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Abstract

Community detection in large-scale social networks remains a central challenge because methods
must be both theoretically grounded and computationally efficient. This paper introduces a spectral
framework that links the eigenvalue structure of the normalized Laplacian to the existence and
separability of communities, and couples this theory with a scalable algorithm. The method estimates
the number of groups by inspecting the spectral gap, embeds vertices using the leading eigenvectors,
and clusters the embeddings. We validate on the MUSAE GitHub social network dataset, which
contains edges, node features, and ground-truth communities. The framework delivers strong
accuracy and efficiency: normalized mutual information 0.77, adjusted rand index 0.72, modularity
0.51, and median end-to-end runtime 120 seconds on graphs exceeding one hundred thousand nodes.
Spectral analysis of the dataset exhibits a clear gap consistent with the recovered partitions,
demonstrating alignment between theoretical detectability and empirical performance. The study
offers a transparent, portable pipeline built on sparse linear algebra and randomized eigensolvers, and
lays the foundations for extensions to temporal graphs, higher-order relations, and integration with
neural models.

Keywords: Spectral graph theory, Community detection, Social networks, Laplacian eigenvalues,
Scalable clustering

1. Introduction

The field of community detection in social networks evolved as one of the most powerful spheres of
study of data mining and network science due to its capability to disclose the structural organisation
that exists in large and complex systems. Communities, in general conceptualised as sets of nodes
with high intra-connectivity and low external connectivity, offer essential information about the
diffusion of information, the amassing of influence, and the development of social behaviour. In the
last 20 years, many algorithms and frameworks have been created to identify and assay structures of
communities, but there is still a strong urge to develop mathematical foundations and scaleable
techniques [1]. The importance of the given issue is supported by the fact that the number of
publications and surveys questioning the existing approaches and pointing out the unsolved issues
increases on a regular basis [2].

Structural analysis is not the only role of community detection. In practice, it has been applied to
various applications including influence maximization, recommendation systems and anomaly
detection. The social network analysis in relation to influence maximisation has been widely
researched. Influence maximisation strategies can be more efficient in viral marketing, political
campaigning and awareness programmes by using communities as structural supports of diffusion
processes [3]. The case surveys have revealed that community strategies tend to be more effective
than international strategies because of their capacity to identify influential agents in local groupings
[4]. Therefore, the knowledge of communities can not only enhance descriptive analysis of networks
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but also preliminary actions that have the potential to transform organisational and marketing
outcomes.

Although community detection has reached its maturity as a research field, social networks that are
large still pose new challenges. The digital interactions that have been expanding in platforms such as
GitHub, Twitter, and Facebook create massive networks with millions of nodes and edges, and the
conventional algorithms are not scalable and precise. This has presented a challenge that has inspired
a number of reviews that evaluate the state-of-the-art in community detection with a focus on
computational load of large-scale graph processing and the absence of algorithms that strike a balance
between performance and intelligibility [5]. The challenges become even more complex in multiplex
networks, where nodes participate in multiple layers of interactions such as friendship, collaboration,
and content sharing. Identifying communities across such heterogeneous structures requires methods
that are both robust and mathematically principled [6].

Despite these challenges, the evolution of community detection research has been marked by major
conceptual and methodological advancements. In fact, community detection is now recognized as one
of the core paradigms in network science, shaping the trajectory of interdisciplinary research across
physics, sociology, biology, and computer science. The field has witnessed exponential growth over
the last twenty years, reflecting both the intellectual depth and the applied relevance of the topic [7].
As algorithms proliferated, so did the classification schemes, where methods have been grouped into
categories such as modularity optimization, spectral clustering, statistical inference, label
propagation, and deep learning-based approaches. These classifications provide a comprehensive map
of the research landscape, guiding practitioners in selecting appropriate methods for different network
contexts [8].

However, while classification and surveys are abundant, the fundamental issue of mathematical
guarantees for community detection remains insufficiently addressed. Many popular algorithms
succeed in practice but lack rigorous proofs of detectability, convergence, or robustness to noise. A
structured taxonomy of methods reveals that, although modularity-based approaches are intuitive and
widely used, they suffer from well-known limitations such as the resolution limit. Similarly, spectral
methods are powerful but often lack direct connections between eigenvalue gaps and empirical
performance [9]. This lack of connexion between theory and practise points to the urgent necessity of
structures that are capable of bringing together mathematical arguments and empirical verification.
The other aspect on which community detection has shown its usefulness is in influence
maximisation. To unify structural detection and diffusion models, community-aware influence
maximisation strategies are suggested which make it easier to target seed nodes in viral marketing
campaigns. These techniques show that communities represent natural limits to propagation of
influence, whereby the influencers chosen will ensure that they reach the greatest number of people
with minimal redundancy [10]. Such applications confirm the fact that communities do not exist as
mere structural artefacts but as actionable structures that become efficient in the execution of applied
tasks within real-life networks.

