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Abstract

Early detection and accurate classification of knee-related diseases such as osteoarthritis,
ligament injuries, and meniscus tears are critical for effective treatment planning and improved
patient outcomes. With the rapid advancements in artificial intelligence, particularly in machine
learning (ML) and deep learning (DL), automated diagnostic systems have emerged as
promising tools in the field of medical imaging. This survey presents a comprehensive analysis
of recent methodologies and frameworks employed in the early detection and classification of
knee diseases using ML and DL approaches. The study explores traditional ML techniques,
including support vector machines (SVM), random forests (RF), k-nearest neighbours (KNN),
and ensemble methods, which rely heavily on handcrafted features and domain-specific
knowledge. Furthermore, the review delves into the transformative impact of deep learning,
especially convolutional neural networks (CNNs), recurrent neural networks (RNNs), and
hybrid architectures such as VGG, ResNet, and LSTM, which autonomously extract spatial
and temporal features from raw medical images. This survey also covers key aspects such as
image preprocessing, segmentation, feature extraction, and model evaluation using metrics like
accuracy, precision, recall, Fl-score, and AUC. Emphasis is placed on the role of data
augmentation, normalization, and transfer learning in enhancing model performance.
Additionally, the paper discusses publicly available datasets, challenges of class imbalance,
interpretability of models, and computational efficiency. Comparative insights into 2D versus
3D image processing, integration of MRI and X-ray modalities, and recent trends in multimodal
fusion are also addressed. The findings underscore the growing dominance of DL models,
particularly hybrid frameworks that combine the strengths of multiple networks to deliver
superior diagnostic accuracy. This survey aims to guide future research by identifying gaps,
highlighting best practices, and providing a foundational understanding of intelligent systems
for early knee disease detection.
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Introduction

Knee-related disorders, particularly knee osteoarthritis (KOA), represent a significant portion
of musculoskeletal conditions affecting individuals worldwide. As populations age and
lifestyles become increasingly sedentary, the prevalence of knee-related diseases such as KOA,
meniscus tears, bone marrow and other degenerative or traumatic joint conditions is escalating
at an alarming rate. According to Ondresik et al. [1], the current management of knee
osteoarthritis faces several limitations, and future therapeutic and diagnostic approaches must
evolve to address growing clinical needs. Muraki et al. [2] highlighted that in aging populations
such as those in Japan, the prevalence of radiographic KOA and its correlation with knee pain
is increasingly evident, underscoring the need for timely and accurate diagnosis. Compounding
this issue, long-term consequences of ligament and meniscal injuries—such as anterior cruciate
ligament (ACL) and meniscus tears—often lead to early-onset osteoarthritis, as emphasized by
Lohmander et al. [3]. Meniscus injuries in particular have garnered considerable clinical
attention due to their association with KOA. As discussed by Englund et al. [4], the clinical
management of meniscus pathology remains controversial, with a spectrum of treatment
strategies and variable outcomes. Ahmed et al. [5] further noted that while meniscus tears are
more common than previously understood, less than a quarter of diagnosed individuals undergo
arthroscopy, raising concerns about underdiagnosis or undertreatment. Luvsannyam et al. [6]
explored the pathology and incidence of meniscal tears, indicating a need for non-invasive and
more effective diagnostic protocols. Bone-related conditions such as transient regional
osteoporosis and bone marrow edema syndrome also affect knee health significantly.
Lakhanpal et al. [7] and Hofmann [8] provided early studies on the clinical manifestations of
these syndromes, which were later supported by Starr et al. [9] through imaging insights into
pathophysiological and diagnostic aspects.

Amid these challenges, there is growing interest in leveraging advanced computational
techniques to improve diagnostic accuracy and early detection. In particular, machine learning
(ML) and deep learning (DL) approaches are emerging as transformative tools in medical
imaging and diagnostics. Bien et al. [10] demonstrated the efficacy of a deep learning model—
MRNet—in assisting knee MRI interpretation, significantly improving the accuracy of
diagnoses by detecting abnormalities and aiding radiologists in decision-making. However, as
Kim and Mansfield [11] caution, even advanced radiological systems can be prone to repeated
diagnostic errors if Al tools are not implemented with adequate validation and interpretability.
The increasing intersection of artificial intelligence with radiology has garnered the attention
of global medical communities. A EuroAIM survey conducted by the European Society of
Radiology (ESR) revealed strong support for Al's integration into radiological practices [12].
This reflects a broader trend toward automating and augmenting diagnostic workflows.
Techniques originally developed for surveillance and pattern recognition, such as Generative
Adversarial Networks (GANSs) used in aerial video anomaly detection [13], and deep learning
models developed for natural language processing [14], have found new and powerful
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applications in medical domains. In rehabilitation science, ML techniques are now used to
assess and infer treatment effectiveness in orthopedic and neurological patients, showcasing
their versatility [15].

Foundational contributions to the fields of pattern recognition and machine learning, such as
Bishop’s seminal work [16], have laid the groundwork for practical applications in real-world
healthcare scenarios. Innovations in computer vision, such as high-speed corner detection for
image processing tasks by Rosten and Drummond [17], have further catalyzed progress in
clinical imaging analysis. Additionally, studies on disease detection outside the orthopedic
domain, like Vidya and Karki’s work on skin cancer [18], Nguyen et al.’s model for diabetic
retinopathy [19], and Nasrullah et al.’s automated lung nodule detection framework [20],
provide valuable inspiration and methodological parallels for knee disease detection
frameworks. In this context, the current research titled "Early Detection and Classification of
Knee Disease Using Machine Learning and Deep Learning Techniques: An Overview" seeks
to provide a comprehensive review of the state-of-the-art ML and DL techniques deployed for
knee disease diagnostics. The primary objective is to examine how these techniques have been
applied, what datasets and models have been used, their strengths and limitations, and the future
potential for integrating such solutions into clinical practice. The review emphasizes the
significance of early diagnosis in altering disease progression, minimizing patient discomfort,
and reducing healthcare burdens. Moreover, it investigates how Al-driven systems can be made
more reliable, interpretable, and accessible for diverse clinical environments, including under-
resourced healthcare settings. As knee diseases vary in etiology, manifestation, and clinical
management, there is a pressing need for automated, accurate, and cost-effective diagnostic
solutions. With the advent of sophisticated ML and DL techniques, the potential to develop
intelligent decision-support systems that assist healthcare providers in detecting pathologies
such as KOA, meniscus tears, and bone edema has become tangible. The early identification
of these conditions not only improves prognosis but also enhances patient quality of life
through timely intervention. The ensuing sections of this manuscript will explore relevant
literature, current technological frameworks, and methodological insights into how Al is
transforming the knee disease diagnostic landscape.

