ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

EARLY DETECTION AND CLASSIFICATION OF KNEE DISEASE USING MACHINE LEARNING AND DEEP LEARNING TECHNIQUES: AN OVERVIEW

Ms. Sakshi. M. Gunde¹, Dr. Pranoti. P. Mane²

¹Department of Electronics & Telecommunication, Vishwakarma Institute of Technology, Pune.

Assistant Professor department of Electronics & Telecommunication,
AISSMS Institute of Information Technology, Pune.

²Associate Professor and HOD, department of Electronics &
Telecommunication, MES's Wadia College of Engineering, Pune.
sakshi.gunde96@gmail.com, ppranotimane@gmail.com

Abstract

Early detection and accurate classification of knee-related diseases such as osteoarthritis, ligament injuries, and meniscus tears are critical for effective treatment planning and improved patient outcomes. With the rapid advancements in artificial intelligence, particularly in machine learning (ML) and deep learning (DL), automated diagnostic systems have emerged as promising tools in the field of medical imaging. This survey presents a comprehensive analysis of recent methodologies and frameworks employed in the early detection and classification of knee diseases using ML and DL approaches. The study explores traditional ML techniques, including support vector machines (SVM), random forests (RF), k-nearest neighbours (KNN), and ensemble methods, which rely heavily on handcrafted features and domain-specific knowledge. Furthermore, the review delves into the transformative impact of deep learning, especially convolutional neural networks (CNNs), recurrent neural networks (RNNs), and hybrid architectures such as VGG, ResNet, and LSTM, which autonomously extract spatial and temporal features from raw medical images. This survey also covers key aspects such as image preprocessing, segmentation, feature extraction, and model evaluation using metrics like accuracy, precision, recall, F1-score, and AUC. Emphasis is placed on the role of data augmentation, normalization, and transfer learning in enhancing model performance. Additionally, the paper discusses publicly available datasets, challenges of class imbalance, interpretability of models, and computational efficiency. Comparative insights into 2D versus 3D image processing, integration of MRI and X-ray modalities, and recent trends in multimodal fusion are also addressed. The findings underscore the growing dominance of DL models, particularly hybrid frameworks that combine the strengths of multiple networks to deliver superior diagnostic accuracy. This survey aims to guide future research by identifying gaps, highlighting best practices, and providing a foundational understanding of intelligent systems for early knee disease detection.

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

Keywords: Knee Disease Detection, Deep Learning, Machine Learning, Medical Image Classification, Convolutional Neural Networks, Early Diagnosis

Introduction

Knee-related disorders, particularly knee osteoarthritis (KOA), represent a significant portion of musculoskeletal conditions affecting individuals worldwide. As populations age and lifestyles become increasingly sedentary, the prevalence of knee-related diseases such as KOA, meniscus tears, bone marrow and other degenerative or traumatic joint conditions is escalating at an alarming rate. According to Ondresik et al. [1], the current management of knee osteoarthritis faces several limitations, and future therapeutic and diagnostic approaches must evolve to address growing clinical needs. Muraki et al. [2] highlighted that in aging populations such as those in Japan, the prevalence of radiographic KOA and its correlation with knee pain is increasingly evident, underscoring the need for timely and accurate diagnosis. Compounding this issue, long-term consequences of ligament and meniscal injuries—such as anterior cruciate ligament (ACL) and meniscus tears—often lead to early-onset osteoarthritis, as emphasized by Lohmander et al. [3]. Meniscus injuries in particular have garnered considerable clinical attention due to their association with KOA. As discussed by Englund et al. [4], the clinical management of meniscus pathology remains controversial, with a spectrum of treatment strategies and variable outcomes. Ahmed et al. [5] further noted that while meniscus tears are more common than previously understood, less than a quarter of diagnosed individuals undergo arthroscopy, raising concerns about underdiagnosis or undertreatment. Luvsannyam et al. [6] explored the pathology and incidence of meniscal tears, indicating a need for non-invasive and more effective diagnostic protocols. Bone-related conditions such as transient regional osteoporosis and bone marrow edema syndrome also affect knee health significantly. Lakhanpal et al. [7] and Hofmann [8] provided early studies on the clinical manifestations of these syndromes, which were later supported by Starr et al. [9] through imaging insights into pathophysiological and diagnostic aspects.

Amid these challenges, there is growing interest in leveraging advanced computational techniques to improve diagnostic accuracy and early detection. In particular, machine learning (ML) and deep learning (DL) approaches are emerging as transformative tools in medical imaging and diagnostics. Bien et al. [10] demonstrated the efficacy of a deep learning model—MRNet—in assisting knee MRI interpretation, significantly improving the accuracy of diagnoses by detecting abnormalities and aiding radiologists in decision-making. However, as Kim and Mansfield [11] caution, even advanced radiological systems can be prone to repeated diagnostic errors if AI tools are not implemented with adequate validation and interpretability. The increasing intersection of artificial intelligence with radiology has garnered the attention of global medical communities. A EuroAIM survey conducted by the European Society of Radiology (ESR) revealed strong support for AI's integration into radiological practices [12]. This reflects a broader trend toward automating and augmenting diagnostic workflows. Techniques originally developed for surveillance and pattern recognition, such as Generative Adversarial Networks (GANs) used in aerial video anomaly detection [13], and deep learning models developed for natural language processing [14], have found new and powerful

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

applications in medical domains. In rehabilitation science, ML techniques are now used to assess and infer treatment effectiveness in orthopedic and neurological patients, showcasing their versatility [15].

Foundational contributions to the fields of pattern recognition and machine learning, such as Bishop's seminal work [16], have laid the groundwork for practical applications in real-world healthcare scenarios. Innovations in computer vision, such as high-speed corner detection for image processing tasks by Rosten and Drummond [17], have further catalyzed progress in clinical imaging analysis. Additionally, studies on disease detection outside the orthopedic domain, like Vidya and Karki's work on skin cancer [18], Nguyen et al.'s model for diabetic retinopathy [19], and Nasrullah et al.'s automated lung nodule detection framework [20], provide valuable inspiration and methodological parallels for knee disease detection frameworks. In this context, the current research titled "Early Detection and Classification of Knee Disease Using Machine Learning and Deep Learning Techniques: An Overview" seeks to provide a comprehensive review of the state-of-the-art ML and DL techniques deployed for knee disease diagnostics. The primary objective is to examine how these techniques have been applied, what datasets and models have been used, their strengths and limitations, and the future potential for integrating such solutions into clinical practice. The review emphasizes the significance of early diagnosis in altering disease progression, minimizing patient discomfort, and reducing healthcare burdens. Moreover, it investigates how AI-driven systems can be made more reliable, interpretable, and accessible for diverse clinical environments, including underresourced healthcare settings. As knee diseases vary in etiology, manifestation, and clinical management, there is a pressing need for automated, accurate, and cost-effective diagnostic solutions. With the advent of sophisticated ML and DL techniques, the potential to develop intelligent decision-support systems that assist healthcare providers in detecting pathologies such as KOA, meniscus tears, and bone edema has become tangible. The early identification of these conditions not only improves prognosis but also enhances patient quality of life through timely intervention. The ensuing sections of this manuscript will explore relevant literature, current technological frameworks, and methodological insights into how AI is transforming the knee disease diagnostic landscape.

This research manuscript is systematically structured to deliver a cohesive overview of contemporary machine learning and deep learning strategies for the early detection and classification of knee-related diseases. The paper begins with an Abstract, summarizing the study's core focus—evaluating AI-based frameworks for diagnosing conditions like osteoarthritis, meniscal tears, and ligament injuries using medical imaging techniques such as MRI and X-rays. The Introduction section contextualizes the rising prevalence of knee disorders and the limitations of traditional diagnostic methods. It underscores the urgency for automated diagnostic solutions and introduces ML and DL as transformative tools in this domain, citing foundational and contemporary literature to establish relevance and need. Following this, the Literature Review comprehensively evaluates various clinical and technical studies that have applied AI to knee disease diagnosis. This section dissects traditional machine learning models (SVM, KNN, RF) and deep learning frameworks (CNNs, RNNs, LSTM, ResNet, MobileNetV3) and their effectiveness in image analysis, segmentation, classification,

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

and performance optimization. The Research Methodology outlines the approach adopted in evaluating and synthesizing existing studies, including criteria for selecting relevant frameworks, datasets, evaluation metrics (accuracy, precision, F1-score, AUC), and imaging modalities. The Observations and Findings and Challenges sections highlight key insights drawn from literature synthesis, identifying strengths in hybrid models and the challenges of data scarcity, class imbalance, and model interpretability. The Future Scope proposes directions for enhancing AI models with multimodal data integration, explainable AI, and real-time deployment. Finally, the Conclusion encapsulates the study's contributions and reiterates the role of AI in improving diagnostic accuracy, consistency, and early intervention for knee diseases.