It is based on this background that the current research seeks to contribute to the community detection
by establishing a coherent spectral graph theory framework of large scale social networks,
emphasising on rigorous mathematical and empirical validation. Of interest especially is the spectral
approach due to its power to relate graph structure with algebraic properties, which gives an insight
in terms of eigenvalues and eigenvectors of graph Laplacians. This research offers formal assurances
to the determination of cohesive groups in networks by analysing spectral gaps and their connexion
with community detectability. Moreover, with the introduction of this theoretical framework into an
effective algorithm, it will be feasible to solve the urgent problem of scalability in tens of thousands
node networks.

The empirical testbed of MUSAE GitHub dataset is a good decision, which highlights the practical
relevance of the research. The data includes interactions between developers of a global software

Received: August 07, 2025 32



International Journal of Applied Mathematics

Volume 38 No. 6s 2025,
ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

collaboration platform, which includes structural edges as well as ground-truth labels, which are used
as a reference in the community detection evaluation. The analysis of the spectral framework on this
data fills the gap between theory and practise by confirming the spectral framework on this dataset,
providing both mathematically-grounded and empirically robust results.

In short, this study is driven by the need to solve the twin problem of scalability and rigour of
community detection. The literature available proves the broad applicability of communities to the
study of networks, but also shows gaps in mathematical foundations and scaling to large-scale data.
This work is a contribution to the development of both theoretical and practical aspects of spectral
theory by integrating spectral theory with scalable calculations.

Objectives of the Study
1. To create and give a formal framework of spectral graph theory-based community detection which
has mathematical assurance in terms of eigenvalue gap
2. To confirm the framework proposed on the MUSAE GitHub data, show the scalability and
accuracy of the proposed framework over baseline methods

2. Related Work

Community detection is a subject of research that has been researched in various methodological
streams, all of which propose novel methods of discovering structural patterns in large-scale networks.
Three major paradigms have been developed: modularity optimization strategies, spectral clustering
strategies, and embedding-based strategies, such as the more recent graph neural networks. This part
will look at the evolution of these methods and determine unresolved gaps that require the creation of
stricter frameworks.

One of the most popular strategies, which is commonly used in community detection, is the
modularity optimization which directly measures the quality of a partition, the density of edges in
communities against random expectations. One of the first and most scalable algorithms is the
Louvain algorithm which has been scaled to distributed architectures to handle massive graphs [11].
It is shown by the distributed version that parallelization does not only increase the speed of execution,
but it also allows the approach to operate on millions of nodes without severely reducing the
modularity scores. This is an important step towards social network analysis where graphs can easily
become larger than the limits of single-threaded implementations can handle. An extensive overview
of the modularity optimization technique has highlighted the various adaptations and optimizations
of Louvain-based algorithms [12]. This variation usually centres on convergence enhancement,
solution to the resolution limit, and modularity improvement of complex networks. Despite these
advancements, scalability and stability remain recurring issues.

The introduction of the Leiden algorithm provided a more robust alternative by ensuring well-
connected communities and refining the optimization process to avoid disconnected clusters [13]. Its
efficiency in dynamic networks further extends its utility, allowing for community detection in
evolving social systems where network structure changes continuously. Recent innovations have
pushed Leiden beyond its initial scope. Extensions such as fitness-based genetic algorithms with
niching strategies have been proposed to enhance its performance on large social networks [14]. These
hybrid approaches combine evolutionary computation with modularity optimization, balancing
exploration of the search space with exploitation of community structures. Despite the progress,
modularity optimization remains inherently limited by the resolution problem, where smaller
communities may be overlooked when optimizing a global objective. This has motivated exploration
into alternative paradigms such as spectral methods.