This research manuscript is systematically structured to deliver a cohesive overview of
contemporary machine learning and deep learning strategies for the early detection and
classification of knee-related diseases. The paper begins with an Abstract, summarizing the
study's core focus—evaluating Al-based frameworks for diagnosing conditions like
osteoarthritis, meniscal tears, and ligament injuries using medical imaging techniques such as
MRI and X-rays. The Introduction section contextualizes the rising prevalence of knee
disorders and the limitations of traditional diagnostic methods. It underscores the urgency for
automated diagnostic solutions and introduces ML and DL as transformative tools in this
domain, citing foundational and contemporary literature to establish relevance and need.
Following this, the Literature Review comprehensively evaluates various clinical and technical
studies that have applied Al to knee disease diagnosis. This section dissects traditional machine
learning models (SVM, KNN, RF) and deep learning frameworks (CNNs, RNNs, LSTM,
ResNet, MobileNetV3) and their effectiveness in image analysis, segmentation, classification,
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and performance optimization. The Research Methodology outlines the approach adopted in
evaluating and synthesizing existing studies, including criteria for selecting relevant
frameworks, datasets, evaluation metrics (accuracy, precision, F1-score, AUC), and imaging
modalities. The Observations and Findings and Challenges sections highlight key insights
drawn from literature synthesis, identifying strengths in hybrid models and the challenges of
data scarcity, class imbalance, and model interpretability. The Future Scope proposes directions
for enhancing Al models with multimodal data integration, explainable Al, and real-time
deployment. Finally, the Conclusion encapsulates the study's contributions and reiterates the
role of Al in improving diagnostic accuracy, consistency, and early intervention for knee
diseases.
Literature Review

Ondresik et al. [1] provide a comprehensive analysis of the status and future perspectives in
the management of knee osteoarthritis (OA). The review explores both conventional and
emerging treatment methods, such as physical therapy, pharmacological agents, and
regenerative medicine, including cell therapy and tissue engineering. It delves into the
pathophysiological mechanisms underlying OA, identifying biomechanical imbalance,
inflammatory mediators, and cartilage degeneration as critical factors. The study emphasizes
the potential of biomaterials and scaffold-based strategies for tissue regeneration. Importantly,
it highlights the relevance of personalized medicine and biomarker-based diagnosis in tailoring
patient-specific therapeutic strategies. The authors advocate for multidisciplinary approaches
combining bioengineering with clinical medicine. Although not focused on AlI, this
foundational work outlines the complexity of OA management, which sets the stage for
integrating machine learning techniques in early diagnosis and treatment planning. This
epidemiological study by Muraki et al. [2] evaluates the prevalence of radiographic knee OA
and its relationship with knee pain in elderly Japanese cohorts. Utilizing data from the ROAD
study, the authors analyze radiographic and symptomatic data from over 3,000 subjects. The
results indicate a discordance between radiographic findings and the presence of knee pain,
especially in the early stages of OA. This disconnect underscores the limitations of traditional
diagnostic imaging in capturing the functional burden of OA. The findings emphasize the need
for diagnostic tools that integrate imaging with patient-reported outcomes and clinical history.
These insights directly support the development of machine learning models that leverage
multimodal data for more accurate and early detection of OA.

Lohmander et. al. [3] explore the long-term consequences of anterior cruciate ligament (ACL)
and meniscus injuries in the context of knee osteoarthritis. This longitudinal study reviews data
from multiple cohorts and finds a strong correlation between ACL or meniscus damage and the
onset of OA. The authors highlight that even with surgical intervention, the risk of OA remains
elevated, especially in younger individuals who sustain these injuries. These findings suggest
that early biomechanical damage may predispose joints to degenerative changes that manifest
years later. This research is pivotal for predictive modeling using Al, where early injury history
can be input data to predict OA risk in later life. Englund et al. [4] present an in-depth review
of meniscus pathology and its controversial role in the development and treatment of OA. The
paper emphasizes that meniscal tears are common and often asymptomatic but may still lead
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to OA. The authors discuss the diagnostic challenges posed by MRI findings, which often
reveal meniscus damage even in asymptomatic individuals. The review also critiques the
widespread use of arthroscopic surgery, suggesting that it may not always yield beneficial
outcomes. The paper advocates for more conservative management and enhanced diagnostic
accuracy. In the context of machine learning, these findings underscore the need for models
that can differentiate between clinically significant and incidental meniscus findings, thereby
guiding treatment decisions more accurately.

Ahmed et. al. [5] conduct a comprehensive analysis of the prevalence of meniscus tears and
the rates of surgical intervention. Through a population-based study, they reveal that while
meniscus tears are highly prevalent, less than a quarter of affected individuals undergo
arthroscopy. The authors attribute this to an evolving understanding of the natural history of
meniscal pathology and the questionable benefit of surgical interventions in some cases. The
findings prompt the need for better diagnostic and prognostic tools to stratify patients who
would benefit most from surgery. This has direct implications for machine learning, as
predictive models could help clinicians identify optimal treatment pathways based on imaging
and clinical data. The [6] provides a detailed overview of meniscus tear pathology, incidence,
and management strategies. The authors explore the anatomical and biomechanical roles of the
meniscus, as well as common causes and types of tears. They review diagnostic techniques,
particularly MRI, and discuss both surgical and non-surgical treatment options. The paper
emphasizes the importance of early diagnosis and individualized treatment plans. For Al and
ML applications, this comprehensive understanding of meniscus pathology supports the
development of diagnostic algorithms that can classify tear types and suggest personalized
treatment protocols.

In this foundational work, Lakhanpal et al. [7] examine transient regional osteoporosis (TRO),
a lesser-known condition that can mimic early-stage OA in clinical presentation. Analyzing 56
cases, the authors describe TRO as a self-limiting condition with localized bone
demineralization, often misdiagnosed as OA due to overlapping symptoms such as joint pain
and limited motion. The study highlights the diagnostic challenge posed by TRO and the need
for advanced imaging and clinical correlation. For ML applications, this underscores the
importance of including differential diagnoses in training datasets to improve diagnostic
specificity. Hofmann [8] discusses bone marrow edema syndrome (BMES) in the hip joint, a
painful condition characterized by localized edema visible on MRI. Although focused on the
hip, the study's insights are translatable to the knee joint. The paper details the pathophysiology,
clinical presentation, and imaging findings associated with BMES. It advocates for MRI as a
primary diagnostic tool and warns against unnecessary invasive interventions. From a deep
learning perspective, this reinforces the utility of advanced imaging modalities and the need
for models that can interpret subtle changes like edema patterns to distinguish between
inflammatory and degenerative joint conditions.

Starr et. al. [9] provide a detailed examination of bone marrow edema (BME), discussing its
pathophysiology, differential diagnosis, and imaging features. The paper outlines the various
causes of BME, including trauma, infection, inflammation, and degenerative diseases like OA.
The authors emphasize the diagnostic value of MRI and advocate for a structured approach to
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interpreting edema patterns. For machine learning, this study offers a valuable framework for
feature extraction and labeling in MRI datasets. Incorporating such nuanced radiological
features into ML algorithms could enhance the accuracy of OA classification and staging. Bien
et al. [10] introduce MRNet, a deep learning framework for automated diagnosis of knee
pathologies from MRI data. Trained on a large dataset annotated by radiologists, MRNet
achieves high accuracy in detecting ACL tears, meniscal tears, and general abnormalities. The
architecture uses convolutional neural networks (CNNs) to process MRI slices and applies
attention mechanisms to focus on clinically relevant regions. The study demonstrates that
MRNet performs comparably to expert radiologists, highlighting the transformative potential
of Al in musculoskeletal imaging. This work is seminal in the field and provides a robust
baseline for future studies aiming to expand automated diagnostic capabilities beyond binary
classification to include severity grading and treatment prediction.