Literature Review

Ondresik et al. [1] provide a comprehensive analysis of the status and future perspectives in the management of knee osteoarthritis (OA). The review explores both conventional and emerging treatment methods, such as physical therapy, pharmacological agents, and regenerative medicine, including cell therapy and tissue engineering. It delves into the pathophysiological mechanisms underlying OA, identifying biomechanical imbalance, inflammatory mediators, and cartilage degeneration as critical factors. The study emphasizes the potential of biomaterials and scaffold-based strategies for tissue regeneration. Importantly, it highlights the relevance of personalized medicine and biomarker-based diagnosis in tailoring patient-specific therapeutic strategies. The authors advocate for multidisciplinary approaches combining bioengineering with clinical medicine. Although not focused on AI, this foundational work outlines the complexity of OA management, which sets the stage for integrating machine learning techniques in early diagnosis and treatment planning. This epidemiological study by Muraki et al. [2] evaluates the prevalence of radiographic knee OA and its relationship with knee pain in elderly Japanese cohorts. Utilizing data from the ROAD study, the authors analyze radiographic and symptomatic data from over 3,000 subjects. The results indicate a discordance between radiographic findings and the presence of knee pain, especially in the early stages of OA. This disconnect underscores the limitations of traditional diagnostic imaging in capturing the functional burden of OA. The findings emphasize the need for diagnostic tools that integrate imaging with patient-reported outcomes and clinical history. These insights directly support the development of machine learning models that leverage multimodal data for more accurate and early detection of OA.

Lohmander et. al. [3] explore the long-term consequences of anterior cruciate ligament (ACL) and meniscus injuries in the context of knee osteoarthritis. This longitudinal study reviews data from multiple cohorts and finds a strong correlation between ACL or meniscus damage and the onset of OA. The authors highlight that even with surgical intervention, the risk of OA remains elevated, especially in younger individuals who sustain these injuries. These findings suggest that early biomechanical damage may predispose joints to degenerative changes that manifest years later. This research is pivotal for predictive modeling using AI, where early injury history can be input data to predict OA risk in later life. Englund et al. [4] present an in-depth review of meniscus pathology and its controversial role in the development and treatment of OA. The paper emphasizes that meniscal tears are common and often asymptomatic but may still lead

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

to OA. The authors discuss the diagnostic challenges posed by MRI findings, which often reveal meniscus damage even in asymptomatic individuals. The review also critiques the widespread use of arthroscopic surgery, suggesting that it may not always yield beneficial outcomes. The paper advocates for more conservative management and enhanced diagnostic accuracy. In the context of machine learning, these findings underscore the need for models that can differentiate between clinically significant and incidental meniscus findings, thereby guiding treatment decisions more accurately.

Ahmed et. al. [5] conduct a comprehensive analysis of the prevalence of meniscus tears and the rates of surgical intervention. Through a population-based study, they reveal that while meniscus tears are highly prevalent, less than a quarter of affected individuals undergo arthroscopy. The authors attribute this to an evolving understanding of the natural history of meniscal pathology and the questionable benefit of surgical interventions in some cases. The findings prompt the need for better diagnostic and prognostic tools to stratify patients who would benefit most from surgery. This has direct implications for machine learning, as predictive models could help clinicians identify optimal treatment pathways based on imaging and clinical data. The [6] provides a detailed overview of meniscus tear pathology, incidence, and management strategies. The authors explore the anatomical and biomechanical roles of the meniscus, as well as common causes and types of tears. They review diagnostic techniques, particularly MRI, and discuss both surgical and non-surgical treatment options. The paper emphasizes the importance of early diagnosis and individualized treatment plans. For AI and ML applications, this comprehensive understanding of meniscus pathology supports the development of diagnostic algorithms that can classify tear types and suggest personalized treatment protocols.

In this foundational work, Lakhanpal et al. [7] examine transient regional osteoporosis (TRO), a lesser-known condition that can mimic early-stage OA in clinical presentation. Analyzing 56 cases, the authors describe TRO as a self-limiting condition with localized bone demineralization, often misdiagnosed as OA due to overlapping symptoms such as joint pain and limited motion. The study highlights the diagnostic challenge posed by TRO and the need for advanced imaging and clinical correlation. For ML applications, this underscores the importance of including differential diagnoses in training datasets to improve diagnostic specificity. Hofmann [8] discusses bone marrow edema syndrome (BMES) in the hip joint, a painful condition characterized by localized edema visible on MRI. Although focused on the hip, the study's insights are translatable to the knee joint. The paper details the pathophysiology, clinical presentation, and imaging findings associated with BMES. It advocates for MRI as a primary diagnostic tool and warns against unnecessary invasive interventions. From a deep learning perspective, this reinforces the utility of advanced imaging modalities and the need for models that can interpret subtle changes like edema patterns to distinguish between inflammatory and degenerative joint conditions.

Starr et. al. [9] provide a detailed examination of bone marrow edema (BME), discussing its pathophysiology, differential diagnosis, and imaging features. The paper outlines the various causes of BME, including trauma, infection, inflammation, and degenerative diseases like OA. The authors emphasize the diagnostic value of MRI and advocate for a structured approach to

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

interpreting edema patterns. For machine learning, this study offers a valuable framework for feature extraction and labeling in MRI datasets. Incorporating such nuanced radiological features into ML algorithms could enhance the accuracy of OA classification and staging. Bien et al. [10] introduce MRNet, a deep learning framework for automated diagnosis of knee pathologies from MRI data. Trained on a large dataset annotated by radiologists, MRNet achieves high accuracy in detecting ACL tears, meniscal tears, and general abnormalities. The architecture uses convolutional neural networks (CNNs) to process MRI slices and applies attention mechanisms to focus on clinically relevant regions. The study demonstrates that MRNet performs comparably to expert radiologists, highlighting the transformative potential of AI in musculoskeletal imaging. This work is seminal in the field and provides a robust baseline for future studies aiming to expand automated diagnostic capabilities beyond binary classification to include severity grading and treatment prediction.

Kim and Mansfield [11] critically investigated diagnostic delays in radiology, particularly those caused by perpetuated errors, which are mistakes repeated due to human or systemic oversight. Their findings revealed that radiologists are prone to confirmation bias and satisfaction of search errors, both of which contribute to significant diagnostic failures. These errors not only affect diagnostic accuracy but also delay treatment, particularly in time-sensitive conditions. The relevance to knee disease detection is that similar radiological misreads or oversights can impede early diagnosis of musculoskeletal disorders such as osteoarthritis. Integrating AI and ML-based systems could mitigate these errors by introducing a second layer of automated verification. This paper highlights the necessity for intelligent diagnostic systems to supplement human interpretation, especially when analyzing complex knee MRI or X-ray images. The European Society of Radiology's survey [12] evaluated the anticipated impact of artificial intelligence in radiology, emphasizing opportunities and apprehensions among radiologists. The study revealed strong support for AI adoption, particularly for enhancing efficiency and diagnostic accuracy. Many respondents believed AI could reduce workload and help identify anomalies more consistently. However, concerns about job security and interpretability of AI decisions were prevalent. In the context of knee disease detection, this paper underscores AI's potential to streamline radiographic analysis and enhance early diagnosis, provided human oversight and training are maintained.

Avola et al. [13] proposed a novel GAN-based method for anomaly detection and localization in aerial video surveillance, demonstrating the versatility of generative models. While focused on surveillance, the core methodology is applicable to medical imaging, where anomaly detection in knee scans is crucial for early intervention. GANs can be adapted to learn the distribution of healthy knee structures and flag deviations indicative of osteoarthritis or ligament damage. This paper expands the horizon of generative deep learning models in healthcare diagnostics. Otter, Medina, and Kalita [14] conducted a comprehensive survey on deep learning applications in natural language processing (NLP), tracing its evolution from traditional models to transformer-based architectures. Despite its NLP focus, the survey offers foundational insights into the scalability and generalizability of deep learning models. Concepts like transfer learning and attention mechanisms discussed in the paper are

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

transferable to medical imaging tasks, including knee disease classification. Transfer learning from NLP to imaging contexts demonstrates the interdisciplinary utility of deep learning. Santilli et al. [15] explored the application of machine learning in predicting the effectiveness of rehabilitation programs for orthopaedic and neurological patients. Their framework employed regression models to infer treatment outcomes based on patient-specific features. For knee disease management, particularly post-surgical or therapy-based recovery from osteoarthritis or ACL tears, such ML models can personalize care pathways. The study validates the feasibility of predictive analytics for patient-specific rehabilitation, which is highly relevant in orthopaedics. Bishop's seminal textbook [16]on Pattern Recognition and Machine Learning remains a foundational resource for understanding the theoretical underpinnings of ML. It covers essential algorithms including Bayesian networks, support vector machines, and clustering—all of which have been instrumental in medical diagnostics. In the context of knee disease detection, Bishop's work supports the algorithmic framework that underlies image classification models used for detecting abnormalities in MRI or X-ray images. This work is vital for anyone building reliable ML systems in healthcare.

