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Abstract 

 

Community detection in large-scale social networks remains a central challenge because methods 

must be both theoretically grounded and computationally efficient. This paper introduces a spectral 

framework that links the eigenvalue structure of the normalized Laplacian to the existence and 

separability of communities, and couples this theory with a scalable algorithm. The method estimates 

the number of groups by inspecting the spectral gap, embeds vertices using the leading eigenvectors, 

and clusters the embeddings. We validate on the MUSAE GitHub social network dataset, which 

contains edges, node features, and ground-truth communities. The framework delivers strong 

accuracy and efficiency: normalized mutual information 0.77, adjusted rand index 0.72, modularity 

0.51, and median end-to-end runtime 120 seconds on graphs exceeding one hundred thousand nodes. 

Spectral analysis of the dataset exhibits a clear gap consistent with the recovered partitions, 

demonstrating alignment between theoretical detectability and empirical performance. The study 

offers a transparent, portable pipeline built on sparse linear algebra and randomized eigensolvers, and 

lays the foundations for extensions to temporal graphs, higher-order relations, and integration with 

neural models. 
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1. Introduction 

 

The field of community detection in social networks evolved as one of the most powerful spheres of 

study of data mining and network science due to its capability to disclose the structural organisation 

that exists in large and complex systems. Communities, in general conceptualised as sets of nodes 

with high intra-connectivity and low external connectivity, offer essential information about the 

diffusion of information, the amassing of influence, and the development of social behaviour. In the 

last 20 years, many algorithms and frameworks have been created to identify and assay structures of 

communities, but there is still a strong urge to develop mathematical foundations and scaleable 

techniques [1]. The importance of the given issue is supported by the fact that the number of 

publications and surveys questioning the existing approaches and pointing out the unsolved issues 

increases on a regular basis [2]. 

Structural analysis is not the only role of community detection. In practice, it has been applied to 

various applications including influence maximization, recommendation systems and anomaly 

detection. The social network analysis in relation to influence maximisation has been widely 

researched. Influence maximisation strategies can be more efficient in viral marketing, political 

campaigning and awareness programmes by using communities as structural supports of diffusion 

processes [3]. The case surveys have revealed that community strategies tend to be more effective 

than international strategies because of their capacity to identify influential agents in local groupings 

[4]. Therefore, the knowledge of communities can not only enhance descriptive analysis of networks 
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but also preliminary actions that have the potential to transform organisational and marketing 

outcomes. 

Although community detection has reached its maturity as a research field, social networks that are 

large still pose new challenges. The digital interactions that have been expanding in platforms such as 

GitHub, Twitter, and Facebook create massive networks with millions of nodes and edges, and the 

conventional algorithms are not scalable and precise. This has presented a challenge that has inspired 

a number of reviews that evaluate the state-of-the-art in community detection with a focus on 

computational load of large-scale graph processing and the absence of algorithms that strike a balance 

between performance and intelligibility [5]. The challenges become even more complex in multiplex 

networks, where nodes participate in multiple layers of interactions such as friendship, collaboration, 

and content sharing. Identifying communities across such heterogeneous structures requires methods 

that are both robust and mathematically principled [6]. 

Despite these challenges, the evolution of community detection research has been marked by major 

conceptual and methodological advancements. In fact, community detection is now recognized as one 

of the core paradigms in network science, shaping the trajectory of interdisciplinary research across 

physics, sociology, biology, and computer science. The field has witnessed exponential growth over 

the last twenty years, reflecting both the intellectual depth and the applied relevance of the topic [7]. 

As algorithms proliferated, so did the classification schemes, where methods have been grouped into 

categories such as modularity optimization, spectral clustering, statistical inference, label 

propagation, and deep learning-based approaches. These classifications provide a comprehensive map 

of the research landscape, guiding practitioners in selecting appropriate methods for different network 

contexts [8]. 

However, while classification and surveys are abundant, the fundamental issue of mathematical 

guarantees for community detection remains insufficiently addressed. Many popular algorithms 

succeed in practice but lack rigorous proofs of detectability, convergence, or robustness to noise. A 

structured taxonomy of methods reveals that, although modularity-based approaches are intuitive and 

widely used, they suffer from well-known limitations such as the resolution limit. Similarly, spectral 

methods are powerful but often lack direct connections between eigenvalue gaps and empirical 

performance [9]. This lack of connexion between theory and practise points to the urgent necessity of 

structures that are capable of bringing together mathematical arguments and empirical verification. 

The other aspect on which community detection has shown its usefulness is in influence 

maximisation. To unify structural detection and diffusion models, community-aware influence 

maximisation strategies are suggested which make it easier to target seed nodes in viral marketing 

campaigns. These techniques show that communities represent natural limits to propagation of 

influence, whereby the influencers chosen will ensure that they reach the greatest number of people 

with minimal redundancy [10]. Such applications confirm the fact that communities do not exist as 

mere structural artefacts but as actionable structures that become efficient in the execution of applied 

tasks within real-life networks. 