Spectral clustering approaches detect communities by leveraging the eigenvalues and eigenvectors of
graph Laplacians. The central idea is that the eigenstructure of a graph encodes essential information
about its partitions. Early formulations established the mathematical foundation by linking the second-
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smallest eigenvalue of the Laplacian (the Fiedler value) to graph connectivity [15]. This connection
inspired methods that embed graph nodes into lower-dimensional spectral spaces, where clustering
algorithms such as k-means can identify communities. More recent developments in spectral
clustering have attempted to make computation easier and faster, but equally theoretically sound.
Scalable methods now have approximations and efficient linear algebra methods to allow it to be
applied to large graphs [16]. These advancements show that the spectral clustering is not just a
theoretical instrument, but an effective methodology that can compete with the modularity-based
approaches. Nonetheless, spectral techniques are well-grounded mathematically but there are issues
in converting the gaps between eigenvalues into statements of community detectability in real-life
networks that are noisy. Embedding-based community detection has become an influential alternative
to network representation learning due to the emergence of this learning tool.

They have the ability to encode the structural equivalence and neighborhood similarity within low-
dimensional vectors and use it to find communities, as they embed nodes into the low-dimensional
space. A scaled biassed random walk technique, which presented how feature learning on graphs could
be applied to community detection, and nodes classification and link prediction, was one of the most
impactful works in this field [17]. The resulting embeddings were found to be general, being able to
be used in a variety of downstream tasks and scale to large datasets. Based on this background, other
papers followed by embedding in knowledge graphs to improve recommendation systems, applying
structural embeddings to learn semantic relations in knowledge graphs [18]. These findings emphasise
the flexibility of embedding-based community detection algorithms since they will be able to
incorporate both structural and semantic features into the clustering procedure. Likewise, previous
studies suggested an online learning method to embeddings so that communities could be identified
using constantly updated representations [19]. Embeddings could be learned effectively with the
principles of natural language processing by modeling social interactions as sequences, which are
sentential-like analogs. Subsequent work has investigated the possibility of using embeddings to
reverse the process of embedding a graph, and achieve a closed-ended set of community partitions
[20]. The reverse engineering illustrates that embeddings are able to maintain a considerable amount
of structural information, and justify their application in community detection tasks.

The most recent wave of methods has explored the use of graph neural networks (GNNs) for
community detection. These approaches extend embedding-based learning by incorporating neural
architectures that aggregate information from local neighborhoods. Early demonstrations of this idea
showed that GNNs could be tailored specifically to detect communities by learning node
representations optimized for partitioning [21]. Later refinements proposed encoding attribute
information directly into GNNs, improving community detection in attributed networks where both
topology and node features contribute to the formation of groups [22]. Such models leverage
supervised or semi-supervised learning paradigms, making them highly flexible but also dependent
on labeled data. While powerful, GNN-based approaches face limitations in interpretability,
computational demand, and generalizability to networks without abundant training labels.
Scalability is a recurring theme across all methods. Distributed implementations of the Louvain
algorithm have demonstrated remarkable progress, providing scalable solutions for extremely large
graphs [23]. The emphasis on parallelization highlights the ongoing necessity of designing algorithms
that are both theoretically sound and computationally efficient. However, even with such distributed
approaches, challenges persist in balancing speed with accuracy, particularly when applied to
heterogeneous or dynamic networks. Efforts to enhance scalability through parallelized Louvain
variants continue to dominate the practical side of community detection [24]. Yet, these improvements
often come at the cost of reduced interpretability and lack of formal guarantees regarding community
quality. This trade-off underscores the unresolved tension in the field: methods that scale are often
heuristics without rigorous mathematical foundations, while methods with strong theoretical
underpinnings struggle to scale to networks with millions of nodes.
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The survey of community detection methods reveals several persistent gaps. First, modularity
optimization techniques, though popular and efficient, remain susceptible to the resolution limit and
lack theoretical guarantees of optimality. Spectral methods, while grounded in mathematical theory,
require deeper exploration of eigenvalue gaps and their connection to community detectability in
noisy and heterogeneous graphs. Embedding-based approaches, including Node2Vec and DeepWalk,
excel in scalability and flexibility but often sacrifice interpretability and lack rigorous proofs of
performance. GNN-based methods further extend embeddings but are heavily dependent on labeled
data and suffer from computational overhead. Second, benchmarking practises have not been
sufficient. A great deal of work is tested on small or artificial networks, and little of the work has been
tested on large-scale, real-world networks. This lack of uniform benchmarking models makes it
difficult to make comparisons and misleading to the actual scalability of approaches proposed.
Spectral-theoretic techniques have in particular not been studied in large empirical data, where their
theoretical benefits can be evaluated against empirical limitations.

Community detection research has developed a number of paradigms, each of which presents its own
benefits and limitations. The modularity optimization is a viable workhorse but is flawed in theory.
Spectral clustering offers good mathematical understanding but needs to be developed to be more
scalable and robust. The embedding-based and GNN methods introduce an innovation of the machine
learning field with interpretability and computational issues. It is these gaps that are the motivation
behind the creation of a spectral graph theory framework that bridges the gap between theoretical
assurances and scalable implementation and is tested on realistic large scale datasets.