Rosten and Drummond [17] introduced a high-speed corner detection method optimized for real-time computer vision applications. Though primarily developed for general object detection, such techniques have implications in medical imaging, especially in feature extraction from joint regions in knee radiographs. Effective corner detection enhances image segmentation, which is critical in isolating knee components such as the patella, femur, and meniscus for detailed analysis and classification.

Vidya and Karki [18] demonstrated the use of machine learning for skin cancer detection, presenting a pipeline involving image acquisition, preprocessing, feature extraction, and classification. Although the domain is dermatology, the methodology is transferrable to orthopedics. Detecting surface anomalies in dermoscopic images is analogous to identifying structural irregularities in knee X-rays. Their study reinforces the applicability of ML in early disease detection, underlining its cross-domain effectiveness. Nguyen et al. [19] explored deep learning for diabetic retinopathy detection using retinal images. They implemented CNN architectures to detect disease progression stages with high accuracy. This paradigm of using hierarchical feature learning for medical diagnostics can be extended to knee disease detection. Just as deep features reveal microaneurysms in retinal scans, they can detect minute structural changes in knee cartilage and bones indicative of early-stage osteoarthritis.

Nasrullah et al. [20] proposed a hybrid deep learning system combining multiple strategies for lung nodule detection in CT scans. The system integrated CNNs with image preprocessing and decision fusion techniques to enhance detection accuracy. The relevance to knee diagnostics lies in the ensemble learning and image enhancement strategies used. Similar methodologies can be employed to improve detection of knee pathologies in MRIs or X-rays by integrating multiple models or preprocessing pipelines. Avola et al. [21] propose MS-Faster R-CNN, a multi-stream backbone architecture enhancing object detection in UAV imagery. The paper improves the traditional Faster R-CNN by incorporating a multi-stream structure that integrates different feature scales from the input image, optimizing accuracy and tracking robustness. The model is tailored for aerial images with high spatial variability, often captured by UAVs. This

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

method leverages different convolutional paths to process spatial and semantic features concurrently, which improves detection of small and occluded objects. Through comprehensive experiments on benchmark aerial datasets, the MS-Faster R-CNN demonstrates superior performance in object detection accuracy and real-time responsiveness compared to traditional single-stream models. The framework's adaptability to aerial scenarios and its reduced inference time make it a strong candidate for UAV-based surveillance and tracking applications. Astuto et al. [22] present a deep learning-assisted approach for the automatic detection and grading of knee abnormalities using MRI images. The study addresses the clinical need for efficient and consistent diagnostic support for musculoskeletal diseases, particularly osteoarthritis and meniscal tears. They employ convolutional neural networks (CNNs) trained on annotated MRI datasets, incorporating domain-specific image pre-processing steps to handle anatomical variability. The model grades key abnormalities such as cartilage loss, bone marrow lesions, and meniscal damage. The automated grading system was validated against expert radiologist assessments, showing high agreement levels. The proposed tool aims to reduce diagnostic time and inter-observer variability, providing a reliable second opinion in radiological workflows. This research demonstrates the potential of AI to augment radiological interpretation, ultimately improving diagnostic precision and patient outcomes. Mustra et al. [23] provide an in-depth overview of the Digital Imaging and Communications in Medicine (DICOM) standard, which governs the handling, storage, and transmission of medical images. The paper outlines DICOM's architecture, data structure, and communication protocols, emphasizing its critical role in medical imaging interoperability. DICOM standardizes the image format and integrates image-related information with patient metadata, enabling seamless communication among imaging devices, hospital systems, and diagnostic software. The authors discuss the evolution of the standard and highlight common implementation challenges, such as data conversion issues and compatibility across vendors. The paper also emphasizes the role of DICOM in enabling telemedicine, teleradiology, and large-scale medical image archiving. This foundational standard underpins modern medical imaging workflows, ensuring secure and consistent access to clinical image data across healthcare institutions. Avola et al. [24] introduce a novel framework for thyroid nodule classification that fuses multimodal features and integrates expert knowledge. The proposed system combines ultrasound imaging data with structured clinical information, achieving superior performance through feature-level fusion and a consultative machine learning approach. The architecture includes parallel processing of image-based and non-image-based features, followed by their fusion using joint representation learning. Expert knowledge is introduced via rule-based systems and pre-trained weights to guide the learning process. The model was tested on realworld clinical datasets and demonstrated enhanced accuracy and robustness in distinguishing benign from malignant nodules. This fusion-based methodology reflects a significant advancement over unimodal systems, offering a practical tool for aiding thyroid cancer diagnosis and supporting personalized treatment decisions. Zhang et al. [25] compare the Local Derivative Pattern (LDP) and Local Binary Pattern (LBP) in the context of face recognition, introducing LDP as a superior high-order descriptor. The authors argue that LBP, while computationally simple and efficient, lacks the ability to capture fine edge variations and

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

directional patterns critical for accurate facial analysis. LDP extends LBP by encoding the direction of pixel intensity changes using second-order derivatives. This approach enhances sensitivity to texture and structure, significantly improving face recognition under varying lighting and facial expressions. Experiments conducted on standard face datasets reveal that LDP consistently outperforms LBP in both recognition accuracy and robustness. The findings demonstrate the importance of encoding higher-order spatial relationships in image descriptors, paving the way for improved biometric recognition systems.

Shensa [26] introduces an efficient implementation of the discrete wavelet transform (DWT) by merging the à trous and Mallat algorithms. The paper addresses challenges in multiresolution analysis, aiming to retain spatial resolution while ensuring computational efficiency. The proposed method enables non-decimated wavelet transforms, preserving translation invariance crucial for image denoising and feature extraction. Shensa discusses algorithmic structures, filter design, and practical considerations for applying this hybrid DWT in signal and image processing tasks. Applications range from compression to anomaly detection in medical and seismic imaging. The study offers theoretical insights and experimental evidence of improved signal fidelity and noise resilience. This hybrid wavelet transform has influenced numerous image analysis and machine learning pipelines requiring multiscale decomposition techniques. Alom et al. [27] present a comprehensive survey tracing the evolution of deep learning, starting from AlexNet. The paper explores major architectures like VGG, GoogLeNet, ResNet, DenseNet, and Inception. It discusses their structural innovations, performance on benchmarks like ImageNet, and applicability in various domains including medical imaging, NLP, and autonomous systems. The survey also reviews training techniques such as dropout, batch normalization, and transfer learning. By contextualizing the development of convolutional neural networks (CNNs), recurrent neural networks (RNNs), and generative models, the paper highlights both historical milestones and future directions. This resource is particularly valuable for researchers seeking a consolidated understanding of how deep learning frameworks evolved to address increasingly complex real-world problems, providing a roadmap for further exploration and implementation.

Caruana and Niculescu-Mizil [28] conduct a large-scale empirical comparison of supervised learning algorithms on diverse datasets. Algorithms evaluated include decision trees, SVMs, neural networks, logistic regression, and ensemble methods. Using standardized metrics like accuracy, AUC, and log loss, the study highlights that no single algorithm dominates across all tasks. Instead, performance varies based on data characteristics. The paper stresses the importance of proper hyperparameter tuning and model evaluation techniques in achieving optimal results. It also evaluates the impact of calibration and interpretability on algorithm selection. This comparative analysis is particularly useful for practitioners and researchers when selecting appropriate learning models for specific problems, offering practical guidance on balancing accuracy, complexity, and generalizability in real-world deployments. Arbabshirani et al. [29] develop a deep learning system to detect intracranial hemorrhage (ICH) from head CT scans. The model is integrated into a clinical workflow, demonstrating real-time diagnostic support. Trained on a large annotated dataset, the CNN model achieves high sensitivity and specificity across hemorrhage types. Importantly, the system provides heatmaps

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

for decision interpretability, fostering trust among clinicians. The paper also examines deployment challenges, including regulatory compliance and interoperability with hospital IT systems. This study exemplifies the application of AI in critical care, showcasing the ability of machine learning to enhance diagnostic speed and accuracy in time-sensitive conditions, and reflecting on broader implications for AI adoption in clinical decision-making processes.

Florkowski et al. [30] critically assess the clinical utility of point-of-care testing (POCT) within evidence-based laboratory medicine (EBLM). The paper reviews POCT's impact on diagnostic turnaround time, clinical outcomes, and cost-effectiveness. The authors analyze studies across emergency, chronic, and primary care settings, identifying scenarios where POCT improves decision-making and patient management. However, they caution against over-reliance, citing variability in test quality and limited integration with central laboratory systems. The paper advocates for rigorous validation and standardized guidelines for POCT implementation. Overall, the study balances enthusiasm with caution, emphasizing that while POCT offers distinct clinical advantages, its benefits must be supported by evidence-based practices and appropriate clinical governance frameworks. Cho et al. [31] address the critical issue of dataset size in medical image deep learning systems. Their study demonstrates that model accuracy is highly sensitive to the volume of training data. Using simulations and experiments on various datasets, the authors explore learning curves, showing diminishing returns after reaching a specific dataset threshold. They conclude that although larger datasets generally yield better performance, domain-specific quality and label accuracy are equally essential. The study emphasizes the need for efficient data augmentation and transfer learning in data-limited environments. This paper provides foundational insights for designing efficient data-driven AI healthcare systems.

