often have trouble finding the

right mix between security, processing speed, and scaling, which is especially hard for IoT

devices that don't have a lot of resources. The study's goal is to solve these problems by creating

an IoT cloud convergence method based on Ciphertext-Policy Attribute-Based Encryption

(CP-ABE) that can't be attacked [2]. CP-ABE lets you control who can see protected data by

linking it to access rules that are based on user traits instead of set names.

The data can only be decrypted by users whose characteristics match the encryption policy.

This makes the system safer and more flexible. The solution uses the CP-ABE method by

Bethencourt, Sahai, and Waters (BSW), which uses pairing-based cryptography to give strong

security guarantees. The suggested framework includes several important parts, such as

attribute-based user registration and login, key creation that is matched with user

characteristics, lightweight AES encryption for effective file protection, and SHA-256 hashing

for verifying file integrity [3[. A special section called Third Party Auditor (TPA) checks the

integrity of the data and lets users be removed, which stops people from getting in without

permission after changing attributes or having their keys stolen. This complete design not only

keeps data safe and secure, but it also lets cloud-connected IoT systems control access in a way

International Journal of Applied Mathematics

Volume 38 No. 1s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

66 Received: July 18, 2025

that is both scalable and dynamic. Cyberattacks on IoT and cloud systems are getting smarter,

which is why an attack-resistant design is so important. Some of these are insider threats,

unauthorised data access, and conspiracy attacks, all of which can put private information at

risk and stop services from working [4]. By combining CP-ABE with efficient cryptographic

operations and system-level tracking, the suggested solution offers strong defences while

keeping the computing load doable, making it ideal for IoT devices that don't have a lot of

resources. To test how well the method works, we look at how much time and memory it uses

for different file sizes in both insource and external decoding situations [5].

II. Related Work

There has been a lot of research done on the security of connecting IoT devices to the cloud

because it is so important to keep private data safe. A lot of people have used traditional

encryption methods to keep their data and communication routes safe, like symmetric key

cryptography and public key infrastructure (PKI). But these methods often can't provide the

fine-grained access control and scaling that are needed for IoT settings with a lot of different

types of devices. Identity-Based Encryption (IBE) was created to help with some of these

problems by connecting encryption keys to users' names. However, it is still not flexible enough

to support access rules that change based on changeable attributes [6]. Attribute-Based

Encryption (ABE), and especially Ciphertext-Policy Attribute-Based Encryption (CP-ABE),

has become a potential way to use cryptography to make cloud computing and Internet of

Things systems more secure and flexible in how users can access them. The CP-ABE method

was first suggested by Bethencourt et al. [7]. It lets data owners set access rules that are

contained in ciphertexts, making sure that only users with the right characteristics can decrypt

the data. Several papers have improved CP-ABE for use in real-world IoT situations by making

key generation and encryption more efficient to work with the limited resources that IoT

devices usually have [8,9]. Additionally, experts have looked into the problem of removal of

users and changing trait changes in ABE-based systems. For example, access control methods

that use proxy re-encryption and sharing systems make it easier to change rules, but they often

come with extra processing costs [10]. To fix this, lightweight encryption methods like AES

and ABE have been mixed in hybrid encryption systems to make them more efficient without

lowering security [11]. To improve faith in cloud settings, Third Party Auditors (TPAs) have

also been looked at as a way to outsource data verification and security checks. TPAs can

check the accuracy of data without seeing the code underneath, which protects privacy [12].

Table 1 summarizes methodologies, features, limitations, and IoT-cloud contributions. Also,

pairing-based encryption tools like JPBC have made it easier to build complicated ABE

methods on limited devices, which makes them useful for use in IoT-cloud systems [13].

International Journal of Applied Mathematics

Volume 38 No. 1s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

67 Received: July 18, 2025

Table 1: Summary of Related Work

Methodology Key Features Limitations Contribution to IoT-

Cloud Security

Ciphertext-Policy

Attribute-Based

Encryption (CP-

ABE)

Fine-grained

access control

using attribute

policies

High computational

cost for large

policies

Foundational CP-ABE

scheme enabling

attribute-based access

control

Attribute-Based

Encryption (ABE)

[14]

Key generation

based on user

attributes

Limited policy

expressiveness

Introduced ABE

concept for flexible

encryption in

distributed systems

CP-ABE with

improved efficiency

Reduced key size

and encryption

overhead

Complex key

management

Enhanced CP-ABE

scalability for practical

use in constrained

devices

Lightweight ABE

for IoT [15]