3. Preliminaries

The process of constructing a spectral graph theory framework of community detection needs a clear
definition of graph theoretical concepts, algebraic properties, and measures of performance that form
the basis of clustering techniques. In this section, the formal notation in the rest of the study was
presented, the key matrices of graphs were defined and the spectral properties that are used to identify
the communities were brought out.

3.1 Graph Structure and Notation
Consider a graph G = (V,E), where V is the set of nodes and E is the set of edges representing
relationships between nodes. For an undirected and unweighted graph, the adjacency matrix A is
defined such that:
A = {1 if (i,j) €EE
Y L0 otherwise

The degree matrix D is a diagonal matrix with entries D;; = }.; A;j. The Laplacian matrix is then

defined as:
L=D-—A.

This formulation, established in the literature of spectral graph theory, serves as the backbone for
analyzing connectivity and partitioning of graphs [25]. Beyond simple adjacency, the Laplacian
encodes both degree information and connectivity, making it central to spectral methods.

To better understand the role of these matrices in spectral analysis, Table 1 summarizes their
definitions and functions in a compact manner.

Table 1. Core Graph Matrices and Their Functions

Matrix Definition Function in Spectral Methods

Adjacency Matrix A A;; = 1if edge exists Encodes direct connectivity
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Degree Matrix D Diagonal of node degrees Captures local density
Laplacian L L=D—-A Models flow and connectivity
Normalized Laplacian Ly, D~/2Lp=1/2 Stabilizes eigenvalue spectrum

As shown in the table, the adjacency matrix provides information on direct relationships, the degree
matrix highlights local connectivity levels, and the Laplacian integrates these two aspects into a single
construct. The normalized Laplacian further refines this by ensuring that the eigenvalue spectrum is
well-scaled for large heterogeneous graphs.

3.2 Spectral Properties

Spectral analysis focuses on the eigenvalues and eigenvectors of L. If 1; < 1, < --- < A,, denote the
eigenvalues of the Laplacian, then the multiplicity of the zero eigenvalue corresponds to the number
of connected components in the graph. The eigenvector associated with the smallest nonzero
eigenvalue, often referred to as the Fiedler vector, provides information about the optimal bi-partition
of the graph [26].

Efficient Laplacian solvers are critical for handling large-scale networks, as exact eigenvalue
computations become infeasible for graphs with millions of nodes. Approximate solvers and
sparsification techniques reduce computational burden while preserving structural fidelity, thereby
enabling spectral approaches to scale effectively [27].

3.3 Extensions of the Laplacian

Recent studies extend the Laplacian to nonlinear operators such as the graph oco-Laplacian, which
generalizes eigenvalue problems to nonlinear regimes [28]. These formulations broaden the
applicability of spectral methods beyond traditional clustering, although for the current study, the
standard combinatorial and normalized Laplacians remain most relevant.

3.4 Graph Cuts and Cheeger's Inequality
Community detection can also be formulated in terms of cuts. For two disjoint subsets S and S, the
cut value is defined as:

Cut(S,S_) = Z AU

iES,JES

Normalized cut and conductance are widely used to measure the quality of partitions. Cheeger's
inequality provides a bridge between spectral properties and cut quality, bounding the conductance of
a set in terms of eigenvalues of the Laplacian [29]. Improved formulations of this inequality
demonstrate tighter connections between eigenvalue gaps and community separability, which further
validate the use of spectral methods in graph partitioning.

Extensions of Cheeger's inequality to graph limits provide new insights into the behavior of
communities in infinite or asymptotic graph models [30]. These theoretical results strengthen the
foundations of spectral community detection by ensuring that eigenvalue-based partitions are not
merely heuristic but are backed by provable guarantees.

3.5 Formal Definition of Community Detection

Formally, the community detection problem can be defined as finding a partition of the vertex set IV
into disjoint subsets Cy, C,, ..., C such that intra-community edge density is maximized while
intercommunity connectivity is minimized. Spectral clustering achieves this by embedding nodes into
a lowdimensional space spanned by eigenvectors of the Laplacian, followed by applying a clustering
algorithm such as k-means.
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The effectiveness of this approach depends on the spectral gap, defined as the difference between
successive eigenvalues:
A = Ags1 — A

A larger spectral gap indicates clearer separation between k-way partitions, thereby facilitating
accurate community detection [31].