Sessions and Valtorta [32] investigate the role of data quality in the effectiveness of machine learning algorithms. The paper highlights that poor data quality—due to missing values, noise, or inconsistencies—significantly degrades model performance. Through comparative experiments on various datasets, they demonstrate how preprocessing techniques can mitigate quality issues. Their findings stress the need for robust data preparation pipelines. The study is a reminder that high-quality input is as vital as the algorithm itself. This work underlines the practical challenges and considerations when deploying ML solutions in data-sensitive environments like healthcare or finance. Roh et al. [33] provide a comprehensive survey on data collection strategies for machine learning, categorizing them into methods like manual collection, web scraping, crowdsourcing, and synthetic data generation. They analyze tradeoffs between cost, accuracy, and scalability, noting that poor data collection can propagate biases into models. The authors emphasize the need for ethical and representative data sampling. Their work is crucial for data scientists aiming to build robust and fair models, especially in domains requiring generalizability across populations. The Global Burden of Disease Study 2010 [34] quantifies years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries, offering a groundbreaking perspective on public health priorities. It reveals that musculoskeletal disorders, including osteoarthritis, are among the top contributors to global disability. The study combines epidemiological data with advanced statistical models to estimate global and regional disease burdens. This comprehensive analysis underscores the

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

need for preventive strategies and early intervention in chronic disease management. It also validates the importance of technological aids, like AI, in enhancing diagnostic and monitoring approaches for widespread conditions.

Antony et al. [35] propose a method for quantifying knee osteoarthritis severity using deep convolutional neural networks (CNNs). The approach processes radiographic knee images and automates grading based on established severity metrics. The CNN model shows high correlation with expert assessments and demonstrates promising generalization. The study illustrates the potential of AI in enhancing diagnostic objectivity and consistency. Importantly, it reduces the need for manual image interpretation, facilitating scalable clinical deployment. This paper is pivotal for further exploration of deep learning in musculoskeletal radiology. Joseph et al. [36] review clinical applications of AI in musculoskeletal (MSK) imaging, focusing on osteoarthritis and cartilage assessments. They explore how AI techniques, particularly deep learning, are integrated into MRI and CT imaging workflows to improve detection, grading, and progression monitoring. The authors highlight key models and their performance metrics, as well as integration into PACS systems. They also discuss regulatory and ethical challenges. This review is instrumental in shaping future AI-enhanced diagnostic pipelines and demonstrates the readiness of AI tools for real-world clinical applications. Tufail et al. [37] develop a deep learning-based system to classify early stages of Alzheimer's disease using PET imaging. They compare various image preprocessing techniques and filtering approaches to optimize performance. Their results show that specific filtering methods significantly enhance classification accuracy. Although focused on neurological imaging, the findings have implications for other imaging-heavy domains like knee disease detection. This paper underscores the role of preprocessing in improving deep learning outcomes and validates deep models as valuable tools for early disease detection.

Saini et al. [38] perform a comparative analysis of knee osteoarthritis classification methods based on X-ray images. The study evaluates several machine learning and deep learning algorithms, including SVMs, CNNs, and ensemble methods. Key findings reveal that deep CNNs outperform traditional classifiers in terms of accuracy and robustness. The authors also address challenges like class imbalance and image variability. Their comprehensive experimental setup provides a benchmark for future researchers and highlights promising directions for automated radiographic diagnosis of knee osteoarthritis. Zeng et al. [39] explore the physiological benefits and mechanisms of exercise training for individuals with knee osteoarthritis. The review compiles evidence from clinical trials and biomechanical studies, demonstrating that targeted exercise programs improve joint function, reduce pain, and delay disease progression. The authors identify inflammation reduction and muscle strengthening as key mechanisms. Their work emphasizes the importance of integrating physical therapy into standard care for OA patients. This study complements technology-based diagnostics by showcasing the significance of lifestyle interventions in disease management. Tamez-Peña et al. [40] introduce an unsupervised machine learning method for segmenting and quantifying knee anatomical features using MRI data from the Osteoarthritis Initiative. The model identifies cartilage and bone regions without prior labels, offering a scalable solution for largescale data analysis. Their technique enables quantitative tracking of OA progression and is

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

adaptable to various image modalities. This approach is particularly relevant for developing population-scale screening systems. The study bridges the gap between clinical imaging and AI-powered analytics for chronic joint diseases.

The integration of artificial intelligence (AI) and deep learning techniques into healthcare diagnostics has revolutionized the way medical professionals detect, classify, and manage complex diseases. In recent years, a significant number of studies have emerged demonstrating the application of these technologies across a wide array of medical domains including orthopedics, neurology, oncology, and gynecology. These technological interventions not only enhance diagnostic accuracy but also enable early disease detection, improving patient outcomes while reducing the workload of medical practitioners. For instance, in the domain of orthopedics, particularly in the detection of knee osteoarthritis (KOA), several AI-based methods have been proposed. Shourie et al. [41] introduced a sophisticated methodology employing MobileNetV3-Large, a lightweight deep learning model, to diagnose KOA using Xray images. Their model aimed to provide high accuracy while maintaining computational efficiency, making it suitable for deployment in low-resource healthcare settings. The study emphasized the importance of leveraging compact and efficient models for real-time diagnostics in orthopedic healthcare. Similarly, Almansour [47] developed a Convolutional Neural Network (CNN) architecture for KOA diagnosis through X-ray images. His study highlighted the effectiveness of deep CNNs in extracting salient features from radiographs to accurately identify KOA severity levels. Complementing this, Yeoh et al. [48] explored transfer learning-assisted 3D deep learning models to detect KOA using datasets from the Osteoarthritis Initiative. Their model capitalized on the representational power of pre-trained networks and volumetric imaging data to achieve high accuracy in KOA detection, emphasizing the potential of transfer learning in orthopedic applications.

In the field of neurology, particularly in the diagnosis of cognitive disorders, deep learning has made considerable strides. Tufail et al. [42] developed a model for early-stage Alzheimer's Disease (AD) classification using Positron Emission Tomography (PET) neuroimaging data. Their study utilized convolutional neural networks (CNNs) in both 2D and 3D domains to effectively learn spatial features from PET images. The findings demonstrated the ability of deep learning to distinguish subtle changes in brain metabolism, aiding in the early detection of Alzheimer's. This capability is crucial as early intervention in Alzheimer's can significantly slow disease progression. Their dual-domain approach underlined the importance of multiperspective analysis in neurodegenerative disease diagnostics.

Oncology is another medical field that has seen transformative impacts from AI. Kaushik et al. [43] introduced a machine learning-based framework for predicting cervical cancer risk in women, using demographic and clinical data. Their model incorporated multiple ML algorithms to assess and predict risk levels, offering a data-driven solution to support early screening programs. The study also emphasized sustainability in healthcare AI, suggesting models that are not only accurate but also accessible and scalable across different socioeconomic settings. Raza et al. [45] proposed a hybrid deep learning model for brain tumor classification, combining CNNs with transfer learning to improve diagnostic performance. Their model achieved high classification accuracy across multiple brain tumor types,

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

demonstrating the effectiveness of hybrid architectures in complex medical image classification tasks.

Fetal health monitoring also benefits from AI integration. Hussain et al. [46] developed a hybrid deep learning algorithm combining AlexNet and Support Vector Machine (SVM) for assessing fetal health using cardiotocographic (CTG) data. Their model was able to identify abnormal patterns in CTG recordings, assisting clinicians in making informed decisions about fetal well-being. The hybrid architecture capitalized on the feature extraction capabilities of AlexNet and the classification strength of SVM, showcasing a synergistic approach to medical diagnostics. This method demonstrated that hybrid models can outperform traditional techniques in both accuracy and interpretability. Furthermore, the use of AI in EEG signal analysis for neurological assessments was explored by Sadiq et al. [44], who focused on distinguishing between focal and non-focal EEG signals. Their model employed advanced feature selection techniques and neural networks within the Tunable Q Wavelet Transform (TQWT) domain. This approach enabled the efficient decomposition of EEG signals and the extraction of relevant features, ultimately improving classification accuracy. The integration of feature selection and deep learning demonstrated how signal processing can be optimized through AI, particularly in the detection of epilepsy and other brain disorders.

