ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

EXPLORING EDGE COMPUTING AND CLOUD COMPUTING: A COMPARATIVE STUDY OF FEATURES AND APPLICATIONS

Ashlesha Gupta

Associate Professor, Department of Computer Engineering, J.C Bose University of Science and Technology, YMCA, Faridabad, Haryana, India

gupta ashlesha@yahoo.co.in

Abstract

Edge computing and cloud computing represent complementary paradigms for processing massive data volumes from Internet of Things (IoT) devices, cyber-physical systems, and mobile applications. This research examines theoretical foundations, architectural models, advantages, limitations, and applications of both paradigms. Cloud computing centralizes resources in data centers providing elasticity and scalability, while edge computing decentralizes computation near end-users, reducing latency, conserving bandwidth, and enhancing privacy. Key findings reveal edge computing reduces latency to single-digit milliseconds for autonomous vehicles and industrial automation, achieving sixty to ninety percent bandwidth reduction versus cloud-only architectures. Cloud computing excels in machine learning training, batch processing, and long-term storage. Hybrid fog computing architectures enable optimal workload distribution across three-tier hierarchies. Security analysis shows edge computing enhances privacy through local processing but challenges distributed node security, while cloud computing offers centralized management with transmission vulnerabilities. Applications in autonomous vehicles, smart cities, industrial IoT, and healthcare leverage hybrid architectures. Future directions emphasize intelligent workload partitioning using reinforcement learning for dynamic allocation based on network conditions and privacy requirements. This analysis establishes edge and cloud computing as synergistic technologies addressing diverse computational needs.

Keywords: Edge computing, cloud computing, multi-access edge computing, hybrid architectures, latency reduction, resource allocation, energy-aware scheduling, security, Internet of Things (IoT), 5G/6G networks

1. Introduction

The proliferation of sensor-rich IoT devices, intelligent infrastructures, autonomous vehicles and smart manufacturing has produced an unprecedented deluge of data. Traditional centralized cloud computing paradigms, in which computation and storage occur in remote data centers, deliver high scalability and powerful analytics but suffer from latency, bandwidth consumption and privacy concerns when data must travel long distances. Edge computing, on the other hand, places computational resources in proximity to data sources, enabling real-time processing and reducing network congestion. Andriulo et. al. [1] highlights that edge computing excels in minimizing latency and protecting data privacy by processing

Volume 38 No. 6s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

information locally, whereas cloud computing provides elasticity and flexibility for heavy tasks. Hybrid approaches combine the strengths of both paradigms, allowing tasks to be dynamically distributed between local edge nodes and centralized clouds [6][7].

As IoT applications become more latency-sensitive, energy-constrained and privacy-aware, designers face the challenge of choosing the appropriate computing paradigm. This research work systematically examines cloud, edge and hybrid computing models, focusing on theoretical foundations, architectures, advantages, limitations, and application domains. We rely on recent peer-reviewed literature from leading publishers to provide up-to-date insights.

1.1 Cloud Computing Fundamentals

Cloud computing delivers on-demand computing resources (e.g., storage, processing, analytics) over the internet. It leverages virtualization, multi-tenancy and high-speed networks to provide pay-as-you-go services that scale to meet dynamic workload demands. Clouds shield users from hardware maintenance, offering resource pooling and elasticity. According to Liang et. al. [2], cloud platforms offer flexibility for workload peaks, enabling scaling of storage and processing to large volumes while providing high availability and fault tolerance. They typically operate in centralized data centers, which can be geographically distant from end-users, leading to higher latency and bandwidth consumption when large amounts of data must be transferred to the cloud for processing. Despite these limitations, cloud computing remains indispensable for large-scale data analytics, training complex machine-learning models and supporting services that require significant compute capacity [8][9][10].

1.2 Edge Computing Fundamentals

Edge computing shifts computation, storage and networking closer to data sources such as IoT sensors, mobile devices and industrial machines[11]. By decentralizing processing, edge computing reduces the physical distance that data must travel and thereby decreases communication latency and bandwidth usage. The edge architecture includes an edge tier located between devices and the cloud; this tier hosts micro-data centers or cloudlets that process data locally. Because computation happens near the point of origin, sensitive data can be handled locally, enhancing privacy and complying with regulations such as GDPR and CCPA. Edge devices often operate in resource-constrained environments—limited CPU, memory and energy—and rely on lightweight algorithms to meet real-time requirements [12][13]. Edge computing is a key enabler for 5G and 6G networks, where ultra-low latency and high bandwidth are essential for applications such as autonomous vehicles and immersive virtual reality [14][15][16]. By supporting location-aware services and parallel processing, edge computing offers opportunities for improved user experiences and reduced network congestion [17].

1.3 Differences and Synergy between Cloud and Edge

Table 1 compares cloud and edge computing across multiple dimensions. Cloud platforms deliver high compute capacity and scalability, making them suitable for complex data

Volume 38 No. 6s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

analytics and batch processing tasks. However, they introduce higher latency and limited control over data privacy [18]. Edge computing provides low-latency responses and improved privacy by keeping data local but suffers from limited resources and scalability challenges [19].

Table 1: Summary of generalized characteristics used throughout the research work to reason about suitability and trade-offs between cloud and edge.

Feature / Property	Cloud (Centralized)	Edge (Distributed/Local)
Deployment locus	Large regional/global data centers	Near devices (gateways, micro-DCs)
Latency profile	Higher, distance/hops dependent	Lower, local execution
Bandwidth usage	Higher uplink for raw/large data	Lower uplink via local filtering
Elasticity	High (massive resource pools)	Moderate (bounded by local capacity)
Scalability	Global and virtually unbounded	Horizontal across many sites
Fault tolerance	High at provider core	Local autonomy; site-level resilience
Privacy posture	Centralized processing; policy controls	Localized processing; data minimization
Cost structure	Lower base; higher per-transfer at scale	Higher base per site; lower per-request locally
Management	Central orchestration, automation	Federated/orchestrated at the edge
AI lifecycle	Train/retain in core; inference possible	Inference primary; occasional training
Persistence	Durable object/block storage	Short-lived cache/queue; selective sync
Power/energy	High efficiency per rack	Constrained; efficiency via locality

Hybrid models combine both paradigms to achieve a balance between responsiveness, scalability and energy consumption. Ficili et. al. [3] suggests that the hybrid approach optimizes bandwidth consumption and supports privacy-sensitive applications by processing latency-critical tasks at the edge while sending heavy workloads to the cloud. Another work on predictive maintenance deploys a lightweight KNN model at the edge for immediate

Volume 38 No. 6s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

anomaly detection and a deeper LSTM model in the cloud for historical analysis, demonstrating the synergy between edge and cloud [20][21].

1.4 Evolution towards Fog, MEC and Beyond

The fog computing paradigm extends the cloud-edge continuum by introducing additional layers of computing nodes (fog nodes) located between edge devices and the cloud [22]. Fog nodes aggregate data from multiple edge devices, perform intermediate processing and provide local storage. Multi-access edge computing (MEC) further integrates edge servers into mobile network infrastructures, enabling services such as ultra-reliable low-latency communications [23][24].

2 Architecture Models

2.1 Cloud Architecture

Cloud architectures typically consist of large-scale data centers connected via high-speed backbone networks [25]. Users access virtualized resources over the internet through public clouds (e.g., Amazon Web Services, Microsoft Azure) or private clouds hosted by enterprises. Compute and storage resources are orchestrated by hypervisors, containers and microservices, enabling fault tolerance and dynamic scaling [26]. Data from IoT devices and edge nodes are transmitted over wide-area networks to the cloud for processing. While this architecture is well suited for computationally intensive tasks, the physical distance between devices and the cloud leads to increased latency and makes real-time control difficult for time-critical applications. The high bandwidth consumption associated with transmitting raw sensor data to the cloud also increases operational costs and energy consumption [27][28].