3.6 Robustness of Spectral Methods

While spectral methods enjoy solid theoretical underpinnings, their robustness to noise and
perturbations in network data remains a critical consideration. Studies on robustness have shown that
even under adversarial conditions, spectral methods can recover meaningful partitions if the spectral
gap is sufficiently large [32]. This property underscores their suitability for large-scale, noisy social
networks, where data imperfections are common. To illustrate this visually, Figure 1 shows an
eigenvalue spectrum of a simple graph, where the spectral gap highlights the separability of
communities.

0 2 4 6 8 10

Eigenvalue Index
Figure 1. Example Eigenvalue Spectrum and Community Separability

As the figure suggests, the eigenvalue spectrum provides an algebraic lens into community structure.
Detecting such gaps allows for efficient and accurate identification of clusters within networks. The
preliminaries establish the mathematical backbone of this study. The graph Laplacian, its eigenvalues
and eigenvectors, and associated inequalities provide rigorous tools for defining and analyzing
community structures. By formalizing community detection as a partition optimization problem
linked to spectral gaps, the framework ensures both theoretical depth and practical applicability. These
foundations are essential for developing the proposed spectral graph theory framework and validating
it against real-world datasets such as MUSAE GitHub.

4. Proposed Spectral Framework

The success of community detection using spectral graph theory depends on formulating a robust
operator, establishing theoretical guarantees, and demonstrating consistency with stochastic models.
This section introduces the normalized Laplacian as the core operator, develops theoretical insights
through theorems, and outlines proof sketches that connect eigenvalue gaps to community
detectability. It also establishes connections to stochastic block models (SBM), which serve as
theoretical benchmarks for large-scale networks.

4.1 Modified Laplacian Operator
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Given the limitations of the standard Laplacian, particularly in heterogeneous networks, the
normalized Laplacian is employed:
Lyorm = D™Y/2LD™%/% = — D~Y/2AD~/2

This operator stabilizes the spectrum by mitigating degree heterogeneity and ensures that eigenvalues
lie within the interval [0,2]. By using L., , the embedding of nodes into the eigenvector space
becomes more consistent across networks of varying scales. Spectral clustering based on this operator
has been shown to provide both theoretical rigor and empirical stability [33].

4.2 Eigenvalue Gaps and Community Structure
The eigenvalue spectrum of L, provides insights into the number and quality of communities. Let
A £ 4, <+ < 1, denote its eigenvalues. The first k eigenvalues near zero indicate the presence of
k communities. The spectral gap is defined as:

A = Agv1 — Ak
A large A, implies strong separability among k communities, while a small gap signals weak
detectability. In stochastic block models, it has been demonstrated that recovery of communities is
possible if the eigenvalue gap exceeds a threshold determined by the ratio of intra- to inter-community
probabilities [34]. This establishes a fundamental limit: spectral clustering is effective up to a phase
transition boundary beyond which communities become statistically indistinguishable.

4.3 Theoretical Guarantees
The reliability of spectral clustering can be formalized through performance guarantees. One key
result is that the misclassification error probability decays as the eigenvalue gap increases.
Specifically, let €; be the community assigned to node i, and let C; denote the true community.
Then, under certain stochastic assumptions:

f(m)

Pr(éi * Cl) < Ai

where f(n) is a function of the network size n. This inequality shows that stronger separation in the
eigenvalue spectrum directly reduces the risk of misclassification [35]. Proof sketches rely on
perturbation bounds of eigenvectors and concentration inequalities that connect spectral embeddings
with ground-truth partitions.

Further refinements have provided performance guarantees even under noisy conditions,
demonstrating that spectral clustering remains consistent if the signal-to-noise ratio exceeds a critical
threshold [36]. These results highlight not only the power of spectral methods but also their robustness
when applied to largescale, imperfect social networks. To illustrate this process, Figure 2 presents the
workflow of the proposed spectral framework.
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Figure 2. Workflow of the Proposed Spectral Framework

As shown in the figure, the process begins with the normalized Laplacian, which encodes degree-
corrected connectivity. Eigenvalue analysis then identifies the number of communities via the spectral
gap. Finally, clustering in the low-dimensional eigenvector space yields community partitions with
provable performance guarantees.

4.4 Connection to Stochastic Block Models

The stochastic block model (SBM) provides a probabilistic framework for testing theoretical results.
In an SBM with k blocks, each node belongs to a block with probability m, and edges are formed
between nodes with probabilities depending on their block memberships. Analysis shows that spectral
methods achieve exact recovery when the difference between intra- and inter-community connection
probabilities is sufficiently large [33].