Collectively, these studies [45-46] highlight a common theme—AI's ability to significantly improve diagnostic procedures across various medical disciplines. Each model tailored its architecture and methodology to suit the unique characteristics of the target disease and the available data, whether it be 2D X-rays, 3D MRIs, PET scans, EEG recordings, or structured clinical data. Moreover, these models were designed to be both accurate and efficient, ensuring they could be feasibly integrated into real-world clinical settings. From a technological standpoint, techniques such as CNNs, transfer learning, hybrid models, and domain-specific feature extraction were prominently featured, reinforcing their value in medical diagnostics. A key advantage of employing deep learning models in medical diagnostics is their ability to autonomously learn hierarchical features from raw data, eliminating the need for manual feature engineering. This is particularly valuable in medical imaging, where the complexity and variability of images often pose a challenge to traditional methods. For instance, the models used in KOA detection [41], [47], [48], and [50] showed how deep CNNs could learn from both spatial and textural patterns in X-ray and MRI data. Likewise, the use of 3D imaging in Alzheimer's diagnosis [42] and the combination of CNN with SVM in fetal health assessment [46] emphasized the adaptability of these models across different data modalities. Another important aspect is the emphasis on early disease detection. Whether it's early-stage Alzheimer's [42], initial signs of KOA [41], or cervical cancer risk prediction [43], these studies demonstrated that AI models could identify early indicators of disease with high precision. Early detection is crucial in medical practice as it often leads to better prognosis and more effective treatment plans. In this context, AI not only supports the clinician in decisionmaking but also contributes to proactive healthcare, potentially reducing the burden on healthcare systems.

Scalability and accessibility are other critical concerns addressed by these studies. Lightweight models such as MobileNetV3 [41] and hybrid approaches that balance complexity and

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

performance [46], [45] ensure that these solutions can be implemented in both advanced hospital settings and remote or under-resourced areas. This aligns with global health goals to democratize access to quality healthcare through technology. Moreover, studies like that of Kaushik et al. [43] addressed the need for sustainable AI solutions, advocating for models that are not only effective but also equitable.

Despite these advances, the studies also acknowledge several limitations. Data scarcity, particularly labeled medical data, remains a significant barrier to model training and validation. Although transfer learning and data augmentation mitigate this issue to some extent, there is still a need for large, diverse, and well-annotated datasets to train robust models. Furthermore, interpretability of AI models, especially deep learning networks, continues to be a challenge. While models like CNNs are highly accurate, they often function as black boxes, making it difficult for clinicians to understand the rationale behind specific predictions. This lack of transparency can hinder clinical adoption and trust in AI systems. In response, emerging trends in explainable AI (XAI) aim to make these models more interpretable. Techniques such as saliency maps, Grad-CAM, and attention mechanisms are increasingly being incorporated into diagnostic models to provide visual or textual explanations for predictions. Such enhancements could bridge the gap between model performance and clinical usability, ensuring that AI becomes a trusted assistant in the diagnostic workflow. Extending the focus on KOA, Hemanth et al. [50] implemented a CNN-based automatic detection system that utilized MRI images coupled with image processing techniques to classify KOA severity. This study combined traditional image processing with modern deep learning architectures to automate the grading of osteoarthritis, thereby streamlining the diagnostic process. Furthermore, Oei et al. [49] discussed the multifaceted nature of osteoarthritis imaging at the 15th International Workshop on Osteoarthritis Imaging, stressing the need for multidisciplinary collaboration and innovation in imaging modalities to fully understand and diagnose OA efficiently.

In summary, the literature reviewed demonstrates the remarkable potential of AI and deep learning in transforming medical diagnostics. From orthopedic imaging to neuroimaging, from oncology to fetal health monitoring, these technologies are pushing the boundaries of what is possible in healthcare. The models discussed not only achieve high accuracy but also offer scalable, efficient, and often interpretable solutions that can be adapted across diverse clinical environments. Moving forward, interdisciplinary collaboration between AI researchers, clinicians, and policymakers will be crucial in translating these innovations into widespread clinical practice. As the field matures, the integration of explainability, ethical considerations, and patient-centric design will further ensure that AI not only augments clinical capabilities but also aligns with the overarching goals of medicine: to heal, to prevent, and to improve quality of life.

Observations

Table 1 provides a comparative overview of various deep learning architectures applied to the detection of knee osteoarthritis (KOA). The table includes models such as MobileNetV3-Large [41], custom CNN [47], 3D-CNN with transfer learning [48], and CNN combined with preprocessing techniques [50]. Each model is evaluated based on the dataset used, imaging

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

modality (X-ray or MRI), diagnostic accuracy, and specific advantages. MobileNetV3, as used by Shourie et al. [41], demonstrated high performance with an accuracy of 95.2% while maintaining low computational requirements, making it ideal for real-time or mobile healthcare settings. Yeoh et al. [48] reported even higher accuracy (96.4%) using a 3D-CNN with transfer learning on MRI data, benefiting from richer spatial context, though at a higher computational cost. Almansour [47] used a standard CNN trained on institutional X-ray data, achieving 91.7% accuracy, confirming the utility of CNNs even without transfer learning. Hemanth et al. [50] integrated image processing techniques with CNNs on MRI datasets and achieved 93.8% accuracy. This demonstrates that preprocessing can enhance feature clarity and improve model outcomes.

Table 1: Comparison of Deep Learning Architectures for KOA Detection

Study	Model/Architecture	Dataset	Modality	Accuracy (%)	Key Advantage
Shourie et al. [41]	MobileNetV3-Large	GCITC	X-ray	95.2	Lightweight, mobile- compatible
Yeoh et al. [48]	3D-CNN with Transfer Learning	Osteoarthritis Initiative	MRI	96.4	3D spatial context enhances precision
Almansour [47]	Custom CNN	Institutional Dataset	X-ray	91.7	Designed for KOA diagnosis
Hemanth et al. [50]	CNN + Preprocessing	MRI Dataset	MRI	93.8	Combines image processing & DL

Table 2 evaluates the effectiveness of hybrid deep learning models in medical diagnostics, specifically focusing on combinations like CNN + Transfer Learning [45], AlexNet + SVM [46], and Neural Networks with advanced feature selection [44]. These models are benchmarked based on their diagnostic tasks, data inputs, achieved accuracy, and the benefits gained through hybridization. Raza et al. [45] employed a CNN with transfer learning to classify brain tumors from MRI scans, achieving a 94.5% accuracy. The use of pre-trained weights enabled faster convergence and improved generalization, especially on limited data. Hussain et al. [46] introduced a hybrid model combining AlexNet for feature extraction and SVM for classification in fetal health monitoring, reaching an impressive 97.2% accuracy. This architecture proved effective by leveraging the representational power of CNNs and the decision-making strength of SVMs. Sadiq et al. [44] combined EEG feature selection with a neural network classifier to identify focal and non-focal EEG signals in the TQWT domain.

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

Their 92.8% accuracy highlighted the importance of advanced signal preprocessing and dimensionality reduction techniques.

Table 2: Evaluation	of Hybrid Deep	Learning Models

Study	Hybrid	Application	Input	Accuracy	Benefit of	
Study	Model	Application	Data	(%)	Hybridization	
Raza et al. [45]	CNN + Transfer Learning	Brain Tumor Classification	MRI	94.5	Reuses pre-trained weights	
Hussain et al. [46]	AlexNet + SVM	Fetal Health Classification	CTG	97.2	Combines feature extraction & classification	
Sadiq et al.	Feature Selection + NN	EEG Signal Classification	EEG	92.8	TQWT-enhanced feature space	

The table 2 emphasizes that hybrid models often outperform their standalone counterparts by optimizing various components of the learning pipeline—feature extraction, classification, and noise reduction. This is particularly valuable in medical domains where data quality varies and interpretability is crucial. These approaches also offer flexibility in deployment, with models adaptable to different clinical scenarios and data types. Hybrid deep learning strategies thus provide a promising direction for enhancing diagnostic accuracy and reliability, especially in applications involving complex, multi-dimensional data such as brain imaging, EEG, or fetal monitoring.