Optimized

encryption for

resource-limited

IoT devices

Limited support for

dynamic attribute

updates

Adapted ABE for IoT

environments with

efficiency

improvements

User revocation in

CP-ABE [16]

Proxy re-

encryption and

key delegation

Increased

computational

overhead

Addressed dynamic

user revocation in ABE

systems

Hybrid encryption

combining CP-ABE

& AES

Efficient file

encryption with

attribute control

Additional

complexity in key

synchronization

Improved encryption

efficiency by

integrating symmetric

encryption

Third Party Auditor

(TPA) for data

integrity [17]

Outsourced

verification with

privacy

preservation

Trust issues with

third parties

Enabled secure data

auditing without

revealing content

JPBC library-based

implementation [18]

Efficient pairing-

based

cryptography

Limited hardware

acceleration

support

Practical

implementation of

pairing-based ABE

schemes on constrained

devices

Attack-resistant

ABE system [19]

Resistance to

collusion and

attribute forgery

Increased key

generation time

Enhanced security

against advanced attack

vectors in cloud-IoT

systems

International Journal of Applied Mathematics

Volume 38 No. 1s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

68 Received: July 18, 2025

Dynamic attribute

update and

revocation

Real-time policy

updates and

revocation

High

communication

overhead

Improved flexibility for

dynamic user attribute

management

IoT-cloud

convergence security

framework

Integration of

ABE with cloud

data management

Scalability issues

with massive user

base

Provided a framework

for secure IoT-cloud

data operations

Lightweight

encryption &

integrity verification

Combined AES

encryption with

SHA-256 hashing

Limited analysis of

computational

overhead

Balanced security and

performance in IoT-

cloud file operations

III. Methodology

A. Key Generation Module: Attribute Based Key Generation

Ciphertext-Policy Attribute-Based Encryption (CP-ABE) scheme, specifically based on the

Bethencourt-Sahai-Waters (BSW) ABE scheme. This scheme allows for fine-grained access

control over encrypted data, where access policies are defined over attributes, and only users

with attributes satisfying the policy can decrypt the data. The CP-ABE is organized into several

key components:

• Setup: Initializes the public parameters and master secret key.

• Key Generation: Generates private keys for users based on their attributes.

• Delegation: Allows for the delegation of keys to users with a subset of attributes.

• Encryption: Encrypts data under a specific access policy.

• Decryption: Decrypts data if the user's attributes satisfy the access policy.

The implementation relies on Pairing-Based Cryptography (using the JPBC library) to achieve

the cryptographic operations required for CP-ABE.

B. User Module

1. Registration (Attribute based registration)

The suggested IoT cloud convergence method uses attribute-based registration to make the user

registration process more secure and easier to control who can see what. Instead of using

standard identity-based registration alone, this method links user attributes—like jobs, rights,

or organisational memberships—with the registration details. When users register, they give

the system information about themselves, which is then checked and kept safely. These

characteristics are used to make secure keys that are specific to each user's permissions. This

fine-grained attribute binding makes sure that encrypted data can only be accessed by

authorised people whose characteristics match. Attribute-based registration also makes it

easier to handle users in IoT-cloud settings in a way that is dynamic and scalable. Figure 1

International Journal of Applied Mathematics

Volume 38 No. 1s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

69 Received: July 18, 2025

shows secure attribute-based user registration process flow. It does this by allowing flexible

access rules that can change as user jobs and powers do without compromising security.

Figure 1: User Registration

2. Login (Attribute Based Access)

Attribute-based access control is used in the suggested system's login process to make sure that

user authentication is safe and flexible. When a person logs in, they give their passwords along

with the set of traits they were given when they registered. The system checks these

characteristics against access rules that have already been set up and are tied to encrypted data

resources.

Figure 2: User Login

International Journal of Applied Mathematics

Volume 38 No. 1s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

70 Received: July 18, 2025

Access is only given when the user's characteristics meet the policy requirements. Figure 2

depicts attribute-based secure user login authentication process. By enforcing access rights

based on user characteristics, this method improves security and gets rid of the need for basic

identity verification.