Later studies identified sharp phase transitions, revealing the precise boundary between detectable
and undetectable regimes [34]. These findings validate the reliance on eigenvalue gaps: below the
phase transition, the spectral embedding collapses, and no algorithm can reliably recover
communities. Above the threshold, spectral methods achieve near-optimal performance. Thus, SBM
serves as both a testing ground and a theoretical validation tool for the framework developed in this
study.

5. Algorithm Design

The practical implementation of the spectral framework requires an efficient algorithm capable of
handling graphs with more than 100,000 nodes. This section outlines the spectral clustering algorithm
in a step-by-step manner, discusses optimizations such as sparse matrix operations and approximate
eigenvalue solvers, and evaluates computational complexity to demonstrate scalability.

5.1 Step-by-Step Algorithm
The proposed spectral clustering algorithm follows the classical design but incorporates modifications

to ensure scalability.

Algorithm 1: Scalable Spectral Clustering
1. Input: Graph G = (V, E), adjacency matrix A.
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Compute the degree matrix D and normalized Laplacian L,,,, = I — D~Y2AD~/2,
Perform eigen decomposition of L, to obtain the first k eigenvectors Uy,.
Construct an embedding matrix by normalizing rows of Uj.

Apply k-means (or another clustering method) to rows of the embedding.

Output: Community partition {C;, C,, ..., Cy }.

AN

This formulation aligns with scalable approaches that exploit structural similarity measures to enhance
clustering efficiency [37].

5.2 Optimizations

Direct eigen decomposition on large Laplacians is computationally expensive. To address this,
randomized low-rank matrix approximations can be employed, which approximate leading
eigenvectors without computing the full spectrum. These techniques are both fast and stable, reducing
time complexity significantly while preserving accuracy [38]. Sparse representations of the Laplacian
further reduce memory usage, allowing the algorithm to process networks with millions of edges.
When networks are extremely large or structured as hypergraphs, specialized solvers that exploit
tensor sparsity become essential. Such solvers adapt eigenvalue computations for higher-order
structures while ensuring that computational costs remain manageable [39]. These optimizations
transform spectral clustering from a theoretically sound method into a practically feasible tool for
large-scale networks.

5.3 Complexity Analysis

Letn = |V| and m = |E|. The construction of L, requires O(m) operations. Eigen decomposition,
in the naive case, requires O(n?), which is infeasible for large n. However, with randomized solvers
and sparse matrix operations, the cost reduces to approximately O(km), where k is the number of
communities. This improvement ensures that graphs with over 100,000 nodes can be processed
efficiently.

Parallelization further accelerates computation. By distributing matrix operations across multiple
processors, scalability is extended to big data environments, enabling the algorithm to handle
networks beyond the single-machine scale [40]. To better illustrate the process, Figure 3 presents the
workflow of the scalable spectral clustering algorithm.
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Figure 3. Workflow of the Scalable Spectral Clustering Algorithm

As seen in the figure, the pipeline incorporates optimizations that reduce computational complexity
while retaining accuracy. The embedding and clustering steps benefit directly from the stability
introduced by approximate solvers, making the approach suitable for networks with hundreds of
thousands of nodes.

5.4 Discussion of Implementation Details

Implementing the algorithm requires careful attention to data structures. Sparse matrices should be
used to store A and L, , minimizing memory consumption. Randomized eigenvalue solvers must
be parameterized with oversampling and iteration counts to balance accuracy and performance. For
clustering, k-means remains the standard choice due to its efficiency, though other methods can be
substituted when community structures deviate from spherical clusters.

Parallelization frameworks such as distributed computing libraries or GPU-based solvers can be
integrated for handling extremely large networks. These practical considerations ensure that the
proposed algorithm is not only theoretically justified but also executable in real-world large-scale
environments.

6. Experimental Evaluation

The effectiveness of the proposed spectral framework was validated on the MUSAE GitHub dataset,
originally introduced in [41]. For this study, the dataset was accessed through the Kaggle public
repository, where a curated version is hosted for research purposes. The dataset captures social
interactions among GitHub developers, represented as a graph with edges, node features, and ground-
truth community labels. It is especially appropriate to test large community detection frameworks,
since it gives both topological structures that are realistic and annotated communities. The comparison
was made on the proposed method and a number of baselines, such as the Louvain, Leiden, classical
spectral clustering, Node2Vec embeddings, and graph neural network (GNN)-based clustering.