2.2 Edge Architecture

Edge architectures comprise a hierarchy of devices, micro-servers and gateways located near data sources. Typical layers include the *Device Layer* (sensors, actuators, smartphones), the *Edge Layer* (micro-data centers, routers, gateways) and optionally the **fog layer** for regional aggregation [29][30]. This architecture reduces network congestion by performing preprocessing (e.g., filtering, feature extraction) locally. Algarni et. al [4] describes a three-tier architecture in which data are processed at the edge and only relevant results are transmitted to the cloud. Local processing yields faster response and improved resilience because devices can operate even when connectivity to the cloud is intermittent [31][32][33].

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

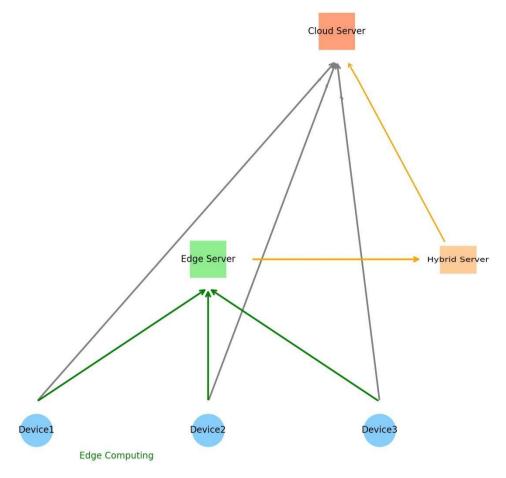


Figure 1: Differences between cloud, edge and hybrid architectures

Figure 1 illustrates the conceptual differences between cloud, edge and hybrid architectures. Devices connect directly to the cloud or to nearby edge servers; hybrid approaches route latency-critical tasks to the edge and forward aggregated data to the cloud. The figure emphasises that edge servers and hybrid nodes act as intermediaries between devices and remote data centers.

2.3 Hybrid and Continuum Architectures

Hybrid architectures integrate cloud and edge computing to create a continuum of resources from the data source to the core network [34]. Tasks are partitioned and distributed along this continuum according to latency requirements, resource availability and privacy constraints [35]. One approach uses *cloudlets* (small cloud servers at the edge) to run compute-intensive tasks locally before sending results to the cloud [36]. Another hybrid model is a dynamic workload management framework that deploys lightweight KNN models at the edge for real-time anomaly detection and deeper LSTM models in the cloud for historical analysis [37]. Such synergy reduces latency by 35 %, decreases energy consumption by 28 % and cuts bandwidth usage by 60 % compared with a cloud-only approach [38]. Figure 2 presents a conceptual diagram of an edge–cloud continuum for predictive maintenance: sensor data are first processed by lightweight AI models at the edge and then transmitted to the cloud for deep analysis and feedback.

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

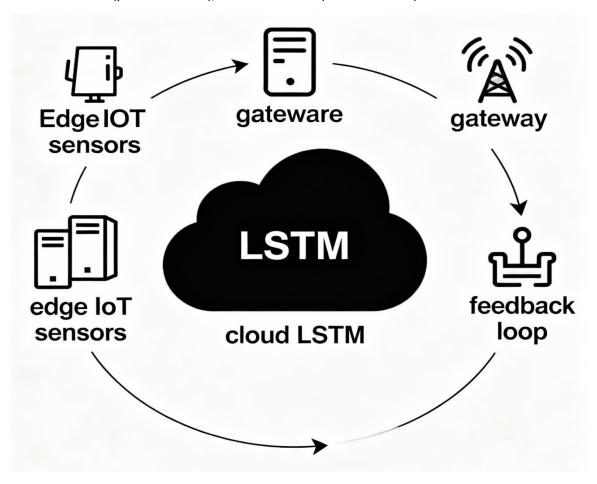


Figure 2: Edge Cloud Continuous predictive Maintenance AI

3 Advantages and Limitations

3.1 Latency and Real-Time Processing

Edge computing significantly reduces latency because data are processed near their source. In latency-sensitive domains such as autonomous driving, industrial control and augmented reality, delays exceeding tens of milliseconds may cause safety hazards or degrade user experiences [38][39]. Jin et. al [5] notes that by minimizing transmission distances, edge computing improves response speed and makes real-time control feasible. Rana et. al. [40] studies on condition monitoring of industrial motors show that using edge devices (e.g., Raspberry Pi) to process sensor data achieves timely fault detection but may be limited by hardware capacity. Conversely, cloud computing introduces round-trip delays due to network distance and queuing, making it unsuitable for ultra-low latency applications [41][42]. Hybrid solutions can meet strict latency requirements by performing initial processing at the edge while leveraging the cloud for heavy analysis [43][44][45].

3.2 Scalability and Resource Management

Scalability is a hallmark of cloud computing. Public clouds provide virtually unlimited resources that can be provisioned elastically to accommodate workload spikes. Edge devices, in contrast, have limited compute power and energy; they struggle to handle

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

compute-intensive tasks and support large numbers of concurrent users [46][47]. The rapid growth of IoT and machine-learning workloads places pressure on edge servers, leading to resource congestion and energy depletion. Dynamic off-loading strategies and resource optimization algorithms are therefore essential to balance loads between the edge and the cloud [48]. Hybrid approaches rely on smart schedulers that monitor resource availability and off-load tasks accordingly [49][50][51][52]. Figure 3 provides a comparative overview of relative metrics (latency, compute capacity, privacy and energy efficiency) across cloud, edge and hybrid paradigms.

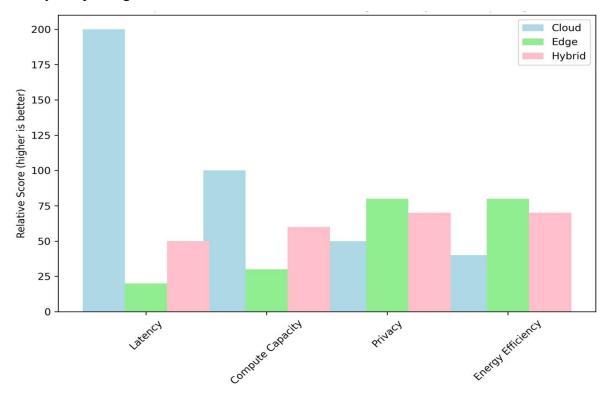


Figure 3: comparative overview of relative metrics (latency, compute capacity, privacy and energy efficiency) across cloud, edge and hybrid paradigms

3.3 Data Security and Privacy

Cloud providers implement robust security measures and compliance certifications; however, centralization exposes data to potential breaches and unauthorized access [53][54]. Edge computing improves privacy by processing data locally and reducing exposure to external networks [55]. Decentralization also reduces the attack surface because data need not traverse the open internet, enabling quicker detection of anomalies and adherence to privacy regulations [56]. Nevertheless, edge environments face unique security challenges such as Distributed Denial-Of-Service (DDoS) attacks, malware injection, side-channel leakage and trust management issues [57]. Edge nodes often have limited resources for implementing heavyweight security protocols and are frequently unattended, making them attractive targets [58][59][60].

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

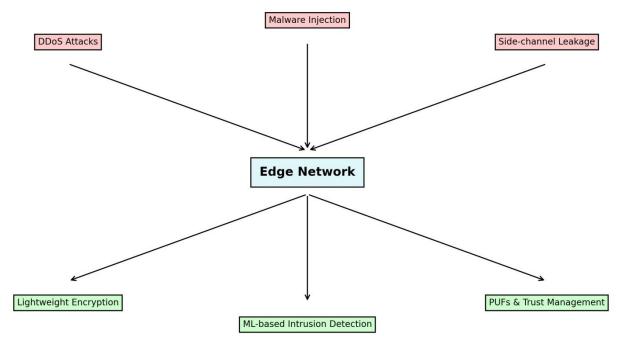


Figure 4: Security Challenges and Solutions in Edge Computing

Figure 4 depicts typical attack vectors and countermeasures in edge networks, including lightweight encryption, machine-learning-based intrusion detection and physical unclonable functions (PUFs) for hardware-rooted trust. A call for papers on edge security notes that designing robust security rules for highly mobile and resource-constrained edge nodes remains a major challenge.