3. Key Generation: Setup

a. Cp-Abe Based Key Generation

The suggested system uses the Ciphertext-Policy Attribute-Based Encryption (CP-ABE)

method to make encryption keys that are linked to user characteristics. At first, the system

goes through a setup process that creates the public parameters and a master secret key. These

are important parts of any cryptography actions that follow.

Algorithm

Step-wise algorithm for CP-ABE Based Key Generation

Step 1: Global Setup

𝐿𝑒𝑡:

 − 𝐺₀, 𝐺₁ 𝑏𝑒 𝑏𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑔𝑟𝑜𝑢𝑝𝑠 𝑜𝑓 𝑝𝑟𝑖𝑚𝑒 𝑜𝑟𝑑𝑒𝑟 𝑝

 − 𝑒: 𝐺₀ × 𝐺₀ → 𝐺₁ 𝑏𝑒 𝑎 𝑏𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑚𝑎𝑝

 − 𝑔 ∈ 𝐺₀ 𝑏𝑒 𝑎 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟

𝑆𝑒𝑙𝑒𝑐𝑡 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦:

 − 𝛼, 𝛽 ∈ ℤₚ ∗

𝐶𝑜𝑚𝑝𝑢𝑡𝑒:

 − ℎ = 𝑔𝛽

 − 𝑓 = 𝑔
1
𝛽

 − 𝑒(𝑔, 𝑔)𝛼

𝑃𝑢𝑏𝑙𝑖𝑐 𝐾𝑒𝑦 (𝑃𝐾):

 𝑃𝐾 = (𝐺0, 𝑔, ℎ = 𝑔𝛽 , 𝑓 = 𝑔
1
𝛽 , 𝑒(𝑔, 𝑔)𝛼)

𝑀𝑎𝑠𝑡𝑒𝑟 𝐾𝑒𝑦 (𝑀𝐾):

 𝑀𝐾 = (𝛽, 𝑔𝛼)

𝑆𝑡𝑒𝑝 2: 𝐾𝑒𝑦 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑈𝑠𝑒𝑟 𝑤𝑖𝑡ℎ 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑆𝑒𝑡 𝑆

𝐿𝑒𝑡 𝑆 = {𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑝𝑜𝑠𝑠𝑒𝑠𝑠𝑒𝑑 𝑏𝑦 𝑢𝑠𝑒𝑟 𝑢}

𝐶ℎ𝑜𝑜𝑠𝑒:

 − 𝑟 ∈ ℤₚ (𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑙𝑢𝑒)

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑚𝑎𝑖𝑛 𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑘𝑒𝑦 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡:

 𝐷 = 𝑔
𝛼 + 𝑟

𝛽 = 𝑔𝛼 ⋅ 𝑓𝑟

𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑖 ∈ 𝑆:

 − 𝐶ℎ𝑜𝑜𝑠𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑟ᵢ ∈ ℤₚ

International Journal of Applied Mathematics

Volume 38 No. 1s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

71 Received: July 18, 2025

 − 𝐿𝑒𝑡 𝐻(𝑖) ∈ 𝐺₀ 𝑏𝑒 𝑎 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 − 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 ℎ𝑎𝑠ℎ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝐶𝑜𝑚𝑝𝑢𝑡𝑒:

 − 𝐷ᵢ = 𝑔𝑟 ⋅ 𝐻(𝑖)𝑟ᵢ

 − 𝐷′ᵢ = 𝑔𝑟ᵢ

𝐹𝑖𝑛𝑎𝑙 𝑈𝑠𝑒𝑟 𝑃𝑟𝑖𝑣𝑎𝑡𝑒 𝐾𝑒𝑦:

𝑆𝐾 = (𝐷 = 𝑔
𝛼 + 𝑟

𝛽 , { 𝐷ᵢ = 𝑔𝑟 ⋅ 𝐻(𝑖)𝑟ᵢ, 𝐷′ᵢ = 𝑔𝑟ᵢ}𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖 ∈ 𝑆)

Figure 3: Key Generation Setup Phase

These factors are used to make secret keys for people based on the characteristics that have

been given to them. This allows for fine-grained control of access. Figure 3 illustrates initial

setup for attribute-based key generation process.

Figure 4: Key Generation Phase

International Journal of Applied Mathematics

Volume 38 No. 1s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

72 Received: July 18, 2025

The CP-ABE key creation method makes sure that users only get keys that let them decrypt

data if their traits match the access rules that are built into the ciphertext. This attribute-centric

key generation improves security by automatically limiting data access, which stops people

who aren't supposed to be there from decrypting protected files. Figure 5 shows key generation

tailored to user attributes securely.