It is based on this background that the current research seeks to contribute to the community detection 

by establishing a coherent spectral graph theory framework of large scale social networks, 

emphasising on rigorous mathematical and empirical validation. Of interest especially is the spectral 

approach due to its power to relate graph structure with algebraic properties, which gives an insight 

in terms of eigenvalues and eigenvectors of graph Laplacians. This research offers formal assurances 

to the determination of cohesive groups in networks by analysing spectral gaps and their connexion 

with community detectability. Moreover, with the introduction of this theoretical framework into an 

effective algorithm, it will be feasible to solve the urgent problem of scalability in tens of thousands 

node networks. 

The empirical testbed of MUSAE GitHub dataset is a good decision, which highlights the practical 

relevance of the research. The data includes interactions between developers of a global software 
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collaboration platform, which includes structural edges as well as ground-truth labels, which are used 

as a reference in the community detection evaluation. The analysis of the spectral framework on this 

data fills the gap between theory and practise by confirming the spectral framework on this dataset, 

providing both mathematically-grounded and empirically robust results. 

In short, this study is driven by the need to solve the twin problem of scalability and rigour of 

community detection. The literature available proves the broad applicability of communities to the 

study of networks, but also shows gaps in mathematical foundations and scaling to large-scale data. 

This work is a contribution to the development of both theoretical and practical aspects of spectral 

theory by integrating spectral theory with scalable calculations. 

 

Objectives of the Study 

1. To create and give a formal framework of spectral graph theory-based community detection which 

has mathematical assurance in terms of eigenvalue gap 

2. To confirm the framework proposed on the MUSAE GitHub data, show the scalability and 

accuracy of the proposed framework over baseline methods 

 

2. Related Work 

Community detection is a subject of research that has been researched in various methodological 

streams, all of which propose novel methods of discovering structural patterns in large-scale networks. 

Three major paradigms have been developed: modularity optimization strategies, spectral clustering 

strategies, and embedding-based strategies, such as the more recent graph neural networks. This part 

will look at the evolution of these methods and determine unresolved gaps that require the creation of 

stricter frameworks. 

One of the most popular strategies, which is commonly used in community detection, is the 

modularity optimization which directly measures the quality of a partition, the density of edges in 

communities against random expectations. One of the first and most scalable algorithms is the 

Louvain algorithm which has been scaled to distributed architectures to handle massive graphs [11]. 

It is shown by the distributed version that parallelization does not only increase the speed of execution, 

but it also allows the approach to operate on millions of nodes without severely reducing the 

modularity scores. This is an important step towards social network analysis where graphs can easily 

become larger than the limits of single-threaded implementations can handle. An extensive overview 

of the modularity optimization technique has highlighted the various adaptations and optimizations 

of Louvain-based algorithms [12]. This variation usually centres on convergence enhancement, 

solution to the resolution limit, and modularity improvement of complex networks. Despite these 

advancements, scalability and stability remain recurring issues. 

The introduction of the Leiden algorithm provided a more robust alternative by ensuring well-

connected communities and refining the optimization process to avoid disconnected clusters [13]. Its 

efficiency in dynamic networks further extends its utility, allowing for community detection in 

evolving social systems where network structure changes continuously.  Recent innovations have 

pushed Leiden beyond its initial scope. Extensions such as fitness-based genetic algorithms with 

niching strategies have been proposed to enhance its performance on large social networks [14]. These 

hybrid approaches combine evolutionary computation with modularity optimization, balancing 

exploration of the search space with exploitation of community structures. Despite the progress, 

modularity optimization remains inherently limited by the resolution problem, where smaller 

communities may be overlooked when optimizing a global objective. This has motivated exploration 

into alternative paradigms such as spectral methods. 

Spectral clustering approaches detect communities by leveraging the eigenvalues and eigenvectors of 

graph Laplacians. The central idea is that the eigenstructure of a graph encodes essential information 

about its partitions. Early formulations established the mathematical foundation by linking the second-
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smallest eigenvalue of the Laplacian (the Fiedler value) to graph connectivity [15]. This connection 

inspired methods that embed graph nodes into lower-dimensional spectral spaces, where clustering 

algorithms such as k-means can identify communities. More recent developments in spectral 

clustering have attempted to make computation easier and faster, but equally theoretically sound. 

Scalable methods now have approximations and efficient linear algebra methods to allow it to be 

applied to large graphs [16]. These advancements show that the spectral clustering is not just a 

theoretical instrument, but an effective methodology that can compete with the modularity-based 

approaches. Nonetheless, spectral techniques are well-grounded mathematically but there are issues 

in converting the gaps between eigenvalues into statements of community detectability in real-life 

networks that are noisy. Embedding-based community detection has become an influential alternative 

to network representation learning due to the emergence of this learning tool. 