3.4 Energy Efficiency and Sustainability

Many IoT devices and edge nodes operate on battery or energy-harvesting power sources, making energy efficiency a critical requirement [61][62][63]. An energy-efficient distributed edge computing framework emphasizes the need for cost-effective communication protocols, scalable resource management and virtualization to reduce energy consumption across dense IoT networks. In 5G networks, devices are expected to operate for up to ten years on a single battery; therefore, energy-efficient edge computing solutions are essential [64][65]. Cloud data centers also consume vast amounts of energy due to cooling and computing requirements [66]. Hybrid architectures can reduce energy consumption by minimizing redundant data transfers and leveraging local processing [67]. Sustainable computing practices, including dynamic scheduling based on residual energy and energy-aware off-loading, are required to achieve green computing goals [68].

3.5 Cost Considerations

Cloud computing follows a pay-as-you-go model, reducing capital expenditures for infrastructure but potentially leading to high operational costs for continuous data transfer and storage [69]. Edge computing can reduce bandwidth costs by processing data locally; however, deploying and maintaining edge infrastructure (e.g., micro-data centers, gateways)

Volume 38 No. 6s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

incurs additional expenses [70][71]. Deciding whether to process data at the edge or in the cloud requires careful analysis of energy costs, network fees, reliability requirements and data privacy regulations [72]. Off-loading strategies and dynamic scheduling help minimize costs by using resources efficiently. Moreover, emerging serverless edge platforms promise to reduce management overhead by abstracting resource provisioning [73][74].

4 Off-Loading and Resource Allocation

4.1 Computation Off-Loading

Computation off-loading is a core mechanism in edge computing, allowing resource-constrained devices to transfer tasks to nearby servers or the cloud [75]. Off-loading can reduce energy consumption on user devices, extend battery life and improve processing speed for complex tasks [76]. The algorithm reduces latency and energy consumption by balancing the computational demand across edge servers. Another study acknowledges that while off-loading alleviates device constraints, the growth of compute-intensive tasks and limited MEC resources can cause congestion and raise privacy concerns [77]. Consequently, task placement decisions must consider network delay, computational complexity, deadlines and privacy requirements. Table 2 summarizes representative off-loading approaches and their performance improvements.

Table 2: Reference metrics used to evaluate alternatives at an abstract level. Replace with empirical values in measurement campaigns.

Metric	Description	Typical Cloud Range	Typical Edge Range
End-to-end Latency (ms)	Request → response	30–200+ (distance/hops)	5–50 (locality)
Jitter (ms)	Latency variance	5–50	1–10
Throughput (MB/s)	Sustained data rate	50–1000+ (DC links)	1–100 (last-mile)
Availability (%)	арите	99.9–99.999	95–99.99 (site dependent)
Energy per Task (J)	Energy to complete unit work	Lower per-rack	Lower per-task via locality
Cost per Million Requests (USD)	Normalized monthly cost	100–2000 (model-dependent)	200–1500 (site/mix-dependent)
Storage Durability	Data loss probability	11–12 nines typical	Replication/site- dependent
Security Surface	Attack exposure	Central	Distributed endpoints

Volume 38 No. 6s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

Metric	Description	Typical Cloud Range	Typical Edge Range
		APIs/networks	

4.2 Resource Management and Virtualization

Resource management at the edge involves scheduling tasks, allocating CPU and memory resources and balancing loads between nodes [78]. Virtualization techniques such as containers and lightweight virtual machines enable multi-tenancy and isolation on edge servers. Studies on energy-conscious scheduling propose frameworks that dynamically distribute tasks based on residual energy, thereby extending device lifetime and reducing response time [79]. The proposed framework uses a Monitor–Analyze–Plan–Execute–Knowledge (MAPE-K) cycle to select appropriate schedulers, taking into account energy status and service demand [80]. In MEC environments, resource allocation algorithms utilize Lagrange duality, ant colony optimization, genetic algorithms and deep reinforcement learning to optimize off-loading decisions, reduce latency and improve Quality of Service [81]. Researchers also examine caching strategies and serverless execution models to accelerate content delivery and minimize energy consumption [82].

4.3 Serverless Edge Computing

Serverless computing abstracts infrastructure management by allowing developers to deploy functions without provisioning servers [83]. When combined with edge computing, serverless architectures permit event-driven processing at the network edge, reducing latency and simplifying development. However, serverless edge computing faces challenges related to resource scarcity, cold start latency and energy management [84]. An energy-conscious scheduling framework for serverless edge computing addresses these issues by dynamically selecting schedulers based on energy availability and load [85]. The framework reduces response times and leverages external resources to handle requests when the local edge server has insufficient capacity. Serverless edge computing is expected to become integral to IoT applications requiring elastic, event-driven execution [86].

4.4 Dynamic Workload Management and Hybrid Off-Loading

Hybrid off-loading distributes tasks across edge and cloud resources according to contextual factors. The predictive maintenance framework described earlier uses dynamic workload management to balance tasks between edge devices and the cloud [87]. It achieves significant reductions in latency (35 %), energy consumption (28 %) and bandwidth usage (60 %) compared with cloud-only solutions.

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

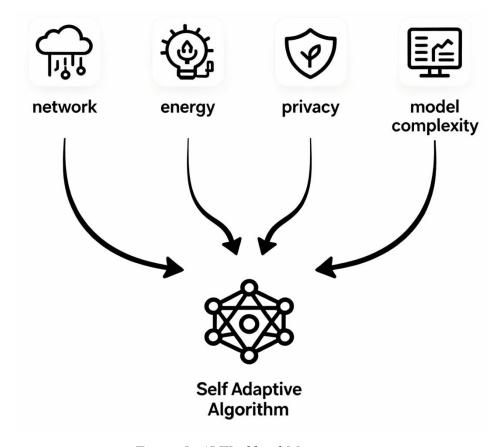


Figure 5: AI Workload Management

These improvements are visualized in Figure 5. Off-loading decisions are influenced by network conditions, energy availability, privacy requirements and model complexity. Intelligent workload management employs reinforcement learning, multi-agent systems and centralized scheduling to optimize performance. Future systems will likely adopt self-adaptive algorithms that dynamically adjust off-loading policies based on user feedback and environmental changes[88][89].

5 Security Challenges and Solutions

5.1 Attack Surface and Threats

Edge computing introduces a larger and more heterogeneous attack surface than centralized cloud environments. Edge nodes may be physically accessible, resource-constrained, and deployed in untrusted environments, making them vulnerable to tampering [90][91]. A survey on edge computing security identifies common threats: DDoS attacks, malware injection, side-channel leaks and authentication/authorization attacks. DDoS attacks can overwhelm limited edge resources, while malware can spread through heterogeneous devices. The decentralized architecture complicates trust management because collecting and validating evidence across distributed nodes is difficult. The introduction of numerous IoT devices increases network bottlenecks, requiring robust distributed computing and security schemes [92][93].

Volume 38 No. 6s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

5.2 Machine-Learning-Based Security

Machine learning (ML) enhances edge security by enabling real-time detection of anomalous behaviour. The security survey emphasizes that ML-based schemes can provide flexible, self-adaptive analytics and enable anomaly detection in the absence of human operators [94][95]. However, shallow ML models may fail to detect sophisticated attacks in MEC networks. A hybrid deep-learning method uses an autoencoder combined with a multilayer perceptron (MLP) to detect DDoS attacks in mobile edge networks, achieving higher accuracy than conventional intrusion detection systems. Similarly, research on edge—cloud predictive maintenance uses AI models (KNN and LSTM) not only for anomaly detection but also for adaptive workload management, demonstrating that ML at the edge can perform real-time inference while complex models run in the cloud [96][97].

5.3 Lightweight Cryptography and Trust Mechanisms

Resource constraints at the edge necessitate lightweight encryption and authentication schemes. A report on resource-saving security strategies for IoT devices proposes lightweight cryptographic algorithms and energy-efficient memory management to protect data without overwhelming limited hardware. Differential privacy and homomorphic encryption can preserve privacy while allowing computations on encrypted data. Physical unclonable functions (PUFs) provide hardware-rooted security by generating unique identifiers from manufacturing variations, enabling secure authentication and key generation. Integrating PUFs with AI techniques may further enhance trust in edge environments [98][99].