Figure 5: Key Generation based on Attributes

Pairing-based cryptography is used during setup to provide strong security promises while

keeping the computing speed that is good for IoT-cloud settings.

4. File Operation

a. File Browse

The suggested IoT cloud convergence system has a file explore feature that makes it easy for

users to find and choose files to protect, share, or download in a safe environment.

Figure 6: File Browse

International Journal of Applied Mathematics

Volume 38 No. 1s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

73 Received: July 18, 2025

This feature gives authorised users an easy-to-use interface for viewing files that are saved

locally or in the cloud. Figure 6 displays user interface for browsing files securely before

encryption. Attribute-based encryption sets access control rules that are respected by the

viewing process. This makes sure that users can only see files that they are allowed to access.

By adding secure viewing, the system lowers the chance that files will be seen by people who

shouldn't be able to and makes it easier to work with protected data. This method for controlled

file selection sets the stage for later secure file actions, like encrypting and decrypting, which

keep data safe and private throughout the user's routine.

b. File Encrypt

i. Lightweight AES Encryption

The suggested system's file encryption uses lightweight AES encryption to keep data safe with

little extra work for computers, which is very important for IoT devices that don't have a lot of

resources. The Advanced Encryption Standard (AES) is a symmetric key encryption method

that is widely used and known for being strong and quick. Figure 7 illustrates lightweight AES

encryption applied to selected files securely.

Figure 7: File Encryption

A lightweight version of AES is built into the system, which makes encryption and decoding

quick while still providing strong security. This combined method works well with the

attribute-based encryption scheme because it encrypts the file content quickly, and CP-ABE

International Journal of Applied Mathematics

Volume 38 No. 1s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

74 Received: July 18, 2025

keeps the encryption keys safe by controlling who can see them. Lightweight AES encryption

uses little power and has a short working time, so it works well in IoT-cloud settings where

speed and energy economy are important.

Algorithm for AES Encryption

Step 1: Key Expansion (Generate Round Keys)

𝐺𝑖𝑣𝑒𝑛: 𝐶𝑖𝑝ℎ𝑒𝑟 𝐾𝑒𝑦 𝐾 (128 𝑏𝑖𝑡𝑠)

→ 𝑊[0], 𝑊[1], . . . , 𝑊[43] (𝑒𝑎𝑐ℎ 𝑊[𝑖] 𝑖𝑠 32 − 𝑏𝑖𝑡 𝑤𝑜𝑟𝑑)

𝐹𝑜𝑟 𝑖 = 4 𝑡𝑜 43:

 𝑖𝑓 𝑖 𝑚𝑜𝑑 4 = 0:

 𝑊[𝑖] = 𝑊[𝑖 − 4] ⊕ 𝑇(𝑊[𝑖 − 1])

 𝑤ℎ𝑒𝑟𝑒 𝑇(𝑥) = 𝑆𝑢𝑏𝑊𝑜𝑟𝑑(𝑅𝑜𝑡𝑊𝑜𝑟𝑑(𝑥)) ⊕ 𝑅𝑐𝑜𝑛 [
𝑖

4
]

 𝑒𝑙𝑠𝑒:

 W[i] = W[i-4] ⊕ W[i-1]

Step 2: Initial Round (AddRoundKey)

𝐼𝑛𝑝𝑢𝑡: 𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡 𝐵𝑙𝑜𝑐𝑘 𝑃 (4𝑥4 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑏𝑦𝑡𝑒𝑠) → 𝑆𝑡𝑎𝑡𝑒

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛:

 𝑆𝑡𝑎𝑡𝑒 = 𝑆𝑡𝑎𝑡𝑒 ⊕ 𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦₀

 𝑤ℎ𝑒𝑟𝑒 𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦0 = [𝑊[0], 𝑊[1], 𝑊[2], 𝑊[3]]𝑟𝑒𝑠ℎ𝑎𝑝𝑒𝑑 𝑡𝑜 4𝑥4 𝑚𝑎𝑡𝑟𝑖𝑥

Step 3: Nr-1 Main Rounds (Nr = 10 for AES-128)

Repeat for round = 1 to 9:

Each round includes 4 operations:

1. SubBytes:

 For each byte b in State:

 b = SBox[b] (use non-linear substitution via Rijndael S-box)