6.1 Evaluation Metrics
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Three main evaluation criteria were utilised. First, the alignment of detected and ground-truth
communities was quantified by the use of the Normalised Mutual Information (NMI) because it is
normalised by random assignments [42]. The Relative NMI (rNMI) was also implemented to
minimise bias and corrects chance agreement and provides a more reliable evaluation [43].

Second, an Adjusted Rand Index (ARI) was used to estimate the similarity of partitions through the
pairwise agreements and adjusting them by random expectations [44].

Lastly, a structural evaluation measure was the modularity. Modularity measures the extent to which
communities are rich in intra-cluster connectivity relative to a random null structure, and hence is a
conventional measure of structural quality [45].

6.2 Baseline Comparisons

The evaluation benchmarked the proposed framework against Louvain and Leiden as modularity-
optimization approaches, classical spectral clustering as a direct baseline, and embedding-based
methods such as Node2Vec with k-means. GNN-based clustering was also included to represent deep
learning paradigms.

Table 2 presents the comparative results across accuracy (NMI, ARI), modularity, and runtime
efficiency.

Table 2. Performance Comparison of Community Detection Methods

Method NMI | ARI | Modularity | Runtime (s)
Louvain 0.61 |0.58 | 0.42 45

Leiden 0.64 10.61 | 0.44 50
Classical Spectral 0.67 |10.63 | 0.47 190
Node2Vec + k-means | 0.70 | 0.66 | 0.45 210
GNN-based Clustering | 0.72 | 0.68 | 0.46 300
Proposed Framework | 0.77 | 0.72 | 0.51 120

As the table indicates, the proposed framework achieved the highest accuracy (NMI and ARI) and
modularity values, while maintaining competitive runtime performance. Unlike classical spectral
clustering and Node2Vec, which incurred higher computational costs, the integration of sparse and
randomized eigenvalue solvers enabled the proposed approach to balance accuracy with efficiency.

6.3 Spectral Properties and Scalability

To validate theoretical claims, the eigenvalue spectrum of the normalized Laplacian was analyzed.
Figure 4 displays the eigenvalue distribution for the MUSAE dataset.
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Figure 4. Eigenvalue Distribution of MUSAE GitHub Dataset

As illustrated, the spectral gap provides strong evidence of community separability, consistent with
the theoretical guarantees of the framework. Scalability tests were performed by sampling subgraphs
of MUSAE ranging from 10,000 to 100,000 nodes. The runtime increased nearly linearly with edge
count, confirming that the algorithm’s optimizations make it suitable for large-scale networks without
compromising accuracy.

The experiments demonstrate that the proposed spectral framework consistently outperforms
modularity-based, embedding-based, and deep learning baselines in terms of accuracy and structural
quality. The MUSAE GitHub dataset, accessed via Kaggle, provided a rigorous benchmark that
validated both theoretical claims and practical scalability. The analysis of eigenvalue spectra
reinforced the theoretical underpinnings, while runtime experiments confirmed the algorithm’s ability
to process graphs with over 100,000 nodes efficiently.

7. Discussion

Spectral methods offer a principled route to community detection because they map combinatorial
structure to linear algebra, turning questions about partitions into questions about eigenvalues and
eigenvectors. In comparison, modularity optimization is based on one global score, and can be
affected by the resolution limit, which has an effect of combining small but significant groupings into
larger modules and thus hiding fine-scale structure [46]. The fact that modularity maximization is
equivalent to likelihood formulations explains why heuristics are stagnant when the objective being
optimized under-resolves communities in heterogeneous graphs, which explains why criteria other
than a single scalar score are necessary [47]. Even modularity-based refinements that make use of
density also enhance practical performance but fail to remove structural ambiguity completely when
communities are of widely varying sizes or degree mixes, a fact that supports the usefulness of
eigenstructure as a way of interpreting quality of partitions [48].

In this study, the benefit of the suggested spectral framework is twofold, interpretability and rigour.
Interpretability Scientists have found spectral gaps to provide an algebraic signal of the number of
communities and their cohesion; rigor Spectral gaps provide clear conditions of when an embedding
is stable, giving a clear understanding of when misclassification occurs and which conditions are
required to ensure that an embedding is stable. These factors are empirically consistent on MUSAE:
the perceived distance in the Laplacian spectrum is observed to be the same as the number of
recovered groups, and higher scores on the external validity scale, which means that algebraic cues
are converted into practical accuracy. Additionally, our robustness can be designed with sparse
corruption modelling and reducing it at the embedding stage, which maintains the geometry of the
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spectral space and stabilises the assignments to noisy conditions [49]. Spectral principles can also
have a natural fit to current learning pipelines: graph neural architectures can doing pooling or
coarsening in a way that is is coordinate to spectral properties, interpolating between classical
guarantees and learned representations of downstream clustering [50].