5.4 Security Challenges in MEC and Fog Environments

MEC integrates edge computing within cellular networks, allowing multiple users to access services through base stations. While MEC reduces latency and improves bandwidth, it also introduces security challenges. Edge servers must handle privacy-sensitive data and maintain high mobility; designing security rules that adapt to changing network conditions is challenging. MEC environments also support dynamic service migration, which can lead to data exposure if not properly secured. Research emphasises the need for multi-layer security frameworks that combine lightweight encryption, ML-based anomaly detection and trust management to protect heterogeneous devices [100].

6 Practical Applications

6.1 Industrial Internet of Things and Smart Manufacturing

Industrial IoT (IIoT) systems leverage edge computing to perform real-time monitoring, predictive maintenance and process optimization. In power systems, edge computing allows smart devices to process and store data locally, enabling advanced metering infrastructure and predictive maintenance without constant cloud connectivity. Edge devices can execute control actions within milliseconds, preventing equipment failures and reducing downtime. Hybrid frameworks that deploy simple algorithms at the edge and complex models in the cloud improve efficiency while minimizing data transfer. When combined with advanced

Volume 38 No. 6s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

analytics, edge computing enhances overall equipment effectiveness and supports just-in-time manufacturing [101][[102].

6.2 Smart Cities and Urban Infrastructure

Smart city applications—including traffic management, environmental monitoring and public safety—generate massive amounts of data. Edge computing processes data locally on streetlight poles, traffic cameras and gateways, reducing latency for tasks such as adaptive traffic signal control [103]. It also helps preserve privacy by retaining sensitive data (e.g., video frames) on local devices. When aggregated at fog nodes, data can be further analyzed and used to optimize resource utilization [104]. Edge servers integrated into 5G infrastructure support high-bandwidth, low-latency communication for real-time video analytics and emergency response. The integration of MEC within smart cities enables dynamic content caching, context-aware services and autonomous mobility support.

6.3 Healthcare and e-Health

Healthcare applications demand timely and secure processing of sensitive data. Edge computing enables real-time monitoring of patient vitals, remote diagnostics and assistance for elderly patients [105]. For instance, wearable devices can process sensor data locally to detect anomalies and alert caregivers. In e-health scenarios, MEC reduces communication delay between patients and healthcare providers. Hybrid architectures can deliver advanced analytics and training of medical AI models in the cloud while ensuring that latency-sensitive decisions (e.g., insulin pump control) remain at the edge. Privacy regulations such as HIPAA in the United States necessitate on-device processing and encrypted communications to protect patient data.

6.4 Autonomous Vehicles and Intelligent Transportation

Autonomous vehicles require rapid decision-making based on sensor data (LIDAR, radar, cameras). Edge computing is essential to process this data locally on the vehicle or at roadside units to achieve reaction times on the order of milliseconds. Cloud computing may be used for high-definition map updates, fleet management and training of driving models but cannot meet real-time control requirements. Integration with MEC allows vehicles to off-load tasks to nearby base stations, supporting cooperative perception and collision avoidance. The synergy of edge and cloud ensures that vehicles remain responsive while benefiting from centralized knowledge updates [106].

6.5 5G/6G Networks and Multi-Access Edge Computing

Fifth-generation mobile networks aim to provide high data rates, low latency and massive connectivity for IoT devices. MEC integrates computing resources at the base station to process data close to users, thereby reducing transmission delay and improving performance for applications such as immersive gaming and tele-medicine. The 5G core supports network slicing and virtualization, enabling dedicated resources for specific services. A 2024 article notes that MEC is essential for guaranteeing ultra-low delay and high bandwidth in 5G/6G networks, allowing real-time performance for autonomous vehicles, smart cities and

Volume 38 No. 6s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

healthcare. As 6G evolves, edge computing will integrate AI, terahertz communications and space-based infrastructure to support ubiquitous intelligence [107].

6.6 Content Delivery and Media Streaming

Edge caching and content delivery networks (CDNs) improve user experience by storing popular content close to consumers. Multi-agent reinforcement learning can coordinate multiple edge servers to deliver high-quality video streaming to a large number of users. By predicting demand patterns and cooperatively managing resources, the system reduces latency and buffering while maximizing throughput. Such distributed intelligence across the edge–cloud continuum is instrumental in supporting next-generation multimedia services and interactive applications [108].

7 Emerging Trends and Challenges

7.1 Artificial Intelligence at the Edge

Advances in **TinyML** and hardware accelerators enable AI models to run directly on microcontrollers and edge devices. On-device inference reduces latency, conserves bandwidth and enhances privacy because data do not need to be uploaded to the cloud. However, training complex models still requires cloud resources. Hybrid frameworks deploy lightweight models at the edge and use federated learning or split learning to train global models without transferring raw data. Research also explores *spiking neural networks* and neuromorphic computing for ultra-low-power edge AI. Challenges include resource constraints, model compression, and the need for dynamic adaptation to changing contexts [109].

7.2 Resource Virtualization and Network Slicing

Virtualization across the edge—cloud continuum enables on-demand provisioning, isolation and multi-tenancy. MEC employs network slicing to allocate separate virtual networks for different use cases (e.g., autonomous driving, IoT sensing). Future systems will extend virtualization to micro-data centers and devices, enabling **compute-as-a-service** at the extreme edge. Research on energy-aware design and caching optimization in MEC shows that virtualization can improve resource utilization and reduce latency. However, orchestrating slices across heterogeneous infrastructures remains challenging. Standardized APIs and cross-domain management frameworks are necessary to ensure seamless mobility and service migration [110].

7.3 Energy-Aware Scheduling and Green Computing

Sustainable computing is gaining importance as energy consumption of data centers and networks increases. Energy-aware scheduling frameworks use residual energy information to assign tasks and extend device lifetime. In dense IoT networks, energy-efficient communication protocols, caching strategies and virtualization reduce power consumption. Future research focuses on integrating renewable energy sources with edge infrastructures, optimizing cooling systems, and utilizing AI to forecast energy demand. Green computing

Received: August 09, 2025

Volume 38 No. 6s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

guidelines will be essential to meet environmental targets and support sustainable digital growth [111].

7.4 Privacy and Trust Management

As data are processed across distributed nodes, ensuring privacy and trust becomes increasingly complex. The GDPR and other regulations require data controllers to minimize data collection and processing, motivating on-device analytics. Trusted execution environments (TEEs), hardware-rooted keys (e.g., PUFs) and secure boot mechanisms provide platform integrity. Decentralized identity and zero-knowledge proofs may enable secure authentication without revealing personal information. Moreover, robust trust management frameworks must account for dynamic device join/leave behaviour and heterogeneous capabilities [112].

7.5 Regulatory and Standardization Efforts

Global standard bodies such as ETSI and 3GPP are developing specifications for MEC, network slicing and fog computing. Regulatory agencies seek to ensure that edge and cloud services comply with privacy laws, cybersecurity requirements and fairness. For instance, the EU's **Data Governance Act** and **AI Act** may impact AI-driven edge analytics, requiring transparency and accountability in algorithmic decisions. Furthermore, standards for inter-operability across vendors and open APIs will facilitate seamless integration of heterogeneous edge resources [113].

8 Practical Considerations and Guidelines

Selecting between cloud, edge or hybrid computing involves assessing application requirements, resource constraints and trade-offs. The following guidelines summarize best practices [114]:

- 1. **Latency requirements:** For applications requiring responses within tens of milliseconds (e.g., autonomous driving), place critical processing at the edge. For less time-sensitive analytics (e.g., weekly trend analysis), use cloud resources.
- 2. **Data privacy and sovereignty:** If data contain personally identifiable information or are subject to regulations, process and store them at the edge whenever possible. Use hybrid models to send only aggregated or anonymized data to the cloud.
- 3. **Compute intensity:** Off-load compute-intensive tasks to the cloud when local resources are insufficient. Adopt dynamic off-loading algorithms like LDROA to optimize placement.
- 4. **Energy constraints:** Monitor residual energy and schedule tasks to conserve battery life. Employ energy-aware scheduling frameworks and communication protocols.
- 5. **Security posture:** Implement multi-layer security with lightweight encryption, ML-based intrusion detection and hardware-rooted trust. Regularly update firmware and employ secure boot mechanisms.