Kim and Mansfield [ 11] critically investigated diagnostic delays in radiology, particularly those
caused by perpetuated errors, which are mistakes repeated due to human or systemic oversight.
Their findings revealed that radiologists are prone to confirmation bias and satisfaction of
search errors, both of which contribute to significant diagnostic failures. These errors not only
affect diagnostic accuracy but also delay treatment, particularly in time-sensitive conditions.
The relevance to knee disease detection is that similar radiological misreads or oversights can
impede early diagnosis of musculoskeletal disorders such as osteoarthritis. Integrating Al and
ML-based systems could mitigate these errors by introducing a second layer of automated
verification. This paper highlights the necessity for intelligent diagnostic systems to
supplement human interpretation, especially when analyzing complex knee MRI or X-ray
images. The European Society of Radiology's survey [12] evaluated the anticipated impact of
artificial intelligence in radiology, emphasizing opportunities and apprehensions among
radiologists. The study revealed strong support for Al adoption, particularly for enhancing
efficiency and diagnostic accuracy. Many respondents believed Al could reduce workload and
help identify anomalies more consistently. However, concerns about job security and
interpretability of Al decisions were prevalent. In the context of knee disease detection, this
paper underscores Al's potential to streamline radiographic analysis and enhance early
diagnosis, provided human oversight and training are maintained.

Avola et al. [13] proposed a novel GAN-based method for anomaly detection and localization
in aerial video surveillance, demonstrating the versatility of generative models. While focused
on surveillance, the core methodology is applicable to medical imaging, where anomaly
detection in knee scans is crucial for early intervention. GANs can be adapted to learn the
distribution of healthy knee structures and flag deviations indicative of osteoarthritis or
ligament damage. This paper expands the horizon of generative deep learning models in
healthcare diagnostics. Otter, Medina, and Kalita [14] conducted a comprehensive survey on
deep learning applications in natural language processing (NLP), tracing its evolution from
traditional models to transformer-based architectures. Despite its NLP focus, the survey offers
foundational insights into the scalability and generalizability of deep learning models.
Concepts like transfer learning and attention mechanisms discussed in the paper are
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transferable to medical imaging tasks, including knee disease classification. Transfer learning
from NLP to imaging contexts demonstrates the interdisciplinary utility of deep learning.
Santilli et al. [15] explored the application of machine learning in predicting the effectiveness
of rehabilitation programs for orthopaedic and neurological patients. Their framework
employed regression models to infer treatment outcomes based on patient-specific features.
For knee disease management, particularly post-surgical or therapy-based recovery from
osteoarthritis or ACL tears, such ML models can personalize care pathways. The study
validates the feasibility of predictive analytics for patient-specific rehabilitation, which is
highly relevant in orthopaedics. Bishop's seminal textbook [16]on Pattern Recognition and
Machine Learning remains a foundational resource for understanding the theoretical
underpinnings of ML. It covers essential algorithms including Bayesian networks, support
vector machines, and clustering—all of which have been instrumental in medical diagnostics.
In the context of knee disease detection, Bishop's work supports the algorithmic framework
that underlies image classification models used for detecting abnormalities in MRI or X-ray
images. This work is vital for anyone building reliable ML systems in healthcare.

Rosten and Drummond [17] introduced a high-speed corner detection method optimized for
real-time computer vision applications. Though primarily developed for general object
detection, such techniques have implications in medical imaging, especially in feature
extraction from joint regions in knee radiographs. Effective corner detection enhances image
segmentation, which is critical in isolating knee components such as the patella, femur, and
meniscus for detailed analysis and classification.

Vidya and Karki [18] demonstrated the use of machine learning for skin cancer detection,
presenting a pipeline involving image acquisition, preprocessing, feature extraction, and
classification. Although the domain is dermatology, the methodology is transferrable to
orthopedics. Detecting surface anomalies in dermoscopic images is analogous to identifying
structural irregularities in knee X-rays. Their study reinforces the applicability of ML in early
disease detection, underlining its cross-domain effectiveness. Nguyen et al. [19] explored deep
learning for diabetic retinopathy detection using retinal images. They implemented CNN
architectures to detect disease progression stages with high accuracy. This paradigm of using
hierarchical feature learning for medical diagnostics can be extended to knee disease detection.
Just as deep features reveal microaneurysms in retinal scans, they can detect minute structural
changes in knee cartilage and bones indicative of early-stage osteoarthritis.

Nasrullah et al. [20] proposed a hybrid deep learning system combining multiple strategies for
lung nodule detection in CT scans. The system integrated CNNs with image preprocessing and
decision fusion techniques to enhance detection accuracy. The relevance to knee diagnostics
lies in the ensemble learning and image enhancement strategies used. Similar methodologies
can be employed to improve detection of knee pathologies in MRIs or X-rays by integrating
multiple models or preprocessing pipelines. Avola et al. [21] propose MS-Faster R-CNN, a
multi-stream backbone architecture enhancing object detection in UAV imagery. The paper
improves the traditional Faster R-CNN by incorporating a multi-stream structure that integrates
different feature scales from the input image, optimizing accuracy and tracking robustness. The
model is tailored for aerial images with high spatial variability, often captured by UAVs. This
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method leverages different convolutional paths to process spatial and semantic features
concurrently, which improves detection of small and occluded objects. Through comprehensive
experiments on benchmark aerial datasets, the MS-Faster R-CNN demonstrates superior
performance in object detection accuracy and real-time responsiveness compared to traditional
single-stream models. The framework’s adaptability to aerial scenarios and its reduced
inference time make it a strong candidate for UAV-based surveillance and tracking applications.
Astuto et al. [22] present a deep learning-assisted approach for the automatic detection and
grading of knee abnormalities using MRI images. The study addresses the clinical need for
efficient and consistent diagnostic support for musculoskeletal diseases, particularly
osteoarthritis and meniscal tears. They employ convolutional neural networks (CNNs) trained
on annotated MRI datasets, incorporating domain-specific image pre-processing steps to
handle anatomical variability. The model grades key abnormalities such as cartilage loss, bone
marrow lesions, and meniscal damage. The automated grading system was validated against
expert radiologist assessments, showing high agreement levels. The proposed tool aims to
reduce diagnostic time and inter-observer variability, providing a reliable second opinion in
radiological workflows. This research demonstrates the potential of Al to augment radiological
interpretation, ultimately improving diagnostic precision and patient outcomes. Mustra et al.
[23] provide an in-depth overview of the Digital Imaging and Communications in Medicine
(DICOM) standard, which governs the handling, storage, and transmission of medical images.
The paper outlines DICOM’s architecture, data structure, and communication protocols,
emphasizing its critical role in medical imaging interoperability. DICOM standardizes the
image format and integrates image-related information with patient metadata, enabling
seamless communication among imaging devices, hospital systems, and diagnostic software.
The authors discuss the evolution of the standard and highlight common implementation
challenges, such as data conversion issues and compatibility across vendors. The paper also
emphasizes the role of DICOM in enabling telemedicine, teleradiology, and large-scale medical
image archiving. This foundational standard underpins modern medical imaging workflows,
ensuring secure and consistent access to clinical image data across healthcare institutions.