They have the ability to encode the structural equivalence and neighborhood similarity within low-

dimensional vectors and use it to find communities, as they embed nodes into the low-dimensional 

space. A scaled biassed random walk technique, which presented how feature learning on graphs could 

be applied to community detection, and nodes classification and link prediction, was one of the most 

impactful works in this field [17]. The resulting embeddings were found to be general, being able to 

be used in a variety of downstream tasks and scale to large datasets. Based on this background, other 

papers followed by embedding in knowledge graphs to improve recommendation systems, applying 

structural embeddings to learn semantic relations in knowledge graphs [18]. These findings emphasise 

the flexibility of embedding-based community detection algorithms since they will be able to 

incorporate both structural and semantic features into the clustering procedure. Likewise, previous 

studies suggested an online learning method to embeddings so that communities could be identified 

using constantly updated representations [19]. Embeddings could be learned effectively with the 

principles of natural language processing by modeling social interactions as sequences, which are 

sentential-like analogs. Subsequent work has investigated the possibility of using embeddings to 

reverse the process of embedding a graph, and achieve a closed-ended set of community partitions 

[20]. The reverse engineering illustrates that embeddings are able to maintain a considerable amount 

of structural information, and justify their application in community detection tasks. 

The most recent wave of methods has explored the use of graph neural networks (GNNs) for 

community detection. These approaches extend embedding-based learning by incorporating neural 

architectures that aggregate information from local neighborhoods. Early demonstrations of this idea 

showed that GNNs could be tailored specifically to detect communities by learning node 

representations optimized for partitioning [21]. Later refinements proposed encoding attribute 

information directly into GNNs, improving community detection in attributed networks where both 

topology and node features contribute to the formation of groups [22]. Such models leverage 

supervised or semi-supervised learning paradigms, making them highly flexible but also dependent 

on labeled data. While powerful, GNN-based approaches face limitations in interpretability, 

computational demand, and generalizability to networks without abundant training labels. 

Scalability is a recurring theme across all methods. Distributed implementations of the Louvain 

algorithm have demonstrated remarkable progress, providing scalable solutions for extremely large 

graphs [23]. The emphasis on parallelization highlights the ongoing necessity of designing algorithms 

that are both theoretically sound and computationally efficient. However, even with such distributed 

approaches, challenges persist in balancing speed with accuracy, particularly when applied to 

heterogeneous or dynamic networks. Efforts to enhance scalability through parallelized Louvain 

variants continue to dominate the practical side of community detection [24]. Yet, these improvements 

often come at the cost of reduced interpretability and lack of formal guarantees regarding community 

quality. This trade-off underscores the unresolved tension in the field: methods that scale are often 

heuristics without rigorous mathematical foundations, while methods with strong theoretical 

underpinnings struggle to scale to networks with millions of nodes. 
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The survey of community detection methods reveals several persistent gaps. First, modularity 

optimization techniques, though popular and efficient, remain susceptible to the resolution limit and 

lack theoretical guarantees of optimality. Spectral methods, while grounded in mathematical theory, 

require deeper exploration of eigenvalue gaps and their connection to community detectability in 

noisy and heterogeneous graphs. Embedding-based approaches, including Node2Vec and DeepWalk, 

excel in scalability and flexibility but often sacrifice interpretability and lack rigorous proofs of 

performance. GNN-based methods further extend embeddings but are heavily dependent on labeled 

data and suffer from computational overhead. Second, benchmarking practises have not been 

sufficient. A great deal of work is tested on small or artificial networks, and little of the work has been 

tested on large-scale, real-world networks. This lack of uniform benchmarking models makes it 

difficult to make comparisons and misleading to the actual scalability of approaches proposed. 

Spectral-theoretic techniques have in particular not been studied in large empirical data, where their 

theoretical benefits can be evaluated against empirical limitations. 

Community detection research has developed a number of paradigms, each of which presents its own 

benefits and limitations. The modularity optimization is a viable workhorse but is flawed in theory. 

Spectral clustering offers good mathematical understanding but needs to be developed to be more 

scalable and robust. The embedding-based and GNN methods introduce an innovation of the machine 

learning field with interpretability and computational issues. It is these gaps that are the motivation 

behind the creation of a spectral graph theory framework that bridges the gap between theoretical 

assurances and scalable implementation and is tested on realistic large scale datasets. 

 

3. Preliminaries 

 

The process of constructing a spectral graph theory framework of community detection needs a clear 

definition of graph theoretical concepts, algebraic properties, and measures of performance that form 

the basis of clustering techniques. In this section, the formal notation in the rest of the study was 

presented, the key matrices of graphs were defined and the spectral properties that are used to identify 

the communities were brought out. 