Volume 38 No. 6s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

- 6. **Cost analysis:** Evaluate both capital and operational costs. While cloud computing reduces infrastructure management, continuous data transfer may be expensive; edge deployments require hardware investment but reduce network fees.
- 7. **Scalability:** Use cloud resources to handle unpredictable spikes and replicate popular content through edge caching. Design for horizontal scaling across multiple edge nodes and dynamic resource allocation.
- 8. **Interoperability:** Choose platforms that support open standards and APIs to avoid vendor lock-in. Participate in emerging standardization efforts.

9 Conclusion

This research work has explored the complementary paradigms of edge computing and cloud computing, emphasizing how they address the challenges posed by the explosion of IoT devices, latency-sensitive applications and privacy regulations. We examined theoretical foundations, architecture models, advantages and limitations, and surveyed recent advances in off-loading, resource management, security and practical applications. Edge computing brings computation closer to data sources, reducing latency and enhancing privacy, while cloud computing provides scalability and robust analytics. Hybrid architectures and the edge–cloud continuum enable dynamic distribution of workloads, achieving notable reductions in latency, energy consumption and bandwidth usage. Conceptual diagrams and charts illustrated the interplay between these paradigms and provided comparative insights. We also highlighted emerging trends such as AI at the edge, energy-aware scheduling, virtualization and regulatory developments. As technology evolves toward 5G/6G networks and ubiquitous intelligence, successful system design will hinge on balancing latency, privacy, scalability, sustainability and cost through adaptive, secure and interoperable architectures.

References

- [1] Andriulo, F. C., Fiore, M., Mongiello, M., Traversa, E., & Zizzo, V. (2024, September). Edge computing and cloud computing for internet of things: A review. In Informatics (Vol. 11, No. 4, p. 71). MDPI.
- [2] Liang, S., Jin, S., & Chen, Y. (2024). A review of edge computing technology and its applications in power systems. *Energies*, 17(13), 3230.
- [3] Ficili, I., Giacobbe, M., Tricomi, G., & Puliafito, A. (2025). From sensors to data intelligence: Leveraging IoT, cloud, and edge computing with AI. *Sensors*, 25(6), 1763.
- [4] Algarni, S., & El-Samie, F. E. A. (2025). Energy-Efficient Distributed Edge Computing to Assist Dense Internet of Things. *Future Internet*, 17(1), 37.
- [5] Jin, X., Zhang, S., Ding, Y., & Wang, Z. (2024). Task offloading for multi-server edge computing in industrial internet with joint load balance and fuzzy security. *Scientific Reports*, 14(1), 27813.
- [6] Garg, P., Dixit, A., & Sethi, P. (2022). Ml-fresh: novel routing protocol in opportunistic networks using machine learning. *Computer Systems Science & Engineering, Forthcoming*. Tech Science Press.

Volume 38 No. 6s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

- [7] Yadav, P. S., Khan, S., Singh, Y. V., Garg, P., & Singh, R. S. (2022). A Lightweight Deep Learning-Based Approach for Jazz Music Generation in MIDI Format. *Computational Intelligence and Neuroscience*, 2022.
- [8] Soni, E., Nagpal, A., Garg, P., & Pinheiro, P. R. (2022). Assessment of Compressed and Decompressed ECG Databases for Telecardiology Applying a Convolution Neural Network. *Electronics*, 11(17), 2708.
- [9] Pustokhina, I. V., Pustokhin, D. A., Lydia, E. L., Garg, P., Kadian, A., & Shankar, K. (2021). Hyperparameter search based convolution neural network with Bi-LSTM model for intrusion detection system in multimedia big data environment. *Multimedia Tools and Applications*, 1-18.
- [10] Khanna, A., Rani, P., Garg, P., Singh, P. K., & Khamparia, A. (2021). An Enhanced Crow Search Inspired Feature Selection Technique for Intrusion Detection Based Wireless Network System. *Wireless Personal Communications*, 1-18.
- [11] Garg, P., Dixit, A., Sethi, P., & Pinheiro, P. R. (2020). Impact of node density on the qos parameters of routing protocols in opportunistic networks for smart spaces. *Mobile Information Systems*, 2020.
- [12] Upadhyay, D., Garg, P., Aldossary, S. M., Shafi, J., & Kumar, S. (2023). A Linear Quadratic Regression-Based Synchronised Health Monitoring System (SHMS) for IoT Applications. Electronics, 12(2), 309.
- [13] Saini, P., Nagpal, B., Garg, P., & Kumar, S. (2023). CNN-BI-LSTM-CYP: A deep learning approach for sugarcane yield prediction. *Sustainable Energy Technologies and Assessments*, 57, 103263.
- [14] Saini, P., Nagpal, B., Garg, P., & Kumar, S. (2023). Evaluation of Remote Sensing and Meteorological parameters for Yield Prediction of Sugarcane (Saccharumofficinarum L.) Crop. Brazilian Archives of Biology and Technology, 66, e23220781.
- [15] Beniwal, S., Saini, U., Garg, P., & Joon, R. K. (2021). Improving performance during camera surveillance by integration of edge detection in IoT system. *International Journal of E-Health and Medical Communications (IJEHMC)*, 12(5), 84-96.
- [16] Garg, P., Dixit, A., & Sethi, P. (2019). Wireless sensor networks: an insight review. *International Journal of Advanced Science and Technology*, 28(15), 612-627.
- [17] Sharma, N., & Garg, P. (2022). Ant colony based optimization model for QoS-Based task scheduling in cloud computing environment. *Measurement: Sensors*, 100531.
- [18] Kumar, P., Kumar, R., & Garg, P. (2020). Hybrid Crowd Cloud Routing Protocol For Wireless Sensor Networks.
- [19] Raj, G., Verma, A., Dalal, P., Shukla, A. K., & Garg, P. (2023). Performance Comparison of Several LPWAN Technologies for Energy Constrained IOT Network. *International Journal of Intelligent Systems and Applications in Engineering*, 11(1s), 150-158.
- [20] Garg, P., Sharma, N., & Shukla, B. (2023). Predicting the Risk of Cardiovascular Diseases using Machine Learning Techniques. *International Journal of Intelligent Systems and Applications in Engineering*, 11(2s), 165-173.
- [21] Patil, S. C., Mane, D. A., Singh, M., Garg, P., Desai, A. B., & Rawat, D. (2024). Parkinson's Disease Progression Prediction Using Longitudinal Imaging Data and Grey