2. ShiftRows:

 Cyclically left-shift each row by its row index:

 Row 0: no shift

 Row 1: shift by 1

 Row 2: shift by 2

 Row 3: shift by 3

3. MixColumns:

 For each column c in State:

 𝑐′ = 𝑀 × 𝑐 (𝑚𝑎𝑡𝑟𝑖𝑥 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝐺𝐹(28))

 M =

 [02 03 01 01]

 [01 02 03 01]

 [01 01 02 03]

 [03 01 01 02]

4. AddRoundKey:

International Journal of Applied Mathematics

Volume 38 No. 1s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

75 Received: July 18, 2025

 𝑆𝑡𝑎𝑡𝑒 = 𝑆𝑡𝑎𝑡𝑒 ⊕ 𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦_𝑟𝑜𝑢𝑛𝑑

 𝑤ℎ𝑒𝑟𝑒 𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦𝑟𝑜𝑢𝑛𝑑

= [𝑊[4𝑟], 𝑊[4𝑟 + 1], 𝑊[4𝑟 + 2], 𝑊[4𝑟 + 3]]𝑟𝑒𝑠ℎ𝑎𝑝𝑒𝑑 𝑡𝑜 4𝑥4 𝑚𝑎𝑡𝑟𝑖𝑥

Step 4: Final Round (No MixColumns)

Repeat only 3 operations:

 - SubBytes

 - ShiftRows

 - AddRoundKey using final round key

Step 5: Output Ciphertext

Output: Ciphertext C = State (after final round) serialized column-wise

c. Hash Generation

i. SHA 256

SHA-256 hash creation is a key part of making sure that data is correct in the IoT cloud

convergence system. Safe Hash Algorithm 256-bit, or SHA-256, is a secure hash function that

takes any raw data and returns a fixed-size 256-bit hash value. This hash is like a digital

fingerprint for the file; it lets you know if it has been changed without your permission while

it is being stored or sent. By making a SHA-256 hash of the protected file before uploading it,

the system makes sure that files aren't changed by letting later steps check the security of the

data. Changes, errors, or data loss are prevented by this process. SHA-256 is good for IoT

settings that need solid but light security checks because it doesn't easily collide with other data

and is fast to compute.

d. File Upload

The file upload feature in the IoT framework lets users safely send protected files from local

devices to cloud storage. This process works closely with the system's security features to

make sure that only files that are properly encrypted using attribute-based rules and come with

integrity hashes are accepted. The upload module checks a user's rights based on their

characteristics before sending a file. This stops people from uploading data without permission.

The system also has efficient and reliable file methods to deal with the unpredictable nature of

networks in IoT situations. The system protects data privacy, stops harmful injections, and

makes sure that cloud storage only holds real, authorised data by using attribute-based access

controls and integrity checking during file uploads.

5. File Download

a. Select File

During the download process, users can view and pick protected files that they are allowed to

access based on their attribute details. This module works with the attribute-based access

control system to limit the files that each user can see. It does this by making sure that only

International Journal of Applied Mathematics

Volume 38 No. 1s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

76 Received: July 18, 2025

files whose access rules match the user's characteristics are shown. By using attribute-based

filtering, the system reduces attempts by people who aren't supposed to be there to get in and

makes it easier to use by showing only the relevant data. The easy-to-use file selection layout

makes it easier for users to find the files they need quickly and safely.

b. Verfiy File (Auditing)

File checking through auditing is done by the system before the download starts to make sure

the desired data is correct and real. This process checks the SHA-256 hash of the protected file

that was saved against the hash that was first calculated to find any changes, errors, or hacking

that were not authorised. The monitoring tool also checks that the user's credentials match the

file's access policy, which stops anyone from downloading without permission. This two-layer

verification makes data safer by making sure that only authorised users can view files that

haven't been changed.

c. File Download

As soon as the file selection and verification steps are finished successfully, the system sends

the protected file safely to the authorised user. Secure communication methods are used during

the download process to keep data in transit from being viewed or changed by attackers. Figure

8 shows secure file download process with attribute-based access control.

Figure 8: File Download

The system might also be able to resume files so that it can handle the unstable networks that

are common in IoT settings. After downloading, the user can use their attribute-based private

keys to get to the original raw data during the decoding process.