Avola et al. [24] introduce a novel framework for thyroid nodule classification that fuses
multimodal features and integrates expert knowledge. The proposed system combines
ultrasound imaging data with structured clinical information, achieving superior performance
through feature-level fusion and a consultative machine learning approach. The architecture
includes parallel processing of image-based and non-image-based features, followed by their
fusion using joint representation learning. Expert knowledge is introduced via rule-based
systems and pre-trained weights to guide the learning process. The model was tested on real-
world clinical datasets and demonstrated enhanced accuracy and robustness in distinguishing
benign from malignant nodules. This fusion-based methodology reflects a significant
advancement over unimodal systems, offering a practical tool for aiding thyroid cancer
diagnosis and supporting personalized treatment decisions. Zhang et al. [25] compare the Local
Derivative Pattern (LDP) and Local Binary Pattern (LBP) in the context of face recognition,
introducing LDP as a superior high-order descriptor. The authors argue that LBP, while
computationally simple and efficient, lacks the ability to capture fine edge variations and
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directional patterns critical for accurate facial analysis. LDP extends LBP by encoding the
direction of pixel intensity changes using second-order derivatives. This approach enhances
sensitivity to texture and structure, significantly improving face recognition under varying
lighting and facial expressions. Experiments conducted on standard face datasets reveal that
LDP consistently outperforms LBP in both recognition accuracy and robustness. The findings
demonstrate the importance of encoding higher-order spatial relationships in image descriptors,
paving the way for improved biometric recognition systems.

Shensa [26] introduces an efficient implementation of the discrete wavelet transform (DWT)
by merging the a trous and Mallat algorithms. The paper addresses challenges in
multiresolution analysis, aiming to retain spatial resolution while ensuring computational
efficiency. The proposed method enables non-decimated wavelet transforms, preserving
translation invariance crucial for image denoising and feature extraction. Shensa discusses
algorithmic structures, filter design, and practical considerations for applying this hybrid DWT
in signal and image processing tasks. Applications range from compression to anomaly
detection in medical and seismic imaging. The study offers theoretical insights and
experimental evidence of improved signal fidelity and noise resilience. This hybrid wavelet
transform has influenced numerous image analysis and machine learning pipelines requiring
multiscale decomposition techniques. Alom et al. [27] present a comprehensive survey tracing
the evolution of deep learning, starting from AlexNet. The paper explores major architectures
like VGG, GoogLeNet, ResNet, DenseNet, and Inception. It discusses their structural
innovations, performance on benchmarks like ImageNet, and applicability in various domains
including medical imaging, NLP, and autonomous systems. The survey also reviews training
techniques such as dropout, batch normalization, and transfer learning. By contextualizing the
development of convolutional neural networks (CNNs), recurrent neural networks (RNNs), and
generative models, the paper highlights both historical milestones and future directions. This
resource is particularly valuable for researchers seeking a consolidated understanding of how
deep learning frameworks evolved to address increasingly complex real-world problems,
providing a roadmap for further exploration and implementation.

Caruana and Niculescu-Mizil [28] conduct a large-scale empirical comparison of supervised
learning algorithms on diverse datasets. Algorithms evaluated include decision trees, SVMs,
neural networks, logistic regression, and ensemble methods. Using standardized metrics like
accuracy, AUC, and log loss, the study highlights that no single algorithm dominates across all
tasks. Instead, performance varies based on data characteristics. The paper stresses the
importance of proper hyperparameter tuning and model evaluation techniques in achieving
optimal results. It also evaluates the impact of calibration and interpretability on algorithm
selection. This comparative analysis is particularly useful for practitioners and researchers
when selecting appropriate learning models for specific problems, offering practical guidance
on balancing accuracy, complexity, and generalizability in real-world deployments.
Arbabshirani et al. [29] develop a deep learning system to detect intracranial hemorrhage (ICH)
from head CT scans. The model is integrated into a clinical workflow, demonstrating real-time
diagnostic support. Trained on a large annotated dataset, the CNN model achieves high
sensitivity and specificity across hemorrhage types. Importantly, the system provides heatmaps
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for decision interpretability, fostering trust among clinicians. The paper also examines
deployment challenges, including regulatory compliance and interoperability with hospital IT
systems. This study exemplifies the application of Al in critical care, showcasing the ability of
machine learning to enhance diagnostic speed and accuracy in time-sensitive conditions, and
reflecting on broader implications for Al adoption in clinical decision-making processes.
Florkowski et al. [30] critically assess the clinical utility of point-of-care testing (POCT) within
evidence-based laboratory medicine (EBLM). The paper reviews POCT’s impact on diagnostic
turnaround time, clinical outcomes, and cost-effectiveness. The authors analyze studies across
emergency, chronic, and primary care settings, identifying scenarios where POCT improves
decision-making and patient management. However, they caution against over-reliance, citing
variability in test quality and limited integration with central laboratory systems. The paper
advocates for rigorous validation and standardized guidelines for POCT implementation.
Overall, the study balances enthusiasm with caution, emphasizing that while POCT offers
distinct clinical advantages, its benefits must be supported by evidence-based practices and
appropriate clinical governance frameworks. Cho et al. [31] address the critical issue of dataset
size in medical image deep learning systems. Their study demonstrates that model accuracy is
highly sensitive to the volume of training data. Using simulations and experiments on various
datasets, the authors explore learning curves, showing diminishing returns after reaching a
specific dataset threshold. They conclude that although larger datasets generally yield better
performance, domain-specific quality and label accuracy are equally essential. The study
emphasizes the need for efficient data augmentation and transfer learning in data-limited
environments. This paper provides foundational insights for designing efficient data-driven Al
healthcare systems.