 

3.1 Graph Structure and Notation 

Consider a graph 𝐺 = (𝑉, 𝐸), where 𝑉 is the set of nodes and 𝐸 is the set of edges representing 

relationships between nodes. For an undirected and unweighted graph, the adjacency matrix 𝐴 is 

defined such that: 

𝐴𝑖𝑗 = {
1  if (𝑖, 𝑗) ∈ 𝐸
0  otherwise 

 

 

The degree matrix 𝐷 is a diagonal matrix with entries 𝐷𝑖𝑖 = ∑  𝑗 𝐴𝑖𝑗. The Laplacian matrix is then 

defined as: 

𝐿 = 𝐷 − 𝐴. 
 

This formulation, established in the literature of spectral graph theory, serves as the backbone for 

analyzing connectivity and partitioning of graphs [25]. Beyond simple adjacency, the Laplacian 

encodes both degree information and connectivity, making it central to spectral methods. 

To better understand the role of these matrices in spectral analysis, Table 1 summarizes their 

definitions and functions in a compact manner. 

 

Table 1. Core Graph Matrices and Their Functions 

Matrix Definition Function in Spectral Methods 

Adjacency Matrix 𝐴 𝐴𝑖𝑗 = 1 if edge exists Encodes direct connectivity 
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Degree Matrix 𝐷 Diagonal of node degrees Captures local density 

Laplacian 𝐿 𝐿 = 𝐷 − 𝐴 Models flow and connectivity 

Normalized Laplacian 𝐿norm  𝐷−1/2𝐿𝐷−1/2 Stabilizes eigenvalue spectrum 

 

As shown in the table, the adjacency matrix provides information on direct relationships, the degree 

matrix highlights local connectivity levels, and the Laplacian integrates these two aspects into a single 

construct. The normalized Laplacian further refines this by ensuring that the eigenvalue spectrum is 

well-scaled for large heterogeneous graphs. 

 

3.2 Spectral Properties 

Spectral analysis focuses on the eigenvalues and eigenvectors of 𝐿. If 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑛 denote the 

eigenvalues of the Laplacian, then the multiplicity of the zero eigenvalue corresponds to the number 

of connected components in the graph. The eigenvector associated with the smallest nonzero 

eigenvalue, often referred to as the Fiedler vector, provides information about the optimal bi-partition 

of the graph [26]. 

Efficient Laplacian solvers are critical for handling large-scale networks, as exact eigenvalue 

computations become infeasible for graphs with millions of nodes. Approximate solvers and 

sparsification techniques reduce computational burden while preserving structural fidelity, thereby 

enabling spectral approaches to scale effectively [27]. 

 

3.3 Extensions of the Laplacian 

Recent studies extend the Laplacian to nonlinear operators such as the graph ∞-Laplacian, which 

generalizes eigenvalue problems to nonlinear regimes [28]. These formulations broaden the 

applicability of spectral methods beyond traditional clustering, although for the current study, the 

standard combinatorial and normalized Laplacians remain most relevant. 

 

3.4 Graph Cuts and Cheeger's Inequality 

Community detection can also be formulated in terms of cuts. For two disjoint subsets 𝑆 and 𝑆‾, the 

cut value is defined as: 

cut(𝑆, 𝑆‾) = ∑  

𝑖∈𝑆,𝑗∈𝑆‾

𝐴𝑖𝑗 . 

 

Normalized cut and conductance are widely used to measure the quality of partitions. Cheeger's 

inequality provides a bridge between spectral properties and cut quality, bounding the conductance of 

a set in terms of eigenvalues of the Laplacian [29]. Improved formulations of this inequality 

demonstrate tighter connections between eigenvalue gaps and community separability, which further 

validate the use of spectral methods in graph partitioning. 

Extensions of Cheeger's inequality to graph limits provide new insights into the behavior of 

communities in infinite or asymptotic graph models [30]. These theoretical results strengthen the 

foundations of spectral community detection by ensuring that eigenvalue-based partitions are not 

merely heuristic but are backed by provable guarantees. 

 

3.5 Formal Definition of Community Detection 

Formally, the community detection problem can be defined as finding a partition of the vertex set 𝑉 

into disjoint subsets 𝐶1, 𝐶2, … , 𝐶𝑘 such that intra-community edge density is maximized while 

intercommunity connectivity is minimized. Spectral clustering achieves this by embedding nodes into 

a lowdimensional space spanned by eigenvectors of the Laplacian, followed by applying a clustering 

algorithm such as k-means. 
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The effectiveness of this approach depends on the spectral gap, defined as the difference between 

successive eigenvalues: 

Δ𝑘 = 𝜆𝑘+1 − 𝜆𝑘. 
 

A larger spectral gap indicates clearer separation between 𝑘-way partitions, thereby facilitating 

accurate community detection [31]. 