International Journal of Applied Mathematics

Volume 38 No. 1s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

77 Received: July 18, 2025

d. Decrypt File

The suggested system uses the Ciphertext-Policy Attribute-Based Encryption (CP-ABE)

method to decrypt files. Figure 9 depicts policy verification followed by secure attribute-based

file decryption. This makes sure that only users whose characteristics match the inserted access

policy can decrypt files correctly.

Figure 9: Policy Matching and File Decryption

The user uses their attribute-based private key to start decryption as soon as they receive the

encrypted file. Before showing the original raw data, this cryptography process checks that the

user's properties meet the access policy that was set during encryption. Figure 10 illustrates

secure decryption of files using attribute-based keys.

Figure 10: File Decryption

During the decoding process, pairing-based encryption operations may be used. These

operations offer strong security while still being efficient. This attribute-driven decryption

applies fine-grained access control, so even if someone gets the protected file, they can't get to

sensitive information without permission.

International Journal of Applied Mathematics

Volume 38 No. 1s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

78 Received: July 18, 2025

6. TPA / Attack Module

a. Perform Checkability (Attribute Verification)

The Perform Checkability module is an important defence tool because it checks that user traits

are correct against set access rules. Figure 11 shows attribute verification ensuring correct

access rights granted.

Figure 11: Checkability (Correct Attributes) – Anagram

This attribute checking makes sure that only people with true and authorised attributes can

access sensitive data or do sensitive actions. As a part of the Third Party Auditor (TPA) tool,

it stops efforts at unauthorised entry by finding attribute errors or fakes. Figure 12 illustrates

attribute verification failure due to incorrect user attributes.

Figure 12: Checkability (Wrong Attributes)

This method keeps the system safe in changing IoT-cloud settings by constantly checking the

validity of attributes during access requests. This makes the system less vulnerable to attacks

like attribute faking or collusion.

International Journal of Applied Mathematics

Volume 38 No. 1s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

79 Received: July 18, 2025

b. File Verification Using HASHING

Verifying files with hashing is an important part of making sure that data in the IoT-cloud

system is correct and real. Before letting you view or download the protected file, the system

makes an encryption hash of it (e.g., SHA-256) and checks it against the hash value that has

been saved. Figure 13 depicts secure outsourced file decryption with integrity verification.

Any difference could mean that something has been changed or corrupted.

Figure 13: Outsource Decryption and Verification of File

This approval method keeps the file from being changed without permission, so it stays the

same from uploading to retrieving it. By using hashing, the system makes checking quick and

safe without showing the actual file content. This protects privacy and keeps data saved in the

cloud trustworthy.

c. User Revocation

A key part of the security framework is user removal, which lets the system take away users'

access rights when their information changes or their passwords are stolen. The suggested

method lets the data owner or an authorised authority handle removal. Figure 14 shows data

owner revoking user access and permissions securely.

Figure 14: User Revocation by Data Owner

They would change the attribute-based access rules and make the banned user's private keys

useless. This stops the person whose permission was removed from decrypting any data,

whether it's already there or not. Figure 15 illustrates process of removing revoked user’s

decryption privileges. This keeps private data safe.

International Journal of Applied Mathematics

Volume 38 No. 1s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

80 Received: July 18, 2025

Figure 15: User Revocation

Revocation methods that work well keep the system safe without slowing it down too much or

blocking legal users' access, which is very important in IoT-cloud settings where user jobs are

always changing.

IV. Performance Analysis

a. File Insource Download and Decryption

Performance study of file insource download and decoding checks how well it works to work

with data in the user's own space. The results show that insource decryption is safe, but it needs

a lot of computing power, which could slow down IoT devices that don't have a lot of power.

To combine security with usefulness in real-world IoT-cloud situations, this method needs to

be optimised. The File Insource Decryption Time Comparison Graph in Figure 16 shows the

difference in decryption time (in milliseconds) between the current system and the suggested

system.

Figure 16: File Insource Decryption Time Comparison Graph

International Journal of Applied Mathematics

Volume 38 No. 1s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

81 Received: July 18, 2025

The File Insource Decryption Memory Comparison Graph (Figure 17) shows how much

memory the current and suggested methods use in bytes. The suggested system uses about

60,500,000 bytes, which is a little less than the current system's 61,000,000 bytes.