Sessions and Valtorta [32] investigate the role of data quality in the effectiveness of machine
learning algorithms. The paper highlights that poor data quality—due to missing values, noise,
or inconsistencies—significantly degrades model performance. Through comparative
experiments on various datasets, they demonstrate how preprocessing techniques can mitigate
quality issues. Their findings stress the need for robust data preparation pipelines. The study is
a reminder that high-quality input is as vital as the algorithm itself. This work underlines the
practical challenges and considerations when deploying ML solutions in data-sensitive
environments like healthcare or finance. Roh et al. [33] provide a comprehensive survey on
data collection strategies for machine learning, categorizing them into methods like manual
collection, web scraping, crowdsourcing, and synthetic data generation. They analyze trade-
offs between cost, accuracy, and scalability, noting that poor data collection can propagate
biases into models. The authors emphasize the need for ethical and representative data
sampling. Their work is crucial for data scientists aiming to build robust and fair models,
especially in domains requiring generalizability across populations. The Global Burden of
Disease Study 2010 [34] quantifies years lived with disability (YLDs) for 1160 sequelae of 289
diseases and injuries, offering a groundbreaking perspective on public health priorities. It
reveals that musculoskeletal disorders, including osteoarthritis, are among the top contributors
to global disability. The study combines epidemiological data with advanced statistical models
to estimate global and regional disease burdens. This comprehensive analysis underscores the
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need for preventive strategies and early intervention in chronic disease management. It also
validates the importance of technological aids, like Al, in enhancing diagnostic and monitoring
approaches for widespread conditions.

Antony et al. [35] propose a method for quantifying knee osteoarthritis severity using deep
convolutional neural networks (CNNs). The approach processes radiographic knee images and
automates grading based on established severity metrics. The CNN model shows high
correlation with expert assessments and demonstrates promising generalization. The study
illustrates the potential of Al in enhancing diagnostic objectivity and consistency. Importantly,
it reduces the need for manual image interpretation, facilitating scalable clinical deployment.
This paper is pivotal for further exploration of deep learning in musculoskeletal radiology.
Joseph et al. [36] review clinical applications of Al in musculoskeletal (MSK) imaging,
focusing on osteoarthritis and cartilage assessments. They explore how Al techniques,
particularly deep learning, are integrated into MRI and CT imaging workflows to improve
detection, grading, and progression monitoring. The authors highlight key models and their
performance metrics, as well as integration into PACS systems. They also discuss regulatory
and ethical challenges. This review is instrumental in shaping future Al-enhanced diagnostic
pipelines and demonstrates the readiness of Al tools for real-world clinical applications. Tufail
et al. [37] develop a deep learning-based system to classify early stages of Alzheimer’s disease
using PET imaging. They compare various image preprocessing techniques and filtering
approaches to optimize performance. Their results show that specific filtering methods
significantly enhance classification accuracy. Although focused on neurological imaging, the
findings have implications for other imaging-heavy domains like knee disease detection. This
paper underscores the role of preprocessing in improving deep learning outcomes and validates
deep models as valuable tools for early disease detection.

Saini et al. [38] perform a comparative analysis of knee osteoarthritis classification methods
based on X-ray images. The study evaluates several machine learning and deep learning
algorithms, including SVMs, CNNs, and ensemble methods. Key findings reveal that deep
CNNs outperform traditional classifiers in terms of accuracy and robustness. The authors also
address challenges like class imbalance and image variability. Their comprehensive
experimental setup provides a benchmark for future researchers and highlights promising
directions for automated radiographic diagnosis of knee osteoarthritis. Zeng et al. [39] explore
the physiological benefits and mechanisms of exercise training for individuals with knee
osteoarthritis. The review compiles evidence from clinical trials and biomechanical studies,
demonstrating that targeted exercise programs improve joint function, reduce pain, and delay
disease progression. The authors identify inflammation reduction and muscle strengthening as
key mechanisms. Their work emphasizes the importance of integrating physical therapy into
standard care for OA patients. This study complements technology-based diagnostics by
showcasing the significance of lifestyle interventions in disease management. Tamez-Pefia et
al. [40] introduce an unsupervised machine learning method for segmenting and quantifying
knee anatomical features using MRI data from the Osteoarthritis Initiative. The model
identifies cartilage and bone regions without prior labels, offering a scalable solution for large-
scale data analysis. Their technique enables quantitative tracking of OA progression and is
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adaptable to various image modalities. This approach is particularly relevant for developing
population-scale screening systems. The study bridges the gap between clinical imaging and
Al-powered analytics for chronic joint diseases.

The integration of artificial intelligence (Al) and deep learning techniques into healthcare
diagnostics has revolutionized the way medical professionals detect, classify, and manage
complex diseases. In recent years, a significant number of studies have emerged demonstrating
the application of these technologies across a wide array of medical domains including
orthopedics, neurology, oncology, and gynecology. These technological interventions not only
enhance diagnostic accuracy but also enable early disease detection, improving patient
outcomes while reducing the workload of medical practitioners. For instance, in the domain of
orthopedics, particularly in the detection of knee osteoarthritis (KOA), several Al-based
methods have been proposed. Shourie et al. [41] introduced a sophisticated methodology
employing MobileNetV3-Large, a lightweight deep learning model, to diagnose KOA using X-
ray images. Their model aimed to provide high accuracy while maintaining computational
efficiency, making it suitable for deployment in low-resource healthcare settings. The study
emphasized the importance of leveraging compact and efficient models for real-time
diagnostics in orthopedic healthcare. Similarly, Almansour [47] developed a Convolutional
Neural Network (CNN) architecture for KOA diagnosis through X-ray images. His study
highlighted the effectiveness of deep CNNs in extracting salient features from radiographs to
accurately identify KOA severity levels. Complementing this, Yeoh et al. [48] explored transfer
learning-assisted 3D deep learning models to detect KOA using datasets from the Osteoarthritis
Initiative. Their model capitalized on the representational power of pre-trained networks and
volumetric imaging data to achieve high accuracy in KOA detection, emphasizing the potential
of transfer learning in orthopedic applications.

In the field of neurology, particularly in the diagnosis of cognitive disorders, deep learning has
made considerable strides. Tufail et al. [42] developed a model for early-stage Alzheimer’s
Disease (AD) classification using Positron Emission Tomography (PET) neuroimaging data.
Their study utilized convolutional neural networks (CNNs) in both 2D and 3D domains to
effectively learn spatial features from PET images. The findings demonstrated the ability of
deep learning to distinguish subtle changes in brain metabolism, aiding in the early detection
of Alzheimer’s. This capability is crucial as early intervention in Alzheimer’s can significantly
slow disease progression. Their dual-domain approach underlined the importance of multi-
perspective analysis in neurodegenerative disease diagnostics.

Oncology is another medical field that has seen transformative impacts from Al. Kaushik et al.
[43] introduced a machine learning-based framework for predicting cervical cancer risk in
women, using demographic and clinical data. Their model incorporated multiple ML
algorithms to assess and predict risk levels, offering a data-driven solution to support early
screening programs. The study also emphasized sustainability in healthcare Al, suggesting
models that are not only accurate but also accessible and scalable across different
socioeconomic settings. Raza et al. [45] proposed a hybrid deep learning model for brain tumor
classification, combining CNNs with transfer learning to improve diagnostic performance.
Their model achieved high classification accuracy across multiple brain tumor types,
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demonstrating the effectiveness of hybrid architectures in complex medical image
classification tasks.