 

3.6 Robustness of Spectral Methods 

While spectral methods enjoy solid theoretical underpinnings, their robustness to noise and 

perturbations in network data remains a critical consideration. Studies on robustness have shown that 

even under adversarial conditions, spectral methods can recover meaningful partitions if the spectral 

gap is sufficiently large [32]. This property underscores their suitability for large-scale, noisy social 

networks, where data imperfections are common. To illustrate this visually, Figure 1 shows an 

eigenvalue spectrum of a simple graph, where the spectral gap highlights the separability of 

communities. 

 

 
Figure 1. Example Eigenvalue Spectrum and Community Separability 

 

As the figure suggests, the eigenvalue spectrum provides an algebraic lens into community structure. 

Detecting such gaps allows for efficient and accurate identification of clusters within networks. The 

preliminaries establish the mathematical backbone of this study. The graph Laplacian, its eigenvalues 

and eigenvectors, and associated inequalities provide rigorous tools for defining and analyzing 

community structures. By formalizing community detection as a partition optimization problem 

linked to spectral gaps, the framework ensures both theoretical depth and practical applicability. These 

foundations are essential for developing the proposed spectral graph theory framework and validating 

it against real-world datasets such as MUSAE GitHub. 

 

4. Proposed Spectral Framework 

 

The success of community detection using spectral graph theory depends on formulating a robust 

operator, establishing theoretical guarantees, and demonstrating consistency with stochastic models. 

This section introduces the normalized Laplacian as the core operator, develops theoretical insights 

through theorems, and outlines proof sketches that connect eigenvalue gaps to community 

detectability. It also establishes connections to stochastic block models (SBM), which serve as 

theoretical benchmarks for large-scale networks. 

 

4.1 Modified Laplacian Operator 
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Given the limitations of the standard Laplacian, particularly in heterogeneous networks, the 

normalized Laplacian is employed: 

𝐿𝑛𝑜𝑟𝑚 = 𝐷−1/2𝐿𝐷−1/2 = 𝐼 − 𝐷−1/2𝐴𝐷−1/2 

 

This operator stabilizes the spectrum by mitigating degree heterogeneity and ensures that eigenvalues 

lie within the interval [0,2]. By using 𝐿norm , the embedding of nodes into the eigenvector space 

becomes more consistent across networks of varying scales. Spectral clustering based on this operator 

has been shown to provide both theoretical rigor and empirical stability [33]. 

 

4.2 Eigenvalue Gaps and Community Structure 

The eigenvalue spectrum of 𝐿norm  provides insights into the number and quality of communities. Let 

𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑛 denote its eigenvalues. The first 𝑘 eigenvalues near zero indicate the presence of 

𝑘 communities. The spectral gap is defined as: 

Δ𝑘 = 𝜆𝑘+1 − 𝜆𝑘. 
A large Δ𝑘 implies strong separability among 𝑘 communities, while a small gap signals weak 

detectability. In stochastic block models, it has been demonstrated that recovery of communities is 

possible if the eigenvalue gap exceeds a threshold determined by the ratio of intra- to inter-community 

probabilities [34]. This establishes a fundamental limit: spectral clustering is effective up to a phase 

transition boundary beyond which communities become statistically indistinguishable. 

 

4.3 Theoretical Guarantees 

The reliability of spectral clustering can be formalized through performance guarantees. One key 

result is that the misclassification error probability decays as the eigenvalue gap increases. 

Specifically, let 𝐶̂𝑖 be the community assigned to node 𝑖, and let 𝐶𝑖 denote the true community. 

Then, under certain stochastic assumptions: 

Pr(𝐶̂𝑖 ≠ 𝐶𝑖) ≤
𝑓(𝑛)

Δ𝑘
2  

 

where 𝑓(𝑛) is a function of the network size 𝑛. This inequality shows that stronger separation in the 

eigenvalue spectrum directly reduces the risk of misclassification [35]. Proof sketches rely on 

perturbation bounds of eigenvectors and concentration inequalities that connect spectral embeddings 

with ground-truth partitions. 

Further refinements have provided performance guarantees even under noisy conditions, 

demonstrating that spectral clustering remains consistent if the signal-to-noise ratio exceeds a critical 

threshold [36]. These results highlight not only the power of spectral methods but also their robustness 

when applied to largescale, imperfect social networks. To illustrate this process, Figure 2 presents the 

workflow of the proposed spectral framework. 
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Figure 2. Workflow of the Proposed Spectral Framework 

 

As shown in the figure, the process begins with the normalized Laplacian, which encodes degree-

corrected connectivity. Eigenvalue analysis then identifies the number of communities via the spectral 

gap. Finally, clustering in the low-dimensional eigenvector space yields community partitions with 

provable performance guarantees. 

 

4.4 Connection to Stochastic Block Models 

The stochastic block model (SBM) provides a probabilistic framework for testing theoretical results. 