Figure 17: File Insource Decryption Memory Comparison Graph

This lower memory use shows that the suggested system is more efficient, even though it has

better security features. The algorithm's smaller memory size makes it better for IoT settings

with limited resources. It strikes a mix between speed and security without adding a lot of extra

memory when decrypting files.

b. File Outsource Download and Decryption

The File Outsource decoding Time Comparison Graph is shown in Figure 18. It shows the

decoding times in milliseconds for both the current and suggested methods. It takes about 7000

milliseconds for the current system to fully decrypt, but only 6400 milliseconds for the

suggested system, which makes it faster. This big drop of about 600 ms shows how useful the

suggested method is for situations where decoding is outsourced.

Figure 18: File Outsource Decryption Time Comparison Graph

International Journal of Applied Mathematics

Volume 38 No. 1s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

82 Received: July 18, 2025

Figure 19 shows the File Outsource Decryption Memory Comparison Graph, which shows how

much memory the current system and the suggested system use.

Figure 19: File Outsource Decryption Memory Comparison Graph

The suggested system uses only 42,000,000 bytes of memory, a huge reduction from the

47,500,000 bytes used by the current system. This decrease of about 5,500,000 bytes shows

that the suggested method uses memory more efficiently during external decoding processes.

c. Comparative Analysis

i. Time Comparison Graph

Table 2 compares the decryption times for files of different sizes, showing that the times get

longer as the file sizes get bigger. This process takes 710 ms for a file that is 2890 KB in size.

From 3120 KB to 6075 KB, this time goes up to 845 ms, 1182 ms, 1300 ms, and 1520 ms, with

the biggest file size of 6075 KB.

Table 2: Decryption Time Comparison for various File sizes

File Size

(KB)

Time (ms)

2890 710

3120 845

4858 1182

5230 1300

6075 1520

The data consistently shows an upward trend, which means that decrypting bigger files takes a

longer time overall. This trend shows that the system can be scaled up because the time it takes

to decode a file increases regularly with its size. Figure 20 compares decryption times across

different dataset sizes efficiently. This is useful for planning how to use resources in IoT-cloud

settings.

International Journal of Applied Mathematics

Volume 38 No. 1s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

83 Received: July 18, 2025

Figure 20: Decryption Time Comparison Graph for various Dataset sizes

Table 3 shows how much memory is used for decryption for files of different sizes, showing

that the size of the file makes more memory needed. The amount of memory used for a file

that is 2890 KB is about 4,999,060 bytes. The next largest file size is 10,508,404 bytes, which

is for a file that is 6075 KB in size.

Table 3: Decryption Memory Comparison for various File sizes

File Size (KB) Memory Usage (Bytes)

2890 4999060

3120 5396909

4858 8403264

5230 9046742

6075 10508404

The next largest file size is 8,403,264 bytes, which is for a file that is 4858 KB in size. There

is a clear link between file size and the amount of memory needed for decryption, as shown by

the data. Figure 21 compares memory usage during decryption for different dataset sizes.

International Journal of Applied Mathematics

Volume 38 No. 1s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

84 Received: July 18, 2025

Figure 21: Decryption Memory Comparison Graph for various Dataset sizes

IoT-cloud settings need to be able to control memory well, and these results show that the

system can handle rising resource needs as file sizes increase in a predictable way.

V. Conclusion

This study described how to create an IoT cloud convergence method that is hard to attack. It

uses Ciphertext-Policy Attribute-Based Encryption (CP-ABE) to improve data security, fine-

grained access control, and system resilience. The suggested framework solves some of the

most important problems that come up when connecting IoT devices to the cloud. These

problems include safe key management, dynamic user attribute verification, and efficient

encryption and decoding processes that work well in IoT settings with limited resources. The

system strikes a good mix between security and speed by using CP-ABE along with lightweight

AES encryption and SHA-256 hashing. This keeps private data safe from people who shouldn't

have access to it and makes sure that the data is correct. The attribute-based registration and

login tools let you handle users in a way that is both flexible and scalable. They do this by

enforcing access rules precisely based on user characteristics instead of static names. This

adaptability helps IoT-cloud environments that are always changing, where user jobs and rights

are always changing. The Third Party Auditor (TPA) feature also improves trustworthiness by

making sure that data is real and allowing safe user removal, which stops users who have been

banned from getting protected resources. The suggested method takes less time and uses less

memory than current systems, even though it has more security features. This was shown by

performance study results.