Fetal health monitoring also benefits from Al integration. Hussain et al. [46] developed a hybrid
deep learning algorithm combining AlexNet and Support Vector Machine (SVM) for assessing
fetal health using cardiotocographic (CTG) data. Their model was able to identify abnormal
patterns in CTG recordings, assisting clinicians in making informed decisions about fetal well-
being. The hybrid architecture capitalized on the feature extraction capabilities of AlexNet and
the classification strength of SVM, showcasing a synergistic approach to medical diagnostics.
This method demonstrated that hybrid models can outperform traditional techniques in both
accuracy and interpretability. Furthermore, the use of Al in EEG signal analysis for
neurological assessments was explored by Sadiq et al. [44], who focused on distinguishing
between focal and non-focal EEG signals. Their model employed advanced feature selection
techniques and neural networks within the Tunable Q Wavelet Transform (TQWT) domain.
This approach enabled the efficient decomposition of EEG signals and the extraction of
relevant features, ultimately improving classification accuracy. The integration of feature
selection and deep learning demonstrated how signal processing can be optimized through Al,
particularly in the detection of epilepsy and other brain disorders.

Collectively, these studies [45-46] highlight a common theme—AlI's ability to significantly
improve diagnostic procedures across various medical disciplines. Each model tailored its
architecture and methodology to suit the unique characteristics of the target disease and the
available data, whether it be 2D X-rays, 3D MRIs, PET scans, EEG recordings, or structured
clinical data. Moreover, these models were designed to be both accurate and efficient, ensuring
they could be feasibly integrated into real-world clinical settings. From a technological
standpoint, techniques such as CNNs, transfer learning, hybrid models, and domain-specific
feature extraction were prominently featured, reinforcing their value in medical diagnostics. A
key advantage of employing deep learning models in medical diagnostics is their ability to
autonomously learn hierarchical features from raw data, eliminating the need for manual
feature engineering. This is particularly valuable in medical imaging, where the complexity
and variability of images often pose a challenge to traditional methods. For instance, the models
used in KOA detection [41], [47], [48], and [50] showed how deep CNNs could learn from
both spatial and textural patterns in X-ray and MRI data. Likewise, the use of 3D imaging in
Alzheimer’s diagnosis [42] and the combination of CNN with SVM in fetal health assessment
[46] emphasized the adaptability of these models across different data modalities. Another
important aspect is the emphasis on early disease detection. Whether it’s early-stage
Alzheimer’s [42], initial signs of KOA [41], or cervical cancer risk prediction [43], these
studies demonstrated that Al models could identify early indicators of disease with high
precision. Early detection is crucial in medical practice as it often leads to better prognosis and
more effective treatment plans. In this context, Al not only supports the clinician in decision-
making but also contributes to proactive healthcare, potentially reducing the burden on
healthcare systems.

Scalability and accessibility are other critical concerns addressed by these studies. Lightweight
models such as MobileNetV3 [41] and hybrid approaches that balance complexity and
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performance [46], [45] ensure that these solutions can be implemented in both advanced
hospital settings and remote or under-resourced areas. This aligns with global health goals to
democratize access to quality healthcare through technology. Moreover, studies like that of
Kaushik et al. [43] addressed the need for sustainable Al solutions, advocating for models that
are not only effective but also equitable.

Despite these advances, the studies also acknowledge several limitations. Data scarcity,
particularly labeled medical data, remains a significant barrier to model training and validation.
Although transfer learning and data augmentation mitigate this issue to some extent, there is
still a need for large, diverse, and well-annotated datasets to train robust models. Furthermore,
interpretability of AI models, especially deep learning networks, continues to be a challenge.
While models like CNNs are highly accurate, they often function as black boxes, making it
difficult for clinicians to understand the rationale behind specific predictions. This lack of
transparency can hinder clinical adoption and trust in Al systems. In response, emerging trends
in explainable Al (XAI) aim to make these models more interpretable. Techniques such as
saliency maps, Grad-CAM, and attention mechanisms are increasingly being incorporated into
diagnostic models to provide visual or textual explanations for predictions. Such enhancements
could bridge the gap between model performance and clinical usability, ensuring that Al
becomes a trusted assistant in the diagnostic workflow. Extending the focus on KOA, Hemanth
et al. [50] implemented a CNN-based automatic detection system that utilized MRI images
coupled with image processing techniques to classify KOA severity. This study combined
traditional image processing with modern deep learning architectures to automate the grading
of osteoarthritis, thereby streamlining the diagnostic process. Furthermore, Oei et al. [49]
discussed the multifaceted nature of osteoarthritis imaging at the 15th International Workshop
on Osteoarthritis Imaging, stressing the need for multidisciplinary collaboration and innovation
in imaging modalities to fully understand and diagnose OA efficiently.

In summary, the literature reviewed demonstrates the remarkable potential of Al and deep
learning in transforming medical diagnostics. From orthopedic imaging to neuroimaging, from
oncology to fetal health monitoring, these technologies are pushing the boundaries of what is
possible in healthcare. The models discussed not only achieve high accuracy but also offer
scalable, efficient, and often interpretable solutions that can be adapted across diverse clinical
environments. Moving forward, interdisciplinary collaboration between Al researchers,
clinicians, and policymakers will be crucial in translating these innovations into widespread
clinical practice. As the field matures, the integration of explainability, ethical considerations,
and patient-centric design will further ensure that Al not only augments clinical capabilities but
also aligns with the overarching goals of medicine: to heal, to prevent, and to improve quality
of life.

Observations
Table 1 provides a comparative overview of various deep learning architectures applied to the
detection of knee osteoarthritis (KOA). The table includes models such as MobileNetV3-Large
[41], custom CNN [47], 3D-CNN with transfer learning [48], and CNN combined with
preprocessing techniques [50]. Each model is evaluated based on the dataset used, imaging

Received: July 25, 2025 758



International Journal of Applied Mathematics

Volume 38 No. 1s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

modality (X-ray or MRI), diagnostic accuracy, and specific advantages. MobileNetV3, as used
by Shourie et al. [41], demonstrated high performance with an accuracy of 95.2% while
maintaining low computational requirements, making it ideal for real-time or mobile healthcare
settings. Yeoh et al. [48] reported even higher accuracy (96.4%) using a 3D-CNN with transfer
learning on MRI data, benefiting from richer spatial context, though at a higher computational
cost. Almansour [47] used a standard CNN trained on institutional X-ray data, achieving 91.7%
accuracy, confirming the utility of CNNs even without transfer learning. Hemanth et al. [50]
integrated image processing techniques with CNNs on MRI datasets and achieved 93.8%
accuracy. This demonstrates that preprocessing can enhance feature clarity and improve model
outcomes.
Table 1: Comparison of Deep Learning Architectures for KOA Detection

A K
Study Model/Architecture | Dataset Modality ( o/co c)uracy Aflzantage
Lightweigh
Shourie et . '8 t weight,
al. [41] MobileNetV3-Large | GCITC X-ray 95.2 mobile-
' compatible
3D spatial
Yeoh et al. | 3D-CNN with ‘ OS't‘eOZ'lrthrltIS MRI 96.4 context
[48] Transfer Learning Initiative enhances
precision
oL Designed for
Al Institutional
TANSONT Custom CNN DOMWHONAT ) Xray [ 917 KOA
[47] Dataset . .
diagnosis
Combines
H th NN + i
emanth | C . MRI Dataset | MRI 93.8 fmage
etal. [50] | Preprocessing processing &
DL