Table 3: Modality-wise Comparison of Knee Disease Detection Models

Modality	Model Used	Application	Advantages	Challenges
MRI [10]	MRNet (CNN)	ACL & Meniscus Tear Detection	Rich 3D info, early- stage detection	Expensive, slow
X-ray [41]	MobileNetV3	KOA Detection	Fast, portable, cost-effective	Lower sensitivity
MRI [48]	3D Transfer Learning Model	KOA Detection	High accuracy, volumetric features	High computation
MRI [50]	CNN with Preprocessing	KOA Severity Classification	Enhanced feature capture	Needs preprocessing

Table 3 explores the performance of machine learning and deep learning models across different imaging modalities—primarily MRI and X-ray—in the context of knee disease diagnostics. The table compares models like MRNet [10], MobileNetV3 [41], 3D transfer learning [48], and CNN with image preprocessing [50], detailing their benefits and limitations. MRI-based models consistently show higher diagnostic sensitivity and specificity, making

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

them suitable for detecting soft tissue structures such as menisci, ligaments, and early cartilage degeneration. For example, the MRNet CNN model used by Bien et al. [10] effectively identified ACL and meniscus tears with high accuracy. Similarly, Yeoh et al. [48] achieved robust performance using 3D transfer learning on MRI, benefiting from volumetric data. X-ray-based models like the MobileNetV3 framework [41] are computationally efficient and cost-effective, achieving strong results in KOA detection. Although X-rays are less sensitive for soft tissue abnormalities, their accessibility and speed make them viable in primary care settings. Hemanth et al. [50] enhanced MRI images through preprocessing before applying CNNs, boosting performance without increasing model complexity. This modality-wise evaluation reveals that MRI is more suitable for comprehensive joint analysis but is resource-intensive. X-rays, on the other hand, are more practical for initial screening and mobile diagnostics. Model choice should thus align with the clinical application—whether for triage, routine monitoring, or surgical planning. Overall, this comparison underscores that combining imaging modality with the right AI architecture significantly influences diagnostic effectiveness, and that a one-size-fits-all approach may not be ideal for knee disease detection.

Table 4: ML and DL Techniques in Related Medical Diagnoses (Cross-Domain Benchmark)

Application	Model/Technique	Dataset	Accuracy (%)	Domain	Application
Skin Cancer Detection [18]	SVM + CNN	Dermoscopy images	92.5	Dermatology	Skin Cancer Detection
Diabetic Retinopathy [19]	Deep CNN	EyePACS	94.1	Ophthalmology	Diabetic Retinopathy
Lung Nodule Detection [20]	Deep Learning Ensemble	LIDC-IDRI	96.3	Pulmonology	Lung Nodule Detection
Knee Disease Detection [10]	MRNet (CNN)	Stanford MRI Dataset	92.8	Orthopedics	Knee Disease Detection

Table 4 places knee disease detection in a broader context by comparing it with similar machine learning (ML) and deep learning (DL) applications in other medical domains such as dermatology, ophthalmology, and pulmonology. The aim is to benchmark knee disease models against mature AI models in related diagnostic areas. Vidya and Karki [18] utilized CNN and SVM models for skin cancer classification using dermoscopic images, reaching an accuracy of 92.5%. In diabetic retinopathy detection, Nguyen et al. [19] applied a deep CNN to retinal images from the EyePACS dataset, achieving 94.1% accuracy. Nasrullah et al. [20] presented an ensemble deep learning model for lung nodule detection using CT data, surpassing 96% accuracy. In the orthopedic domain, Bien et al. [10] used MRNet for MRI-based detection of knee pathologies, yielding a competitive 92.8% accuracy. This comparison shows that AI models for knee disease are on par with those used in other medical fields and have room to

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

grow further through better dataset quality, multi-center validation, and explainability. This cross-domain evaluation demonstrates that knee diagnostics, although relatively new in AI applications, are progressing rapidly. With the refinement of models and data pipelines, AI-based orthopedic tools could reach the same maturity and clinical adoption seen in other areas like radiology and dermatology. The table reinforces the need for cross-disciplinary learning and adaptation of best practices to optimize AI solutions for musculoskeletal health.

Some major findings that we observed

- High prevalence of knee osteoarthritis (KOA) is linked with aging populations, requiring advanced diagnostic interventions for early-stage detection [1], [2].
- Meniscus and ACL injuries are strongly associated with the progression of KOA, even after surgical interventions, necessitating predictive modeling approaches for long-term assessment [3], [4].
- Radiographic knee pain and osteoarthritis symptoms do not always correlate, highlighting the need for models that combine imaging with clinical symptoms for better accuracy [2].
- Meniscus tears are often asymptomatic, making it difficult to decide on treatment without advanced diagnostic tools like machine learning classifiers [5], [6].
- MRI remains the gold standard for detecting bone marrow edema and early degenerative knee diseases, offering rich features for deep learning models [8], [9].
- Deep learning models like MRNet can achieve expert-level performance in detecting ACL and meniscus tears from MRI scans, validating the use of CNNs in knee diagnostics [10].
- Delayed diagnoses in radiology often stem from human error; AI-based second-opinion systems can mitigate such oversights [11].
- AI tools are widely supported by radiologists for augmenting diagnostic workflows, as reported by the European Society of Radiology [12].
- GAN-based anomaly detection models, originally used in surveillance, can be effectively adapted to detect rare pathological knee conditions in imaging [13].
- Transfer learning and attention mechanisms from NLP have proven effective in medical image classification tasks, including knee disease grading [14].
- Rehabilitation program effectiveness in orthopedic patients can be predicted using ML regression models, opening opportunities for postoperative KOA patient monitoring [15].
- Image preprocessing and segmentation techniques significantly affect the performance of ML and DL models in classifying knee abnormalities [20], [27].
- Hybrid DL models combining CNN with LSTM or SVM outperform standalone architectures in terms of classification accuracy for knee diseases [46], [50].
- 2D versus 3D image processing models show variable strengths, with 3D providing richer volumetric context for detecting OA progression [42], [48].
- Data scarcity and class imbalance remain major challenges in training robust DL models, affecting generalization in real-world clinical settings [31], [38].

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

- Lightweight architectures such as MobileNetV3 offer high accuracy with reduced computational requirements, making them suitable for resource-constrained clinics [41].
- Explainability remains limited in most DL models, prompting the integration of Grad-CAM and other visual explanation tools for clinical adoption [45], [46].
- Ensemble and fusion-based models demonstrate enhanced performance when integrating multimodal data like X-ray, MRI, and patient history [43], [44].
- MRI-based feature extraction models trained using datasets like the Osteoarthritis Initiative allow automated severity grading of cartilage and bone lesions [48], [49].
- Early detection using AI tools can prevent progression and reduce the healthcare burden, especially for chronic conditions like KOA [1], [35].

Findings and Challenges

Findings

- Deep Learning models outperform traditional ML approaches in classifying and detecting knee diseases, especially using CNN architectures like ResNet, VGG, and MobileNetV3 [10], [41], [50].
- MRI and X-ray imaging data are the most frequently used modalities for KOA detection, with MRI offering better sensitivity for early-stage disease [9], [10], [48], [51].
- Hybrid architectures (e.g., CNN-LSTM, AlexNet-SVM) show superior diagnostic accuracy by leveraging both spatial and sequential data [45], [46], [50], [52].
- Transfer learning and pretrained models significantly reduce training time and improve performance when working with limited datasets [42], [48].
- Multimodal data integration, such as combining clinical data with imaging, enhances model robustness and diagnostic precision [43], [44].

Challenges

- Data scarcity and class imbalance in publicly available datasets limit model generalization and accuracy, especially for minority classes (e.g., early KOA stages) [31], [38].
- Lack of interpretability in deep learning models (black-box nature) reduces clinician trust and hinders clinical integration [11], [45].
- Variability in image quality and acquisition protocols across institutions creates difficulties in standardizing input for AI models [31], [36].
- High computational costs of training and inference, particularly for 3D and ensemble models, limit deployment in low-resource settings [48], [50].
- Regulatory, ethical, and validation concerns around AI usage in diagnostics delay widespread clinical implementation and necessitate explainable and auditable systems [12], [36].

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

Future Scope

The future of early detection and classification of knee diseases using machine learning (ML) and deep learning (DL) techniques presents several promising directions. As AI technologies mature, their integration into real-time, clinical-grade diagnostic systems will become more feasible and reliable. One of the most significant opportunities lies in the development of explainable AI (XAI) models, which will enhance transparency and increase trust among clinicians. Visual interpretability tools such as Grad-CAM and saliency maps should be incorporated to assist radiologists in understanding the decision-making logic of DL models. Multimodal fusion of data—integrating imaging (X-ray, MRI, CT) with patient demographics, genetic profiles, and clinical history—can improve diagnostic accuracy and enable personalized treatment planning. Additionally, longitudinal data analysis could facilitate the monitoring of disease progression over time, supporting proactive interventions. Another essential advancement would be the use of federated learning, which enables model training across decentralized institutions while preserving data privacy and security. This approach can solve data scarcity and generalizability issues by leveraging diverse, large-scale datasets without centralized sharing. Lightweight and edge-compatible DL architectures are expected to drive diagnostic applications on portable devices and wearable systems, enhancing accessibility in low-resource and remote settings. Moreover, real-time integration of AI with surgical planning tools and robotic-assisted interventions may soon become a reality, offering precision-guided procedures. Finally, collaborative frameworks involving AI experts, clinicians, and policymakers are critical for establishing ethical, regulatory, and technical guidelines to govern the safe deployment of AI in clinical workflows. Emphasizing interdisciplinary research, standardization of datasets, and robust clinical trials will accelerate the transition of AI-based knee disease diagnostics from research to practice, improving patient outcomes globally.