International Journal of Applied Mathematics

Volume 38 No. 1s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

85 Received: July 18, 2025

References

[1] Li, J.; Wang, Y.; Zhang, Y.; Han, J. Full Verifiability for Outsourced Decryption in

Attribute Based Encryption. IEEE Trans. Serv. Comput. 2020, 13, 478–487.

[2] Zhang, R.; Li, J.; Lu, Y.; Han, J.; Zhang, Y. Key Escrow-free Attribute Based Encryption

with User Revocation. Inf. Sci. 2022, 600, 59–72.

[3] Chen, N.; Li, J.; Zhang, Y.; Guo, Y. Efficient CP-ABE Scheme with Shared Decryption

in Cloud Storage. IEEE Trans. Comput. 2022, 71, 175–184.

[4] Li, J.; Zhang, E.; Han, J.; Zhang, Y.; Shen, J. PH-MG-ABE: A Flexible Policy-Hidden

Multi-Group Attribute-Based Encryption Scheme for Secure Cloud Storage. IEEE

Internet Things J. 2024.

[5] Chen, S.; Li, J.; Zhang, Y.; Han, J. Efficient Revocable Attribute-based Encryption with

Verifiable Data Integrity. IEEE Internet Things J. 2024, 11, 10441–10451.

[6] Sivasankari, N.; Kamalakkannan, S. Detection and prevention of man-in-the-middle

attack in iot network using regression modeling. Adv. Eng. Softw. 2022, 169, 103126.

[7] Chaudhary, S.; Mishra, P.K. DDoS attacks in Industrial IoT: A survey. Comput. Netw.

2023, 236, 110015.

[8] Yang, W.; Wang, S.; Yin, X.; Wang, X.; Hu, J. A review on security issues and solutions

of the Internet of Drones. IEEE Open J. Comput. Soc. 2022, 3, 96–110.

[9] Harbi, Y.; Aliouat, Z.; Harous, S.; Bentaleb, A.; Refoufi, A. A review of security in

internet of things. Wirel. Pers. Commun. 2019, 108, 325–344.

[10] Yousefnezhad, N.; Malhi, A.; Främling, K. Security in product lifecycle of IoT devices:

A survey. J. Netw. Comput. Appl. 2020, 171, 102779.

[11] Ling, L.; Yelland, N.; Hatzigianni, M.; Dickson-Deane, C. The use of Internet of Things

devices in early childhood education: A systematic review. Educ. Inf. Technol. 2022, 27,

6333–6352.

[12] Shah, K.; Sheth, C.; Doshi, N. A survey on iot-based smart cars, their functionalities and

challenges. Procedia Comput. Sci. 2022, 210, 295–300.

[13] Otoom, A.F.; Eleisah, W.; Abdallah, E.E. Deep learning for accurate detection of brute

force attacks on IOT Networks. Procedia Comput. Sci. 2023, 220, 291–298.

[14] Sanlı, M. Detection and Mitigation of Denial of Service Attacks in Internet of Things

Networks. Arab. J. Sci. Eng. 2024, 49, 12629–12639.

[15] Aziz Al Kabir, M.; Elmedany, W.; Sharif, M.S. Securing IoT devices against emerging

security threats: Challenges and mitigation techniques. J. Cyber Secur. Technol. 2023, 7,

199–223.

[16] Ren, Y.; Peng, H.; Li, L.; Xue, X.; Lan, Y.; Yang, Y. A voice spoofing detection

framework for IoT systems with feature pyramid and online knowledge distillation. J.

Syst. Archit. 2023, 143, 102981.

[17] Qasem, M.A.; Thabit, F.; Can, O.; Naji, E.; Alkhzaimi, H.A.; Patil, P.R.; Thorat, S.

Cryptography algorithms for improving the security of cloud-based internet of things.

Secur. Priv. 2024, 7, e378.

International Journal of Applied Mathematics

Volume 38 No. 1s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

86 Received: July 18, 2025

[18] Fathalizadeh, A.; Moghtadaiee, V.; Alishahi, M. On the privacy protection of indoor

location dataset using anonymization. Comput. Secur. 2022, 117, 102665.

[19] Arul, R.; Alroobaea, R.; Tariq, U.; Almulihi, A.H.; Alharithi, F.S.; Shoaib, U. IoT-

enabled healthcare systems using block chain-dependent adaptable services. Pers.

Ubiquitous Comput. 2024, 28, 43–57.