Table 2 evaluates the effectiveness of hybrid deep learning models in medical diagnostics,
specifically focusing on combinations like CNN + Transfer Learning [45], AlexNet + SVM
[46], and Neural Networks with advanced feature selection [44]. These models are
benchmarked based on their diagnostic tasks, data inputs, achieved accuracy, and the benefits
gained through hybridization. Raza et al. [45] employed a CNN with transfer learning to
classify brain tumors from MRI scans, achieving a 94.5% accuracy. The use of pre-trained
weights enabled faster convergence and improved generalization, especially on limited data.
Hussain et al. [46] introduced a hybrid model combining AlexNet for feature extraction and
SVM for classification in fetal health monitoring, reaching an impressive 97.2% accuracy. This
architecture proved effective by leveraging the representational power of CNNs and the
decision-making strength of SVMs. Sadiq et al. [44] combined EEG feature selection with a
neural network classifier to identify focal and non-focal EEG signals in the TQWT domain.
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Their 92.8% accuracy highlighted the importance of advanced signal preprocessing and

dimensionality reduction techniques.
Table 2: Evaluation of Hybrid Deep Learning Models

Hybrid . L. Input | Accuracy | Benefit of
Stud Applicat
ney Model PPUCANON | ata | (%) Hybridization
Raza et al. ¢ Brain Tumor Reuses pre-trained
Transfer ) . MRI 94.5 )
[45] ) Classification weights
Learning
Combi feat
Hussain et | AlexNet + | Fetal Health CTG 972 e;lrl;c‘t?:s c uz
al. [46] SVM Classification ' .
classification
Feature
i 1. . EE ignal TQWT-enh
Sadiq et al- | ¢\ tion + | EFG Sienal |l ppo gy QWT-enhanced
[ Classification feature space

The table 2 emphasizes that hybrid models often outperform their standalone counterparts by
optimizing various components of the learning pipeline—feature extraction, classification, and
noise reduction. This is particularly valuable in medical domains where data quality varies and
interpretability is crucial. These approaches also offer flexibility in deployment, with models
adaptable to different clinical scenarios and data types. Hybrid deep learning strategies thus
provide a promising direction for enhancing diagnostic accuracy and reliability, especially in
applications involving complex, multi-dimensional data such as brain imaging, EEG, or fetal
monitoring.
Table 3: Modality-wise Comparison of Knee Disease Detection Models

Modality | Model Used | Application Advantages Challenges
ACL &\ . . .
MRNet ) Rich 3D info, early- | Expensive,
MRI [10] Meniscus Tear )
(CNN) . stage detection slow
Detection
Fast, portabl t- | L
Xray [41] | MobileNetV3 | KOA Detection | 0 POTabIe, cost- | Lower
effective sensitivity
3D Transfer
. ) High , | High
MRI [48] | Learning KOA Detection '8 . acetracy '8 .
volumetric features | computation
Model
MRI [50] CNN  with | KOA Severity | Enhanced feature | Needs
Preprocessing | Classification capture preprocessing

Table 3 explores the performance of machine learning and deep learning models across
different imaging modalities—primarily MRI and X-ray—in the context of knee disease
diagnostics. The table compares models like MRNet [10], MobileNetV3 [41], 3D transfer
learning [48], and CNN with image preprocessing [50], detailing their benefits and limitations.
MRI-based models consistently show higher diagnostic sensitivity and specificity, making
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them suitable for detecting soft tissue structures such as menisci, ligaments, and early cartilage
degeneration. For example, the MRNet CNN model used by Bien et al. [10] effectively
identified ACL and meniscus tears with high accuracy. Similarly, Yeoh et al. [48] achieved
robust performance using 3D transfer learning on MRI, benefiting from volumetric data. X-
ray-based models like the MobileNetV3 framework [41] are computationally efficient and cost-
effective, achieving strong results in KOA detection. Although X-rays are less sensitive for soft
tissue abnormalities, their accessibility and speed make them viable in primary care settings.
Hemanth et al. [50] enhanced MRI images through preprocessing before applying CNNs,
boosting performance without increasing model complexity. This modality-wise evaluation
reveals that MRI is more suitable for comprehensive joint analysis but is resource-intensive.
X-rays, on the other hand, are more practical for initial screening and mobile diagnostics.
Model choice should thus align with the clinical application—whether for triage, routine
monitoring, or surgical planning. Overall, this comparison underscores that combining imaging
modality with the right Al architecture significantly influences diagnostic effectiveness, and
that a one-size-fits-all approach may not be ideal for knee disease detection.
Table 4: ML and DL Techniques in Related Medical Diagnoses (Cross-Domain Benchmark)

A
Application Model/Technique | Dataset ((;c)uracy Domain Application
o
Skin C‘ancer SVM + C Permoscopy 9.5 Dermatology Skin C'ancer
Detection [18] 1mages Detection
Diabetic ) )
Retinopathy | Deep CNN EyePACS | 94.1 Ophthalmology | 20t
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Detection [20] | Ensemble )
Detection
Knee
Knee Disease Stanford
MRNet (CNN 92.8 Orthopedi Di
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Detection

Table 4 places knee disease detection in a broader context by comparing it with similar machine
learning (ML) and deep learning (DL) applications in other medical domains such as
dermatology, ophthalmology, and pulmonology. The aim is to benchmark knee disease models
against mature Al models in related diagnostic areas. Vidya and Karki [18] utilized CNN and
SVM models for skin cancer classification using dermoscopic images, reaching an accuracy of
92.5%. In diabetic retinopathy detection, Nguyen et al. [19] applied a deep CNN to retinal
images from the EyePACS dataset, achieving 94.1% accuracy. Nasrullah et al. [20] presented
an ensemble deep learning model for lung nodule detection using CT data, surpassing 96%
accuracy. In the orthopedic domain, Bien et al. [10] used MRNet for MRI-based detection of
knee pathologies, yielding a competitive 92.8% accuracy. This comparison shows that Al
models for knee disease are on par with those used in other medical fields and have room to
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grow further through better dataset quality, multi-center validation, and explainability. This
cross-domain evaluation demonstrates that knee diagnostics, although relatively new in Al

applications, are progressing rapidly. With the refinement of models and data pipelines, Al-
based orthopedic tools could reach the same maturity and clinical adoption seen in other areas
like radiology and dermatology. The table reinforces the need for cross-disciplinary learning
and adaptation of best practices to optimize Al solutions for musculoskeletal health.

Some major findings that we observed

High prevalence of knee osteoarthritis (KOA) is linked with aging populations,
requiring advanced diagnostic interventions for early-stage detection [1], [2].
Meniscus and ACL injuries are strongly associated with the progression of KOA, even
after surgical interventions, necessitating predictive modeling approaches for long-term
assessment [3], [4].

Radiographic knee pain and osteoarthritis symptoms do not always correlate,
highlighting the need for models that combine imaging with clinical symptoms for
better accuracy [2].