Volume 38 No. 6s, 2025

- ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)
 - Wolf Optimizer-Based Feature Selection. *International Journal of Intelligent Systems and Applications in Engineering*, 12(3s), 441-451.
- [22] Gudur, A., Pati, P., Garg, P., & Sharma, N. (2024). Radiomics Feature Selection for Lung Cancer Subtyping and Prognosis Prediction: A Comparative Study of Ant Colony Optimization and Simulated Annealing. *International Journal of Intelligent Systems and Applications in Engineering*, 12(3s), 553-565.
- [23] Khan, A. (2024). Optimisation Methods Based on Soft Computing for Improving Power System Stability. *J. Electrical Systems*, 20(6s), 1051-1058.
- [24] Sharma, K. K., Verma, P. K., & Garg, P. (2024). IoT-Enabled Energy Management Systems For Sustainable Energy Storage: Design, Optimization, And Future Directions. *Frontiers in Health Informatics*, 13(8).
- [25] Gupta, S., Yadav, N., Singh, K., & Garg, P. (2025). APPLICATIONS OF SIMULATIONS AND QUEUING THEORY IN SUPERMARKET. *Reliability: Theory & Applications*, 20(1 (82)), 135-140.
- [26] Beniwal, S., Garg, P., Rajpal, R., Sharma, N., & Mittal, H. K. (2025). Fusion of Opportunistic Networks with Machine Learning: Present and Future. *Metallurgical and Materials Engineering*, 31(1), 311-324.
- [27] Garg, P. (2025). Explainable AI & Model Interpretability in Healthcare: Challenges & Future Directions. *EKSPLORIUM-BULETIN PUSAT TEKNOLOGI BAHAN GALIAN NUKLIR*, 46(1), 104-133.
- [28] Rani, P. (2025). From Data to Diagnosis: Unleashing AI and 6G in Modern Medicine. *EKSPLORIUM-BULETIN PUSAT TEKNOLOGI BAHAN GALIAN NUKLIR*, 46(1), 69-103.
- [29] Dixit, A., Garg, P., Sethi, P., & Singh, Y. (2020, April). TVCCCS: Television Viewer's Channel Cost Calculation System On Per Second Usage. In *IOP Conference Series: Materials Science and Engineering* (Vol. 804, No. 1, p. 012046). IOP Publishing.
- [30] Sethi, P., Garg, P., Dixit, A., & Singh, Y. (2020, April). Smart number cruncher—a voice based calculator. In *IOP Conference Series: Materials Science and Engineering* (Vol. 804, No. 1, p. 012041). IOP Publishing.
- [31] S. Rai, V. Choubey, Suryansh and P. Garg, "A Systematic Review of Encryption and Keylogging for Computer System Security," 2022 Fifth International Conference on Computational Intelligence and Communication Technologies (CCICT), 2022, pp. 157-163, doi: 10.1109/CCiCT56684.2022.00039.
- [32] L. Saraswat, L. Mohanty, P. Garg and S. Lamba, "Plant Disease Identification Using Plant Images," 2022 Fifth International Conference on Computational Intelligence and Communication Technologies (CCICT), 2022, pp. 79-82, doi: 10.1109/CCiCT56684.2022.00026.
- [33] L. Mohanty, L. Saraswat, P. Garg and S. Lamba, "Recommender Systems in E-Commerce," 2022 Fifth International Conference on Computational Intelligence and Communication Technologies (CCICT), 2022, pp. 114-119, doi: 10.1109/CCiCT56684.2022.00032.

Volume 38 No. 6s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

- [34] C. Maggo and P. Garg, "From linguistic features to their extractions: Understanding the semantics of a concept," 2022 Fifth International Conference on Computational Intelligence and Communication Technologies (CCICT), 2022, pp. 427-431, doi: 10.1109/CCiCT56684.2022.00082.
- [35] N. Puri, P. Saggar, A. Kaur and P. Garg, "Application of ensemble Machine Learning models for phishing detection on web networks," 2022 Fifth International Conference on Computational Intelligence and Communication Technologies (CCICT), 2022, pp. 296-303, doi: 10.1109/CCiCT56684.2022.00062.
- [36] R. Sharma, S. Gupta and P. Garg, "Model for Predicting Cardiac Health using Deep Learning Classifier," 2022 Fifth International Conference on Computational Intelligence and Communication Technologies (CCICT), 2022, pp. 25-30, doi: 10.1109/CCiCT56684.2022.00017.
- [37] Varshney, S. Lamba and P. Garg, "A Comprehensive Survey on Event Analysis Using Deep Learning," 2022 Fifth International Conference on Computational Intelligence and Communication Technologies (CCICT), 2022, pp. 146-150, doi: 10.1109/CCiCT56684.2022.00037.
- [38] Dixit, A., Sethi, P., Garg, P., & Pruthi, J. (2022, December). Speech Difficulties and Clarification: A Systematic Review. In 2022 11th International Conference on System Modeling & Advancement in Research Trends (SMART) (pp. 52-56). IEEE.
- [39] Garg, P., Dixit, A., Sethi, P., & Pruthi, J. (2023, December). Strengthening Smart City with Opportunistic Networks: An Insight. In 2023 International Conference on Advanced Computing & Communication Technologies (ICACCTech) (pp. 700-707). IEEE.
- [40] Rana, S., Chaudhary, R., Gupta, M., & Garg, P. (2023, December). Exploring Different Techniques for Emotion Detection Through Face Recognition. In 2023 International Conference on Advanced Computing & Communication Technologies (ICACCTech) (pp. 779-786). IEEE.
- [41] Mittal, K., Srivastava, K., Gupta, M., & Garg, P. (2023, December). Exploration of Different Techniques on Heart Disease Prediction. In 2023 International Conference on Advanced Computing & Communication Technologies (ICACCTech) (pp. 758-764). IEEE.
- [42] Gautam, V. K., Gupta, S., & Garg, P. (2024, March). Automatic Irrigation System using IoT. In 2024 International Conference on Automation and Computation (AUTOCOM) (pp. 100-103). IEEE.
- [43] Ramasamy, L. K., Khan, F., Joghee, S., Dempere, J., & Garg, P. (2024, March). Forecast of Students' Mental Health Combining an Artificial Intelligence Technique and Fuzzy Inference System. In 2024 International Conference on Automation and Computation (AUTOCOM) (pp. 85-90). IEEE.
- [44] Rajput, R., Sukumar, V., Patnaik, P., Garg, P., & Ranjan, M. (2024, March). The Cognitive Analysis for an Approach to Neuroscience. In 2024 International Conference on Automation and Computation (AUTOCOM) (pp. 524-528). IEEE.
- [45] Dixit, A., Sethi, P., Garg, P., Pruthi, J., & Chauhan, R. (2024, July). CNN based lip-reading system for visual input: A review. In *AIP Conference Proceedings* (Vol. 3121, No. 1). AIP Publishing.

Volume 38 No. 6s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

- [46] Bose, D., Arora, B., Srivastava, A. K., & Garg, P. (2024, May). A Computer Vision Based Framework for Posture Analysis and Performance Prediction in Athletes. In 2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE) (pp. 942-947). IEEE.
- [47] Singh, M., Garg, P., Srivastava, S., & Saggu, A. K. (2024, April). Revolutionizing Arrhythmia Classification: Unleashing the Power of Machine Learning and Data Amplification for Precision Healthcare. In 2024 Sixth International Conference on Computational Intelligence and Communication Technologies (CCICT) (pp. 516-522). IEEE.
- [48] Kumar, R., Das, R., Garg, P., & Pandita, N. (2024, April). Duplicate Node Detection Method for Wireless Sensors. In 2024 Sixth International Conference on Computational Intelligence and Communication Technologies (CCICT) (pp. 512-515). IEEE.
- [49] Bhardwaj, H., Das, R., Garg, P., & Kumar, R. (2024, April). Handwritten Text Recognition Using Deep Learning. In 2024 Sixth International Conference on Computational Intelligence and Communication Technologies (CCICT) (pp. 506-511). IEEE.
- [50] Gill, A., Jain, D., Sharma, J., Kumar, A., & Garg, P. (2024, May). Deep learning approach for facial identification for online transactions. In 2024 International Conference on Emerging Innovations and Advanced Computing (INNOCOMP) (pp. 715-722). IEEE.
- [51] Mittal, H. K., Dalal, P., Garg, P., & Joon, R. (2024, May). Forecasting Pollution Trends: Comparing Linear, Logistic Regression, and Neural Networks. In *2024 International Conference on Emerging Innovations and Advanced Computing (INNOCOMP)* (pp. 411-419). IEEE.
- [52] Malik, T., Nandal, V., & Garg, P. (2024, May). Deep Learning-Based Classification of Diabetic Retinopathy: Leveraging the Power of VGG-19. In 2024 International Conference on Emerging Innovations and Advanced Computing (INNOCOMP) (pp. 645-651). IEEE.
- [53] Srivastava, A. K., Verma, I., & Garg, P. (2024, May). Improvements in Recommendation Systems Using Graph Neural Networks. In 2024 International Conference on Emerging Innovations and Advanced Computing (INNOCOMP) (pp. 668-672). IEEE.
- [54] Aggarwal, A., Jain, D., Gupta, A., & Garg, P. (2024, May). Analysis and Prediction of Churn and Retention Rate of Customers in Telecom Industry Using Logistic Regression. In 2024 International Conference on Emerging Innovations and Advanced Computing (INNOCOMP) (pp. 723-727). IEEE.
- [55] Mittal, H. K., Arsalan, M., & Garg, P. (2024, May). A Novel Deep Learning Model for Effective Story Point Estimation in Agile Software Development. In 2024 International Conference on Emerging Innovations and Advanced Computing (INNOCOMP) (pp. 404-410). IEEE.
- [56] Shukla, S. M., Magoo, C., & Garg, P. (2024, November). Comparing Fine Tuned-LMs for Detecting LLM-Generated Text. In 2024 3rd Edition of IEEE Delhi Section Flagship Conference (DELCON) (pp. 1-8). IEEE.