Conclusion

In conclusion, the application of machine learning and deep learning techniques for the early detection and classification of knee diseases has shown transformative potential in modern medical diagnostics. By automating image analysis and extracting intricate spatial and structural features, AI systems can detect knee pathologies such as osteoarthritis, meniscus tears, and ligament injuries with greater precision and speed than traditional approaches. The findings from this comprehensive overview highlight the superior diagnostic performance of deep learning models, particularly convolutional neural networks and hybrid frameworks, which have outperformed conventional machine learning methods in multiple clinical scenarios. The integration of advanced models with imaging modalities like MRI and X-ray has led to remarkable improvements in sensitivity and specificity, even in early-stage disease detection. Additionally, the incorporation of transfer learning, data augmentation, and multimodal fusion has significantly addressed challenges such as data scarcity and model overfitting. Despite these advancements, the field still faces several barriers including model interpretability, dataset variability, class imbalance, and high computational requirements. However, these limitations also present opportunities for future research and innovation. The need for explainable AI, federated learning, real-time applications, and lightweight

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

architectures aligns with global health goals to democratize diagnostic services and improve accessibility across diverse clinical environments. The literature also emphasizes the importance of clinical validation, regulatory frameworks, and human-AI collaboration to ensure safe and ethical deployment of AI systems in real-world healthcare. Ultimately, this study reinforces the idea that AI is not a replacement for clinical expertise, but a powerful augmenting tool that can support clinicians in making faster, more accurate, and evidence-based decisions. With continued innovation and interdisciplinary collaboration, machine learning and deep learning hold the key to transforming knee disease diagnostics and setting new standards for patient care.

References

- [1] Ondresik, M.; Azevedo Maia, F.R.; da Silva Morais, A.; Gertrudes, A.C.; Dias Bacelar, A.H.; Correia, C.; Goncalves, C.; Radhouani, H.; Amandi Sousa, R.; Oliveira, J.M.; et al. Management of knee osteoarthritis. Current status and future trends. Biotechnol. Bioeng. 2017, 114, 717–739. [Google Scholar] [CrossRef] [PubMed]
- [2] Muraki, S.; Oka, H.; Akune, T.; Mabuchi, A.; En-Yo, Y.; Yoshida, M.; Saika, A.; Suzuki, T.; Yoshida, H.; Ishibashi, H.; et al. Prevalence of radiographic knee osteoarthritis and its association with knee pain in the elderly of Japanese populationbased cohorts: The ROAD study. Osteoarthr. Cartil. 2009, 17, 1137–1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- [3] Lohmander, L.S.; Englund, P.M.; Dahl, L.L.; Roos, E.M. The long-term consequence of anterior cruciate ligament and meniscus injuries. Am. J. Sport. Med. 2007, 35, 1756–1769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- [4] Englund, M.; Roemer, F.W.; Hayashi, D.; Crema, M.D.; Guermazi, A. Meniscus pathology, osteoarthritis and the treatment controversy. Nat. Rev. Rheumatol. 2012, 8, 412–419. [Google Scholar] [CrossRef]
- [5] Ahmed, I.; Radhakrishnan, A.; Khatri, C.; Staniszewska, S.; Hutchinson, C.; Parsons, N.; Price, A.; Metcalfe, A. Meniscus tears are more common than previously identified, however, less than a quarter of people with a tear undergo arthroscopy. Knee Surg. Sport. Traumatol. Arthrosc. 2021, 29, 3892–3898. [Google Scholar] [CrossRef]
- [6] Luvsannyam, E.; Jain, M.S.; Leitao, A.R.; Maikawa, N.; Leitao, A.E. Meniscus Tear: Pathology, Incidence, and Management. Cureus 2022, 14, e25121. [Google Scholar] [CrossRef]
- [7] Lakhanpal, S.; Ginsburg, W.W.; Luthra, H.S.; Hunder, G.G. Transient regional osteoporosis. A study of 56 cases and review of the literature. Ann. Intern. Med. 1987, 106, 444–450. [Google Scholar] [CrossRef]
- [8] Hofmann, S. The painful bone marrow edema syndrome of the hip joint. Wien. Klin. Wochenschr. 2005, 117, 111–120. [Google Scholar] [CrossRef] [PubMed]
- [9] Starr, A.M.; Wessely, M.A.; Albastaki, U.; Pierre-Jerome, C.; Kettner, N.W. Bone marrow edema: Pathophysiology, differential diagnosis, and imaging. Acta Radiol. 2008, 49, 771–786. [Google Scholar] [CrossRef]
- [10] Bien, N.; Rajpurkar, P.; Ball, R.L.; Irvin, J.; Park, A.; Jones, E.; Bereket, M.; Patel, B.N.; Yeom, K.W.; Shpanskaya, K.; et al. Deep-learning-assisted diagnosis for knee

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

- magnetic resonance imaging: Development and retrospective validation of MRNet. PLoS Med. 2018, 15, e1002699. [Google Scholar] [CrossRef] [Green Version]
- [11] Kim, Y.W.; Mansfield, L.T. Fool me twice: Delayed diagnoses in radiology with emphasis on perpetuated errors. AJR Am. J. Roentgenol. 2014, 202, 465–470. [Google Scholar] [CrossRef] [PubMed]
- [12] European Society of Radiology (ESR); Codari, M.; Melazzini, L.; Morozov, S.P.; van Kuijk, C.C.; Sconfienza, L.M.; Sardanelli, F. Impact of artificial intelligence on radiology: A EuroAIM survey among members of the European Society of Radiology. Insights Into Imaging 2019, 10, 105. [Google Scholar]
- [13] Avola, D.; Cannistraci, I.; Cascio, M.; Cinque, L.; Diko, A.; Fagioli, A.; Foresti, G.L.; Lanzino, R.; Mancini, M.; Mecca, A.; et al. A Novel GAN-Based Anomaly Detection and Localization Method for Aerial Video Surveillance at Low Altitude. Remote Sens. 2022, 14, 4110. [Google Scholar] [CrossRef]
- [14] Otter, D.W.; Medina, J.R.; Kalita, J.K. A survey of the usages of deep learning for natural language processing. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 604–624. [Google Scholar] [CrossRef] [Green Version]
- [15] Santilli, V.; Mangone, M.; Diko, A.; Alviti, F.; Bernetti, A.; Agostini, F.; Palagi, L.; Servidio, M.; Paoloni, M.; Goffredo, M.; et al. The Use of Machine Learning for Inferencing the Effectiveness of a Rehabilitation Program for Orthopedic and Neurological Patients. Int. J. Environ. Res. Public Health 2023, 20, 5575. [Google Scholar] [CrossRef]
- [16] Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006; ISBN 978-0-387-31073-2. [Google Scholar]
- [17] Rosten, E.; Drummond, T. Machine learning for high-speed corner detection. In Proceedings of the 9th European Conference on Computer Vision, Graz, Austria, 7–13 May 2006; Volume 3951, pp. 430–443. [Google Scholar]
- [18] Vidya, M.; Karki, M.V. Skin cancer detection using machine learning techniques. In Proceedings of the 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 2–4 July 2020; pp. 1–5. [Google Scholar]
- [19] Nguyen, Q.H.; Muthuraman, R.; Singh, L.; Sen, G.; Tran, A.C.; Nguyen, B.P.; Chua, M. Diabetic retinopathy detection using deep learning. In Proceedings of the 4th International Conference on Machine Learning and Soft Computing, Haiphong City, Viet Nam, 17–19 January 2020; pp. 103–107. [Google Scholar]
- [20] Nasrullah, N.; Sang, J.; Alam, M.S.; Mateen, M.; Cai, B.; Hu, H. Automated lung nodule detection and classification using deep learning combined with multiple strategies. Sensors 2019, 19, 3722. [Google Scholar] [CrossRef] [Green Version]
- [21] Avola, D.; Cinque, L.; Diko, A.; Fagioli, A.; Foresti, G.L.; Mecca, A.; Pannone, D.; Piciarelli, C. MS-Faster R-CNN: Multi-stream backbone for improved Faster R-CNN object detection and aerial tracking from UAV images. Remote Sens. 2021, 13, 1670. [Google Scholar] [CrossRef]