Meniscus tears are often asymptomatic, making it difficult to decide on treatment
without advanced diagnostic tools like machine learning classifiers [5], [6].

MRI remains the gold standard for detecting bone marrow edema and early
degenerative knee diseases, offering rich features for deep learning models [8], [9].
Deep learning models like MRNet can achieve expert-level performance in detecting
ACL and meniscus tears from MRI scans, validating the use of CNNs in knee
diagnostics [10].

Delayed diagnoses in radiology often stem from human error; Al-based second-opinion
systems can mitigate such oversights [11].

Al tools are widely supported by radiologists for augmenting diagnostic workflows, as
reported by the European Society of Radiology [12].

GAN-based anomaly detection models, originally used in surveillance, can be
effectively adapted to detect rare pathological knee conditions in imaging [13].
Transfer learning and attention mechanisms from NLP have proven effective in medical
image classification tasks, including knee disease grading [14].

Rehabilitation program effectiveness in orthopedic patients can be predicted using ML
regression models, opening opportunities for postoperative KOA patient monitoring
[15].

Image preprocessing and segmentation techniques significantly affect the performance
of ML and DL models in classifying knee abnormalities [20], [27].

Hybrid DL models combining CNN with LSTM or SVM outperform standalone
architectures in terms of classification accuracy for knee diseases [46], [50].

2D versus 3D image processing models show variable strengths, with 3D providing
richer volumetric context for detecting OA progression [42], [48].

Data scarcity and class imbalance remain major challenges in training robust DL
models, affecting generalization in real-world clinical settings [31], [38].
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Lightweight architectures such as MobileNetV3 offer high accuracy with reduced
computational requirements, making them suitable for resource-constrained clinics
[41].

Explainability remains limited in most DL models, prompting the integration of Grad-
CAM and other visual explanation tools for clinical adoption [45], [46].

Ensemble and fusion-based models demonstrate enhanced performance when
integrating multimodal data like X-ray, MRI, and patient history [43], [44].
MRI-based feature extraction models trained using datasets like the Osteoarthritis
Initiative allow automated severity grading of cartilage and bone lesions [48], [49].
Early detection using Al tools can prevent progression and reduce the healthcare
burden, especially for chronic conditions like KOA [1], [35].

Findings and Challenges

Findings

Deep Learning models outperform traditional ML approaches in classifying and
detecting knee diseases, especially using CNN architectures like ResNet, VGG, and
MobileNetV3 [10], [41], [50].

MRI and X-ray imaging data are the most frequently used modalities for KOA
detection, with MRI offering better sensitivity for early-stage disease [9], [10], [48],
[51].

Hybrid architectures (e.g., CNN-LSTM, AlexNet-SVM) show superior diagnostic
accuracy by leveraging both spatial and sequential data [45], [46], [50], [52].

Transfer learning and pretrained models significantly reduce training time and improve
performance when working with limited datasets [42], [48].

Multimodal data integration, such as combining clinical data with imaging, enhances
model robustness and diagnostic precision [43], [44].

Challenges

Data scarcity and class imbalance in publicly available datasets limit model
generalization and accuracy, especially for minority classes (e.g., early KOA stages)
[31], [38].

Lack of interpretability in deep learning models (black-box nature) reduces clinician
trust and hinders clinical integration [11], [45].

Variability in image quality and acquisition protocols across institutions creates
difficulties in standardizing input for Al models [31], [36].

High computational costs of training and inference, particularly for 3D and ensemble
models, limit deployment in low-resource settings [48], [50].

Regulatory, ethical, and validation concerns around Al usage in diagnostics delay
widespread clinical implementation and necessitate explainable and auditable systems
[12], [36].
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Future Scope
The future of early detection and classification of knee diseases using machine learning (ML)
and deep learning (DL) techniques presents several promising directions. As Al technologies
mature, their integration into real-time, clinical-grade diagnostic systems will become more
feasible and reliable. One of the most significant opportunities lies in the development of
explainable Al (XAI) models, which will enhance transparency and increase trust among
clinicians. Visual interpretability tools such as Grad-CAM and saliency maps should be
incorporated to assist radiologists in understanding the decision-making logic of DL models.
Multimodal fusion of data—integrating imaging (X-ray, MRI, CT) with patient demographics,
genetic profiles, and clinical history—can improve diagnostic accuracy and enable
personalized treatment planning. Additionally, longitudinal data analysis could facilitate the
monitoring of disease progression over time, supporting proactive interventions. Another
essential advancement would be the use of federated learning, which enables model training
across decentralized institutions while preserving data privacy and security. This approach can
solve data scarcity and generalizability issues by leveraging diverse, large-scale datasets
without centralized sharing. Lightweight and edge-compatible DL architectures are expected
to drive diagnostic applications on portable devices and wearable systems, enhancing
accessibility in low-resource and remote settings. Moreover, real-time integration of Al with
surgical planning tools and robotic-assisted interventions may soon become a reality, offering
precision-guided procedures. Finally, collaborative frameworks involving Al experts,
clinicians, and policymakers are critical for establishing ethical, regulatory, and technical
guidelines to govern the safe deployment of Al in clinical workflows. Emphasizing
interdisciplinary research, standardization of datasets, and robust clinical trials will accelerate
the transition of Al-based knee disease diagnostics from research to practice, improving patient
outcomes globally.
Conclusion

In conclusion, the application of machine learning and deep learning techniques for the early
detection and classification of knee diseases has shown transformative potential in modern
medical diagnostics. By automating image analysis and extracting intricate spatial and
structural features, Al systems can detect knee pathologies such as osteoarthritis, meniscus
tears, and ligament injuries with greater precision and speed than traditional approaches. The
findings from this comprehensive overview highlight the superior diagnostic performance of
deep learning models, particularly convolutional neural networks and hybrid frameworks,
which have outperformed conventional machine learning methods in multiple clinical
scenarios. The integration of advanced models with imaging modalities like MRI and X-ray
has led to remarkable improvements in sensitivity and specificity, even in early-stage disease
detection. Additionally, the incorporation of transfer learning, data augmentation, and
multimodal fusion has significantly addressed challenges such as data scarcity and model
overfitting. Despite these advancements, the field still faces several barriers including model
interpretability, dataset variability, class imbalance, and high computational requirements.
However, these limitations also present opportunities for future research and innovation. The
need for explainable Al, federated learning, real-time applications, and lightweight
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architectures aligns with global health goals to democratize diagnostic services and improve
accessibility across diverse clinical environments. The literature also emphasizes the

importance of clinical validation, regulatory frameworks, and human-Al collaboration to
ensure safe and ethical deployment of Al systems in real-world healthcare. Ultimately, this
study reinforces the idea that Al is not a replacement for clinical expertise, but a powerful

augmenting tool that can support clinicians in making faster, more accurate, and evidence-

based decisions. With continued innovation and interdisciplinary collaboration, machine
learning and deep learning hold the key to transforming knee disease diagnostics and setting
new standards for patient care.
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