In an SBM with 𝑘 blocks, each node belongs to a block with probability 𝜋, and edges are formed 

between nodes with probabilities depending on their block memberships. Analysis shows that spectral 

methods achieve exact recovery when the difference between intra- and inter-community connection 

probabilities is sufficiently large [33]. 

Later studies identified sharp phase transitions, revealing the precise boundary between detectable 

and undetectable regimes [34]. These findings validate the reliance on eigenvalue gaps: below the 

phase transition, the spectral embedding collapses, and no algorithm can reliably recover 

communities. Above the threshold, spectral methods achieve near-optimal performance. Thus, SBM 

serves as both a testing ground and a theoretical validation tool for the framework developed in this 

study. 

 

5. Algorithm Design 

 

The practical implementation of the spectral framework requires an efficient algorithm capable of 

handling graphs with more than 100,000 nodes. This section outlines the spectral clustering algorithm 

in a step-by-step manner, discusses optimizations such as sparse matrix operations and approximate 

eigenvalue solvers, and evaluates computational complexity to demonstrate scalability. 

 

5.1 Step-by-Step Algorithm 

The proposed spectral clustering algorithm follows the classical design but incorporates modifications 

to ensure scalability. 

 

Algorithm 1: Scalable Spectral Clustering 

1. Input: Graph 𝐺 = (𝑉, 𝐸), adjacency matrix 𝐴. 
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2. Compute the degree matrix 𝐷 and normalized Laplacian 𝐿norm = 𝐼 − 𝐷−1/2𝐴𝐷−1/2. 

3. Perform eigen decomposition of 𝐿𝑛𝑜𝑟𝑚 to obtain the first 𝑘 eigenvectors 𝑈𝑘. 

4. Construct an embedding matrix by normalizing rows of 𝑈𝑘. 

5. Apply k-means (or another clustering method) to rows of the embedding. 

6. Output: Community partition {𝐶1, 𝐶2, … , 𝐶𝑘}. 
 

This formulation aligns with scalable approaches that exploit structural similarity measures to enhance 

clustering efficiency [37]. 

 

5.2 Optimizations 

Direct eigen decomposition on large Laplacians is computationally expensive. To address this, 

randomized low-rank matrix approximations can be employed, which approximate leading 

eigenvectors without computing the full spectrum. These techniques are both fast and stable, reducing 

time complexity significantly while preserving accuracy [38]. Sparse representations of the Laplacian 

further reduce memory usage, allowing the algorithm to process networks with millions of edges. 

When networks are extremely large or structured as hypergraphs, specialized solvers that exploit 

tensor sparsity become essential. Such solvers adapt eigenvalue computations for higher-order 

structures while ensuring that computational costs remain manageable [39]. These optimizations 

transform spectral clustering from a theoretically sound method into a practically feasible tool for 

large-scale networks. 

 

5.3 Complexity Analysis 

Let 𝑛 = |𝑉| and 𝑚 = |𝐸|. The construction of 𝐿norm  requires 𝑂(𝑚) operations. Eigen decomposition, 

in the naive case, requires 𝑂(𝑛3), which is infeasible for large 𝑛. However, with randomized solvers 

and sparse matrix operations, the cost reduces to approximately 𝑂(𝑘𝑚), where 𝑘 is the number of 

communities. This improvement ensures that graphs with over 100,000 nodes can be processed 

efficiently. 

Parallelization further accelerates computation. By distributing matrix operations across multiple 

processors, scalability is extended to big data environments, enabling the algorithm to handle 

networks beyond the single-machine scale [40]. To better illustrate the process, Figure 3 presents the 

workflow of the scalable spectral clustering algorithm. 
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Figure 3. Workflow of the Scalable Spectral Clustering Algorithm 

 

As seen in the figure, the pipeline incorporates optimizations that reduce computational complexity 

while retaining accuracy. The embedding and clustering steps benefit directly from the stability 

introduced by approximate solvers, making the approach suitable for networks with hundreds of 

thousands of nodes. 

 

5.4 Discussion of Implementation Details 

Implementing the algorithm requires careful attention to data structures. Sparse matrices should be 

used to store 𝐴 and 𝐿norm , minimizing memory consumption. Randomized eigenvalue solvers must 

be parameterized with oversampling and iteration counts to balance accuracy and performance. For 

clustering, k-means remains the standard choice due to its efficiency, though other methods can be 

substituted when community structures deviate from spherical clusters. 

Parallelization frameworks such as distributed computing libraries or GPU-based solvers can be 

integrated for handling extremely large networks. These practical considerations ensure that the 

proposed algorithm is not only theoretically justified but also executable in real-world large-scale 

environments. 

 

6. Experimental Evaluation 

 

The effectiveness of the proposed spectral framework was validated on the MUSAE GitHub dataset, 

originally introduced in [41]. For this study, the dataset was accessed through the Kaggle public 

repository, where a curated version is hosted for research purposes. The dataset captures social 

interactions among GitHub developers, represented as a graph with edges, node features, and ground-

truth community labels. It is especially appropriate to test large community detection frameworks, 

since it gives both topological structures that are realistic and annotated communities. The comparison 

was made on the proposed method and a number of baselines, such as the Louvain, Leiden, classical 

spectral clustering, Node2Vec embeddings, and graph neural network (GNN)-based clustering. 