Volume 38 No. 6s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

- [57] Kumar, B., IQBAL, M., Parmer, R., Garg, P., Rani, S., & Agrawal, A. (2025, March). The Role of AI in Optimizing Healthcare Appointment Scheduling. In *2025 3rd International Conference on Disruptive Technologies (ICDT)* (pp. 881-887). IEEE.
- [58] Kumar, B., Garg, V., Ahmed, K., Garg, P., Choudhary, S., & Baniya, P. (2025, March). Enhancing Healthcare with Blockchain: Innovations in Data Privacy, Security, and Interoperability. In 2025 3rd International Conference on Disruptive Technologies (ICDT) (pp. 932-938). IEEE.
- [59] Raj, V., Prakash, B. K., Kumar, A., & Garg, P. (2024, December). Optimize the Time a Mercedes-Benz Spends on the Test Bench Using Stacking Ensemble Learning. In 2024 International Conference on Progressive Innovations in Intelligent Systems and Data Science (ICPIDS) (pp. 445-450). IEEE.
- [60] Kaushik, N., Kumar, H., Raj, V., & Garg, P. (2024, December). Proactive Fault Prediction in Microservices Applications Using Trace Logs and Monitoring Metrics. In 2024 International Conference on Progressive Innovations in Intelligent Systems and Data Science (ICPIDS) (pp. 410-415). IEEE.
- [61] Kumar, A. A., Sri, C. V., Bohara, K. S. K., Setia, S., & Garg, P. (2024, December). Capnivesh: Financing Platform for Startups. In 2024 International Conference on Progressive Innovations in Intelligent Systems and Data Science (ICPIDS) (pp. 261-265). IEEE.
- [62] Bhandari, P., Setia, S., Kumar, K., & Garg, P. (2024, December). Optimizing Cross-Platform Development with CI/CD and Containerization: A Review. In 2024 International Conference on Progressive Innovations in Intelligent Systems and Data Science (ICPIDS) (pp. 175-180). IEEE.
- [63] Chaudhary, A., & Garg, P. (2014). Detecting and diagnosing a disease by patient monitoring system. *International Journal of Mechanical Engineering And Information Technology*, 2(6), 493-499.
- [64] Malik, K., Raheja, N., & Garg, P. (2011). Enhanced FP-growth algorithm. *International Journal of Computational Engineering and Management*, 12, 54-56.
- [65] Garg, P., Dixit, A., & Sethi, P. (2021, May). Link Prediction Techniques for Opportunistic Networks using Machine Learning. In *Proceedings of the International Conference on Innovative Computing & Communication (ICICC)*.
- [66] Garg, P., Dixit, A., & Sethi, P. (2021, April). Opportunistic networks: Protocols, applications & simulation trends. In *Proceedings of the International Conference on Innovative Computing & Communication (ICICC)*.
- [67] Garg, P., Dixit, A., & Sethi, P. (2021). Performance comparison of fresh and spray & wait protocol through one simulator. *IT in Industry*, 9(2).
- [68] Malik, M., Singh, Y., Garg, P., & Gupta, S. (2020). Deep Learning in Healthcare system. *International Journal of Grid and Distributed Computing*, 13(2), 469-468.
- [69] Gupta, M., Garg, P., Gupta, S., & Joon, R. (2020). A Novel Approach for Malicious Node Detection in Cluster-Head Gateway Switching Routing in Mobile Ad Hoc

Volume 38 No. 6s, 2025

- ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)
 - Networks. International Journal of Future Generation Communication and Networking, 13(4), 99-111.
- [70] Gupta, A., Garg, P., & Sonal, Y. S. (2020). Edge Detection Based 3D Biometric System for Security of Web-Based Payment and Task Management Application. *International Journal of Grid and Distributed Computing*, 13(1), 2064-2076.
- [71] Kumar, P., Kumar, R., & Garg, P. (2020). Hybrid Crowd Cloud Routing Protocol For Wireless Sensor Networks.
- [72] Garg, P., & Raman, P. K. Broadcasting Protocol & Routing Characteristics With Wireless ad-hoc networks.
- [73] Garg, P., Arora, N., & Malik, T. Capacity Improvement of WI-MAX In presence of Different Codes WI-MAX: Speed & Scope of future.
- [74] Garg, P., Saroha, K., & Lochab, R. (2011). Review of wireless sensor networks-architecture and applications. IJCSMS International Journal of Computer Science & Management Studies, 11(01), 2231-5268.
- [75] Yadav, S., &Garg, P. Development of a New Secure Algorithm for Encryption and Decryption of Images.
- [76] Dixit, A., Sethi, P., & Garg, P. (2022). Rakshak: A Child Identification Software for Recognizing Missing Children Using Machine Learning-Based Speech Clarification. International Journal of Knowledge-Based Organizations (IJKBO), 12(3), 1-15.
- [77] Shukla, N., Garg, P., & Singh, M. (2022). MANET Proactive and Reactive Routing Protocols: A Comparison Study. International Journal of Knowledge-Based Organizations (IJKBO), 12(3), 1-14.
- [78] Arya, A., Garg, P., Vellanki, S., Latha, M., Khan, M. A., & Chhbra, G. (2024). Optimisation Methods Based on Soft Computing for Improving Power System Stability. *Journal of Electrical Systems*, 20(6s), 1051-1058.
- [79] Garg, P. (2025). Cloud security posture management: Tools and techniques. Technix International Journal for Engineering Research, 12(3).
- [80] Tyagi, P., Sharma, S., Srivastava, A., Rajput, N. K., Garg, P., & Kumari, M. (2025). AI in Healthcare: Transforming Medicine with Intelligence. In *First Global Conference on AI Research and Emerging Developments (G-CARED 2025)*, New Delhi, India. https://doi.org/10.63169/GCARED2025.p4
- [81] Bhatt, M., Parmar, R., Arsalan, M., & Garg, P. (2025). Generative AI: Evolution, Applications, Challenges And Future Prospects. In *First Global Conference on AI Research and Emerging Developments (G-CARED 2025)*, New Delhi, India. https://doi.org/10.63169/GCARED2025.p6
- [82] Saraswat, P., Garg, P., & Siddiqui, Z. (2025). AI & the Indian Stock Market: A Review of Applications in Investment Decision. In *First Global Conference on AI Research and Emerging Developments (G-CARED 2025)*, New Delhi, India. https://doi.org/10.63169/GCARED2025.p10
- [83] Sharma, S., Mittal, S., Tevatia, R., Tyagi, V. K., Garg, P., & Kapoor, S. (2025). Unlocking Workforce Potential: AI-Powered Predictive Models for Employee Performance