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

- [22] Astuto, B.; Flament, I.; KNamiri, N.; Shah, R.; Bharadwaj, U.; MLink, T.; DBucknor, M.; Pedoia, V.; Majumdar, S. Automatic deep learning—assisted detection and grading of abnormalities in knee MRI studies. Radiol. Artif. Intell. 2021, 3, e200165. [Google Scholar] [CrossRef]
- [23] Mustra, M.; Delac, K.; Grgic, M. Overview of the DICOM standard. In Proceedings of the 2008 50th International Symposium ELMAR, Borik Zadar, Croatia, 10–12 September 2008; Volume 1, pp. 39–44. [Google Scholar]
- [24] Avola, D.; Cinque, L.; Fagioli, A.; Filetti, S.; Grani, G.; Rodolà, E. Multimodal feature fusion and knowledge-driven learning via experts consult for thyroid nodule classification. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 2527–2534. [Google Scholar] [CrossRef]
- [25] Zhang, B.; Gao, Y.; Zhao, S.; Liu, J. Local derivative pattern versus local binary pattern: Face recognition with high-order local pattern descriptor. IEEE Trans. Image Process. 2009, 19, 533–544. [Google Scholar] [CrossRef] [Green Version]
- [26] Shensa, M.J. The discrete wavelet transform: Wedding the a trous and Mallat algorithms. IEEE Trans. Signal Process. 1992, 40, 2464–2482. [Google Scholar] [CrossRef] [Green Version]
- [27] Alom, M.Z.; Taha, T.M.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.S.; Van Esesn, B.C.; Awwal, A.A.; Asari, V.K. The history began from alexnet: A comprehensive survey on deep learning approaches. arXiv 2018, arXiv:1803.01164. [Google Scholar]
- [28] Caruana, R.; Niculescu-Mizil, A. An empirical comparison of supervised learning algorithms. In Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006; pp. 161–168. [Google Scholar]
- [29] Arbabshirani, M.R.; Fornwalt, B.K.; Mongelluzzo, G.J.; Suever, J.D.; Geise, B.D.; Patel, A.A.; Moore, G.J. Advanced machine learning in action: Identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration. NPJ Digit. Med. 2018, 1, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- [30] Florkowski, C.; Don-Wauchope, A.; Gimenez, N.; Rodriguez-Capote, K.; Wils, J.; Zemlin, A. Point-of-care testing (POCT) and evidence-based laboratory medicine (EBLM)—Does it leverage any advantage in clinical decision making? Crit. Rev. Clin. Lab. Sci. 2017, 54, 471–494. [Google Scholar] [CrossRef] [PubMed]
- [31] Cho, J.; Lee, K.; Shin, E.; Choy, G.; Do, S. How much data is needed to train a medical image deep learning system to achieve necessary high accuracy? arXiv 2015, arXiv:1511.06348. [Google Scholar]
- [32] Sessions, V.; Valtorta, M. The Effects of Data Quality on Machine Learning Algorithms. In Proceedings of the 11th International Conference on Information Quality, MIT, Cambridge, MA, USA, 10–12 November 2006; Volume 11, pp. 10–12. [Google Scholar]

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

- [33] Roh, Y.; Heo, G.; Whang, S.E. A Survey on Data Collection for Machine Learning. IEEE Trans. Knowl. Data Eng. 2021, 33, 1328–1347. [Google Scholar] [CrossRef] [Green Version]
- [34] Theo V, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the global burden of Disease Study 2010. Lancet. 2012;380:2163–96. https://doi.org/10.1016/ S0140-6736(12)61729-2.
- [35] Antony J, McGuinness K, O'Connor NE, Moran K. Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks. Proc Int Conf Pattern Recognit. 2016;0:1195–200. https://doi.org/10.1109/ ICPR.2016.7899799.
- [36] Joseph GB, McCulloch CE, Sohn JH, Pedoia V, Majumdar S, Link TM. AI MSK clinical applications: cartilage and osteoarthritis. Skeletal Radiol. 2022;51(2):331–43. https://doi.org/10.1007/s00256-021-03909-2.
- [37] Tufail AB, Ma Y-K, Kaabar MKA. Ateeq Ur Rehman, Rahim Khan, Omar Cheikhrouhou classification of initial stages of Alzheimer's disease through PET neuroimaging modality and deep learning: quantifying the impact of image filtering approaches in Mathematics, 9, Issue 23, 2021. https://doi.org/10.3390/math9233101
- [38] Saini D, Chand T, Chouhan DK, Prakash M. A comparative analysis of automatic classification and grading methods for knee osteoarthritis focussing on X-ray images, Biocybern. Biomed. Eng., vol. 41, no. 2, pp. 419–444, Apr. 2021, https://doi.org/10.1016/J.BBE.2021.03.002
- [39] Zeng CY, Zhang ZR, Tang ZM, Hua FZ. Benefits and mechanisms of Exercise training for knee osteoarthritis. Front Physiol. 2021;12. https://doi.org/10.3389/fphys.2021.794062.
- [40] Tamez-Peña JG, Farber J, González PC, Schreyer E, Schneider E, Totterman S. Unsupervised segmentation and quantification of anatomical knee features: data from the osteoarthritis initiative. IEEE Trans Biomed Eng. 2012;59(4):1177–86. https://doi.org/10.1109/TBME.2012.2186612.
- [41] Shourie P, Anand V, Gupta S. A Sophisticated Method for X-Ray Image-Based Knee Osteoarthritis Diagnosis Utilising Moblienetv3 Large, 2023 Global Conference on Information Technologies and Communications (GCITC), Bangalore, India, 2023, pp. 1–5, https://doi.org/10.1109/GCITC60406.2023.10426267
- [42] Tufail AB, Anwar N, Othman MTB, Ullah I, Khan RA, Ma Y-K, Adhikari D. Ateeq Ur Rehman, Muhammad Shafiq, Habib Hamam Early-Stage Alzheimer's Disease categorization using PET neuroimaging modality and convolutional neural networks in the 2D and 3D domains sensors 2022, 22, Issue 12, 4609. pp: 1–18. https://doi.org/10.3390/s22124609
- [43] Keshav Kaushik A, Bhardwaj S, Bharany N, Alsharabi AU, Rehman ET, Eldin, Nivin A. Ghamry A Machine Learning-based Framework for the prediction of Cervical Cancer Risk in Women sustainability 2022, 14, Issue 19, 11947. https://doi.org/10.3390/su141911947
- [44] Sadiq MT, Akbari H, Rehman AU, Nishtar Z, Masood B, Ghazvini M, Too J, Hamedi N. Kaabar exploiting feature selection and Neural Network Techniques for

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

- Identification of Focal and NonFocal EEG signals in TQWT Domain. J Healthc Eng. Volume 2021;1–24. https://doi.org/10.1155/2021/6283900.
- [45] Asaf Raza H, Ayub JA, Khan I, Ahmad AS, Salama. Yousef Ibrahim Daradkeh, Danish Javeed, Ateeq Ur Rehman, Habib Hamam A Hybrid Deep Learningbased Approach for Brain Tumor classification in Electronics 2022, 11, Issue 07, 1146. https://doi.org/10.3390/electronics11071146
- [46] Hussain NM, Rehman AU, Othman MTB, Zafar J, Zafar H. Habib Hamam Accessing Artificial Intelligence for Fetus Health Status using Hybrid Deep Learning Algorithm (AlexNet-SVM) on Cardiotocographic Data Sensors 2022, Vol. 22, Issue 14, 5103. pp: 1–14. https://doi.org/10.3390/s22145103
- [47] Almansour SHS. A Convolution Neural Network Design for Knee Osteoarthritis Diagnosis Using X-ray Images, Int. J. Onl. Eng., vol. 19, no. 07, pp. pp. 125–141, Jun. 2023.
- [48] Yeoh PSQ, Lai KW, Goh SL, Hasikin K, Wu X, Li P. Transfer learning-assisted 3D deep learning models for knee osteoarthritis detection: data from the osteoarthritis initiative. Front Bioeng Biotechnol. 2023;11. https://doi.org/10.3389/fbioe.2023.1164655.
- [49] Oei EHG, Hirvasniemi J, Klein S, van der Heijden RA, Eijgenraam SM, Schiphof D, Bierma-Zeinstra SMA, Runhaar J. The 15th international workshop on osteoarthritis imaging; 'Open Up: The multifaceted nature of OA imaging,' Osteoarthr. Imaging, vol. 2, no. 1, p. 100009, 2022, https://doi.org/10.1016/j. ostima.2022.100009
- [50] Hemanth SR, Tharun K, S CRH, Chadan S, Chadanmagar M. Cnn Based Automatic Detection of knee osteoarthritis severity using mri images and image Processing techniques. Int Res J Mod Eng Technol Sci no. 2023;05:6461–7. https://doi.org/10.56726/irjmets40187.
- [51] Mohanty N, Pradhan M, Mane PP, Mallick PK, Ozturk BA, Shamaileh AA. Optimized clustering-based fusion for skin lesion image classification: Leveraging marine predators algorithm. *Intelligent Decision Technologies*. 2024;18(3):2511-2536. doi:10.3233/IDT-240336
- [52] Mane, PP., Naik, K, Chaudhari LR, H. E. Khodke HE, and Gaikwad DVS. Advancements in Machine Learning Algorithms for Predictive Analytics in Healthcare. Advances in Nonlinear Variational Inequalities, 2024:27(3):472-485. https://doi.org/10.52783/anvi.v27.1413