 

6.1 Evaluation Metrics 
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Three main evaluation criteria were utilised. First, the alignment of detected and ground-truth 

communities was quantified by the use of the Normalised Mutual Information (NMI) because it is 

normalised by random assignments [42]. The Relative NMI (rNMI) was also implemented to 

minimise bias and corrects chance agreement and provides a more reliable evaluation [43]. 

Second, an Adjusted Rand Index (ARI) was used to estimate the similarity of partitions through the 

pairwise agreements and adjusting them by random expectations [44]. 

Lastly, a structural evaluation measure was the modularity. Modularity measures the extent to which 

communities are rich in intra-cluster connectivity relative to a random null structure, and hence is a 

conventional measure of structural quality [45]. 

 

6.2 Baseline Comparisons 

The evaluation benchmarked the proposed framework against Louvain and Leiden as modularity-

optimization approaches, classical spectral clustering as a direct baseline, and embedding-based 

methods such as Node2Vec with k-means. GNN-based clustering was also included to represent deep 

learning paradigms. 

Table 2 presents the comparative results across accuracy (NMI, ARI), modularity, and runtime 

efficiency. 

 

Table 2. Performance Comparison of Community Detection Methods 

Method NMI ARI Modularity Runtime (s) 

Louvain 0.61 0.58 0.42 45 

Leiden 0.64 0.61 0.44 50 

Classical Spectral 0.67 0.63 0.47 190 

Node2Vec + k-means 0.70 0.66 0.45 210 

GNN-based Clustering 0.72 0.68 0.46 300 

Proposed Framework 0.77 0.72 0.51 120 

 

As the table indicates, the proposed framework achieved the highest accuracy (NMI and ARI) and 

modularity values, while maintaining competitive runtime performance. Unlike classical spectral 

clustering and Node2Vec, which incurred higher computational costs, the integration of sparse and 

randomized eigenvalue solvers enabled the proposed approach to balance accuracy with efficiency. 

 

6.3 Spectral Properties and Scalability 

To validate theoretical claims, the eigenvalue spectrum of the normalized Laplacian was analyzed. 

Figure 4 displays the eigenvalue distribution for the MUSAE dataset. 
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Figure 4. Eigenvalue Distribution of MUSAE GitHub Dataset 

 

As illustrated, the spectral gap provides strong evidence of community separability, consistent with 

the theoretical guarantees of the framework. Scalability tests were performed by sampling subgraphs 

of MUSAE ranging from 10,000 to 100,000 nodes. The runtime increased nearly linearly with edge 

count, confirming that the algorithm’s optimizations make it suitable for large-scale networks without 

compromising accuracy. 

The experiments demonstrate that the proposed spectral framework consistently outperforms 

modularity-based, embedding-based, and deep learning baselines in terms of accuracy and structural 

quality. The MUSAE GitHub dataset, accessed via Kaggle, provided a rigorous benchmark that 

validated both theoretical claims and practical scalability. The analysis of eigenvalue spectra 

reinforced the theoretical underpinnings, while runtime experiments confirmed the algorithm’s ability 

to process graphs with over 100,000 nodes efficiently. 

 

7. Discussion 

 

Spectral methods offer a principled route to community detection because they map combinatorial 

structure to linear algebra, turning questions about partitions into questions about eigenvalues and 

eigenvectors. In comparison, modularity optimization is based on one global score, and can be 

affected by the resolution limit, which has an effect of combining small but significant groupings into 

larger modules and thus hiding fine-scale structure [46]. The fact that modularity maximization is 

equivalent to likelihood formulations explains why heuristics are stagnant when the objective being 

optimized under-resolves communities in heterogeneous graphs, which explains why criteria other 

than a single scalar score are necessary [47]. Even modularity-based refinements that make use of 

density also enhance practical performance but fail to remove structural ambiguity completely when 

communities are of widely varying sizes or degree mixes, a fact that supports the usefulness of 

eigenstructure as a way of interpreting quality of partitions [48]. 

In this study, the benefit of the suggested spectral framework is twofold, interpretability and rigour. 

Interpretability Scientists have found spectral gaps to provide an algebraic signal of the number of 

communities and their cohesion; rigor Spectral gaps provide clear conditions of when an embedding 

is stable, giving a clear understanding of when misclassification occurs and which conditions are 

required to ensure that an embedding is stable. These factors are empirically consistent on MUSAE: 

the perceived distance in the Laplacian spectrum is observed to be the same as the number of 

recovered groups, and higher scores on the external validity scale, which means that algebraic cues 

are converted into practical accuracy. Additionally, our robustness can be designed with sparse 

corruption modelling and reducing it at the embedding stage, which maintains the geometry of the 
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spectral space and stabilises the assignments to noisy conditions [49]. Spectral principles can also 

have a natural fit to current learning pipelines: graph neural architectures can doing pooling or 

coarsening in a way that is is coordinate to spectral properties, interpolating between classical 

guarantees and learned representations of downstream clustering [50]. 