Volume 38 No. 6s, 2025

- ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)
 - Evaluation. Ind Emerging Developments (G-CARED 2025), New Delhi, India. https://doi.org/10.63169/GCARED2025.p21
- [84] Shrivas, N., Kalia, A., Roy, R., Sharma, S., Garg, P., & Agarwal, G. (2025). OSINT: A Double-edged Sword. In *First Global Conference on AI Research and Emerging Developments (G-CARED 2025)*, New Delhi, India. https://doi.org/10.63169/GCARED2025.p22
- [85] Aditi, Garg, P., & Roy, B. (2025). A System of Computer Network: Based On Artificial Intelligence. In *First Global Conference on AI Research and Emerging Developments (G-CARED 2025)*, New Delhi, India. https://doi.org/10.63169/GCARED2025.p24
- [86] Parmar, R., Kapoor, S., Saifi, S., & Garg, P. (2025). Case Study on Intelligent Factory Systems for Improving Productivity and Capability in Industry 4.0 with Generative AI. In *First Global Conference on AI Research and Emerging Developments (G-CARED 2025)*, New Delhi, India. https://doi.org/10.63169/GCARED2025.p28
- [87] Singh, R., Sharma, R., Kumar, R., Nafis, A., Siddiqui, M. A. M., & Garg, P. (2025). Detection of Unauthorize Construction using Machine Learning: A Review. In *First Global Conference on AI Research and Emerging Developments (G-CARED 2025)*, New Delhi, India. https://doi.org/10.63169/GCARED2025.p30
- [88] Kapoor, S., Singh, V., Sharma, S., Garg, P., & Ankita (2025). A Bridge between Blockchain and Decentralized Applications Web3 and Non-Web3 Crypto Wallets. In *First Global Conference on AI Research and Emerging Developments (G-CARED 2025)*, New Delhi, India. https://doi.org/10.63169/GCARED2025.p35
- [89] Verma, M., Sharma, S., Garg, P., & Singh, A. (2025). The Hidden Dangers of Prototype Pollution: A Comprehensive Detection Framework. In *First Global Conference on AI Research and Emerging Developments (G-CARED 2025)*, New Delhi, India. https://doi.org/10.63169/GCARED2025.p36
- [90] Sharma, A., Sharma, S., Garg, P., & Bhardwaj, P. (2025). LockTalk: A Basic Secure Chat Application. In *First Global Conference on AI Research and Emerging Developments (G-CARED 2025)*, New Delhi, India.
- [91] Arora, K., Bawane, R., Gupta, C., Ahmed, K., & Garg, P. (2025). Detection and Prevention of Cyber Attack and Threat using AI. In *First Global Conference on AI Research and Emerging Developments (G-CARED 2025)*, New Delhi, India. https://doi.org/10.63169/GCARED2025.p38
- [92] Dhruv, Rahman, A. A., Rai, A., Siddiqui, M. A. M., Garg, P., & Yadav, D. (2025). Easeviewer: An Esports Production Tool. In *First Global Conference on AI Research and Emerging Developments (G-CARED 2025)*, New Delhi, India. https://doi.org/10.63169/GCARED2025.p46
- [93] Lakshita, Mehwish, Nazia, Ahmed, K., & Garg, P. (2025). Emerging Trend in Computational Technology: Innovations, Applications, and Challenges. In *First Global Conference on AI Research and Emerging Developments (G-CARED 2025)*, New Delhi, India. https://doi.org/10.63169/GCARED2025.p51

Volume 38 No. 6s, 2025

- ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)
- [94] Chauhan, S., Singh, M., & Garg, P. (2021). Rapid Forecasting of Pandemic Outbreak Using Machine Learning. *Enabling Healthcare 4.0 for Pandemics: A Roadmap Using AI, Machine Learning, IoT and Cognitive Technologies*, 59-73.
- [95] Gupta, S., & Garg, P. (2021). An insight review on multimedia forensics technology. Cyber Crime and Forensic Computing: Modern Principles, Practices, and Algorithms, 11, 27.
- [96] Shrivastava, P., Agarwal, P., Sharma, K., & Garg, P. (2021). Data leakage detection in Wi-Fi networks. *Cyber Crime and Forensic Computing: Modern Principles, Practices, and Algorithms*, 11, 215.
- [97] Meenakshi, P. G., & Shrivastava, P. (2021). Machine learning for mobile malware analysis. Cyber Crime and Forensic Computing: Modern Principles, Practices, and Algorithms, 11, 151.
- [98] Garg, P., Pranav, S., & Prerna, A. (2021). Green Internet of Things (G-IoT): A Solution for Sustainable Technological Development. In *Green Internet of Things for Smart Cities* (pp. 23-46). CRC Press.
- [99] Nanwal, J., Garg, P., Sethi, P., & Dixit, A. (2021). Green IoT and Big Data: Succeeding towards Building Smart Cities. In *Green Internet of Things for Smart Cities* (pp. 83-98). CRC Press.
- [100] Gupta, M., Garg, P., & Agarwal, P. (2021). Ant Colony Optimization Technique in Soft Computational Data Research for NP-Hard Problems. In *Artificial Intelligence for a Sustainable Industry 4.0* (pp. 197-211). Springer, Cham.
- [101] Magoo, C., & Garg, P. (2021). Machine Learning Adversarial Attacks: A Survey Beyond. *Machine Learning Techniques and Analytics for Cloud Security*, 271-291.
- [102] Garg, P., Srivastava, A. K., Anas, A., Gupta, B., & Mishra, C. (2023). Pneumonia Detection Through X-Ray Images Using Convolution Neural Network. In *Advancements in Bio-Medical Image Processing and Authentication in Telemedicine* (pp. 201-218). IGI Global.
- [103] Gupta, S., & Garg, P. (2023). 14 Code-based post-quantum cryptographic technique: digital signature. *Quantum-Safe Cryptography Algorithms and Approaches: Impacts of Quantum Computing on Cybersecurity*, 193.
- [104] Prakash, A., Avasthi, S., Kumari, P., & Rawat, M. (2023). PuneetGarg 18 Modern healthcare system: unveiling the possibility of quantum computing in medical and biomedical zones. Quantum-Safe Cryptography Algorithms and Approaches: Impacts of Quantum Computing on Cybersecurity, 249.
- [105] Gupta, S., & Garg, P. (2024). Mobile Edge Computing for Decentralized Systems. *Decentralized Systems and Distributed Computing*, 75-88.
- [106] Gupta, M., Garg, P., & Malik, C. (2024). Ensemble learning-based analysis of perinatal disorders in women. In Artificial Intelligence and Machine Learning for Women's Health Issues (pp. 91-105). Academic Press.
- [107] Malik, M., Garg, P., & Malik, C. (2024). Artificial intelligence-based prediction of health risks among women during menopause. *Artificial Intelligence and Machine Learning for Women's Health Issues*, 137-150.

Volume 38 No. 6s, 2025

- ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)
- [108] Garg, P. (2024). Prediction of female pregnancy complication using artificial intelligence. In *Artificial Intelligence and Machine Learning for Women's Health Issues* (pp. 17-35). Academic Press.
- [109] Pokhrel, L., Arsalan, M., Rani, P., Garg, P., & Pinheiro, P. R. (2026). AI-Powered Healthcare Solutions: Bridging the Medical Gap in Underserved Communities Worldwide. In *Applied AI and Computational Intelligence in Diagnostics and Decision-Making* (pp. 57-86). IGI Global Scientific Publishing.
- [110] Kapoor, S., Parmar, R., Sharma, N., Garg, P., & Singh, N. J. (2026). AI and Computational Intelligence in Healthcare: An Introductory Guide. In *Applied AI and Computational Intelligence in Diagnostics and Decision-Making* (pp. 1-26). IGI Global Scientific Publishing.
- [111] Pokhrel, L., Kumar, A., Garg, P., Anand, N., & Singh, N. (2026). AI and IoT in Global Health: Ethical Lessons From Pandemic Response. In *Development and Management of Eco-Conscious IoT Medical Devices* (pp. 367-394). IGI Global Scientific Publishing.
- [112] Parmar, R., Singh, A., Garg, P., Sharma, T., & Pinheiro, P. R. (2026). Blockchain for Ethical Supply Chains: Transparency in Medical IoT Manufacturing. In *Development and Management of Eco-Conscious IoT Medical Devices* (pp. 337-366). IGI Global Scientific Publishing.
- [113] Gupta, S., Garg, P., Agarwal, J., Thakur, H. K., & Yadav, S. P. (2024). Federated learning based intelligent systems to handle issues and challenges in IoVs (Part 1). Bentham Science Publishers. https://doi.org/10.2174/97898153130311240301
- [114] Gupta, S., Garg, P., Agarwal, J., Thakur, H. K., & Yadav, S. P. (2025). Federated learning based intelligent systems to handle issues and challenges in IoVs (Part 2). Bentham Science Publishers. https://doi.org/10.2174/97898153222241250301