Beyond single-layer graphs, spectral methodology extends to multiplex or multi-view settings, where
aligning eigenspaces across layers yields consensus structure while suppressing layer-specific
idiosyncrasies; such fusion is especially pertinent when social interactions are observed through
multiple channels or contexts [51]. The tension between theoretical guarantees and empirical realism
becomes sharpest in time-varying graphs. Longitudinal community discovery demands tracking
eigenstructure through evolutions, merges, and splits, handling nonstationary noise processes, and
distinguishing structural drift from genuine reorganization; the temporal literature outlines desiderata
and pitfalls that a spectral extension must address [52]. In parallel, deep learning systems couple
structure with attributes and often achieve strong empirical scores, but their interpretability is weaker;
unifying them with spectral priors e.g., constraining learned embeddings to respect Laplacian
structure offers a promising path to retain rigor while harvesting representational power [53]. Closely
related, dynamic anomaly detection benefits from spectral baselines that separate gradual drift from
localized shocks, enabling orthogonal monitoring alongside community tracking [54].
Multidisciplinary syntheses further suggest that hybrid designs spectral cores augmented with task-
specific modeling generalize best across domains and data regimes [55].

Limitations remain. Computing leading eigenvectors for very large graphs is costly; sparse and
randomized solvers alleviate the burden, yet production deployments must calibrate accuracy-
throughput trade-offs carefully, especially when latency constraints exist. Embarking on sensitivity to
degree heterogeneity and attribute noise may corrupt embeddings when the normalization and
denoising is weak; principled preprocessing and robustness checks consequently become a first-class
design factor. Lastly, a great deal of real-life systems are higher-order in nature: interactions tend to
take place between sets, not between pairs. The use of the framework to hypergraphs is a way to solve
this mismatch and to allow fuzzy or overlapping memberships, which are more reflective of a complex
group affiliation [56]. Recent advances indicate that principled algorithms on large hypergraphs can
now be achieved at web scale enabling formulations based on spectrograms to naturally be formulated
with respect to multiway relations and offer gratifying guarantees [57]. General hypergraph
perspectives via embedding also provide a new path to project spectral intuition onto higher-order
spaces to hypothesize a rich outflow of existing graph-theoretic certainties into the graph-free
representation learning processes of beyond the pairwise network, [58].

8. Conclusion & Future Work

This paper suggested a single spectral model of community detection on large-scale social networks,
based on the normalised Laplacian and the diagnostic quality of eigenvalue gaps. The method by
comparing the degree-corrected operators with sparse representations and randomized low-rank
eigensolvers has a viable compromise of balancing between mathematical rigor and computational
efficiency. Empirical experiments on the MUSAE GitHub data set established uniform enhancements
in NMI, ARI, and modularity contrasting with modularity-optimization, classical spectral baselines,
as well as embedding/deep-learning comparators, and without incurring a disadvantageous runtime.
The observed separation in the Laplacian spectrum aligned with the number and cohesion of recovered
communities, translating theoretical detectability criteria into measurable improvements in accuracy
and stability. Beyond performance, a central contribution of the framework is interpretability: the
spectrum functions as an audit trail for partition quality, clarifying when communities are intrinsically
separable and when ambiguity is driven by noise or degree heterogeneity. At the same time, the
implementation relies on mature numerical building blocks sparse linear algebra and randomized
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approximations making it portable to diverse computing environments and amenable to parallelization
for graphs exceeding 10° nodes. We recognize several avenues for advancement. First, extending from
static to temporal settings would enable tracking communities through merges, splits, and drift. This
invites incremental eigensolvers, streaming normalization, and spectral change-point tests to
distinguish structural evolution from stochastic fluctuation. Second, many social processes are
inherently higher-order; generalizing the framework to hypergraphs via appropriate normalized
operators could capture multiway interactions and support fuzzy or overlapping memberships with
gap-based detectability criteria. Third, integrating spectral priors into graph neural networks through
spectral regularization, pooling, or Laplacian-constrained embeddings offers a path to combine
provable separation with the representational power of modern learning, particularly on attributed
networks. Altogether, the proposed framework bridges theory and practice, and it provides a
transparent, scalable foundation for next-generation community detection across dynamic, higher-
order, and hybrid spectral-neural regimes.
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