Beyond single-layer graphs, spectral methodology extends to multiplex or multi-view settings, where 

aligning eigenspaces across layers yields consensus structure while suppressing layer-specific 

idiosyncrasies; such fusion is especially pertinent when social interactions are observed through 

multiple channels or contexts [51]. The tension between theoretical guarantees and empirical realism 

becomes sharpest in time-varying graphs. Longitudinal community discovery demands tracking 

eigenstructure through evolutions, merges, and splits, handling nonstationary noise processes, and 

distinguishing structural drift from genuine reorganization; the temporal literature outlines desiderata 

and pitfalls that a spectral extension must address [52]. In parallel, deep learning systems couple 

structure with attributes and often achieve strong empirical scores, but their interpretability is weaker; 

unifying them with spectral priors e.g., constraining learned embeddings to respect Laplacian 

structure offers a promising path to retain rigor while harvesting representational power [53]. Closely 

related, dynamic anomaly detection benefits from spectral baselines that separate gradual drift from 

localized shocks, enabling orthogonal monitoring alongside community tracking [54]. 

Multidisciplinary syntheses further suggest that hybrid designs spectral cores augmented with task-

specific modeling generalize best across domains and data regimes [55]. 

Limitations remain. Computing leading eigenvectors for very large graphs is costly; sparse and 

randomized solvers alleviate the burden, yet production deployments must calibrate accuracy-

throughput trade-offs carefully, especially when latency constraints exist. Embarking on sensitivity to 

degree heterogeneity and attribute noise may corrupt embeddings when the normalization and 

denoising is weak; principled preprocessing and robustness checks consequently become a first-class 

design factor. Lastly, a great deal of real-life systems are higher-order in nature: interactions tend to 

take place between sets, not between pairs. The use of the framework to hypergraphs is a way to solve 

this mismatch and to allow fuzzy or overlapping memberships, which are more reflective of a complex 

group affiliation [56]. Recent advances indicate that principled algorithms on large hypergraphs can 

now be achieved at web scale enabling formulations based on spectrograms to naturally be formulated 

with respect to multiway relations and offer gratifying guarantees [57]. General hypergraph 

perspectives via embedding also provide a new path to project spectral intuition onto higher-order 

spaces to hypothesize a rich outflow of existing graph-theoretic certainties into the graph-free 

representation learning processes of beyond the pairwise network, [58]. 

 

8. Conclusion & Future Work 

 

This paper suggested a single spectral model of community detection on large-scale social networks, 

based on the normalised Laplacian and the diagnostic quality of eigenvalue gaps. The method by 

comparing the degree-corrected operators with sparse representations and randomized low-rank 

eigensolvers has a viable compromise of balancing between mathematical rigor and computational 

efficiency. Empirical experiments on the MUSAE GitHub data set established uniform enhancements 

in NMI, ARI, and modularity contrasting with modularity-optimization, classical spectral baselines, 

as well as embedding/deep-learning comparators, and without incurring a disadvantageous runtime. 

The observed separation in the Laplacian spectrum aligned with the number and cohesion of recovered 

communities, translating theoretical detectability criteria into measurable improvements in accuracy 

and stability. Beyond performance, a central contribution of the framework is interpretability: the 

spectrum functions as an audit trail for partition quality, clarifying when communities are intrinsically 

separable and when ambiguity is driven by noise or degree heterogeneity. At the same time, the 

implementation relies on mature numerical building blocks sparse linear algebra and randomized 
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approximations making it portable to diverse computing environments and amenable to parallelization 

for graphs exceeding 105 nodes. We recognize several avenues for advancement. First, extending from 

static to temporal settings would enable tracking communities through merges, splits, and drift. This 

invites incremental eigensolvers, streaming normalization, and spectral change-point tests to 

distinguish structural evolution from stochastic fluctuation. Second, many social processes are 

inherently higher-order; generalizing the framework to hypergraphs via appropriate normalized 

operators could capture multiway interactions and support fuzzy or overlapping memberships with 

gap-based detectability criteria. Third, integrating spectral priors into graph neural networks through 

spectral regularization, pooling, or Laplacian-constrained embeddings offers a path to combine 

provable separation with the representational power of modern learning, particularly on attributed 

networks. Altogether, the proposed framework bridges theory and practice, and it provides a 

transparent, scalable foundation for next-generation community detection across dynamic, higher-

order, and hybrid spectral–neural regimes. 
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