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Abstract 

Selection of cluster heads (CHs) impacts both the performance and energy efficiency of the 

Internet of Things (IoT)-based Wireless Sensor Networks (WSNs) systems. Recently, 

metaheuristic algorithms such as Ant Colony Optimization (ACO), Particle Swarm 

Optimization (PSO), and Genetic Algorithm (GA) have been applied for dynamic CH selection. 

Despite being an improvement over static alternatives, these methods have drawbacks include 

poor exploration, rapid convergence, and an uneven energy allocation among the nodes. This 

research focuses on developing two new algorithms Sand Cat Swarm Optimization (SCSO) 

and Moth Flame Optimization (MFO) based on swarm intelligence for dynamic cluster head 

selection in WSNs deployed with IoT devices. The SCSO algorithm outperforms traditional 

approaches by emulating the hunting strategy of sand cats which maintains the balance between 

exploration and exploitation of sensor nodes, and thereby uniform energy consumption. 

Dynamic CH selection done by MFO algorithm uses adaptive flame control inspired from the 

way moths navigate around light sources. Through extensive simulations, both SCSO and MFO 

demonstrate superior performance compared to existing algorithms on important metrics such 

as the network lifetime, energy consumption, and the ratio of delivered packets. Furthermore, 

SCSO-based methods brought accuracy to 96%, demonstrating substantial improvements for 

prolonging operation while balancing node energy. Besides this, the MFO approaches stand 

out for attaining exceptional accuracy and outperforming other methods with a notable 97.50% 

due to their global search prowess and convergence speed. Evaluation shows that both methods 

improve cluster stability and communication overhead within ACO, PSO, and GA. To 

conclude, the application of sophisticated techniques SCSO and MFO further opens prospects 

toward effective and adaptable CH selection in WSNs, leading to stronger and more energy-
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efficient network architectures. These results will be further enhanced through dynamic 

changes of hybrid models to optimize network parameters. 

Keywords: Dynamic Cluster Head Selection, Optimization Algorithms, Internet of Things, 

Wireless Sensor Networks, Energy Efficiency, Network Lifetime, Metaheuristic Algorithms, 

Load Balancing 

Introduction 

The emergence of Wireless Sensor Networks have enabled real-time monitoring, data 

collection, and environmental sensing in various fields such as healthcare, agriculture, smart 

homes, and industrial automation which serve as an essential building block for the 

development of the Internet of Things technologies [1]. WSNs are composed of a large 

population of low-cost, battery-powered sensor nodes that work together to track and monitor 

specific physical or environmental conditions and relay the data to a centralized base station. 

Widely used as they are, WSNs face significant challenges regarding energy efficiency, 

scalability, and network longevity because of the restricted energy and computational 

capabilities of sensor nodes [20]. A proven solution to manage and mitigate these limitations is 

the use of clustering whereby sensor nodes are organized into groups with a leader known as 

the Cluster Head for each group. The CH's function is to receive the data from all the members 

of its cluster, process the information, and send it to the base station, thus minimizing energy-

expensive transmissions. Nevertheless, determining optimal CHs is vital as it greatly impacts 

network energy use, lifetime, and performance. Suboptimal CHs tend to cause disproportionate 

and uneven depletion of energy, accelerated failure of nodes, and increased converged 

communication which leads to a decline in WSN effectiveness. 

 

In the past few years, the integration of intelligent algorithms such as machine learning, 

metaheuristic optimization, or fuzzy logic into Cluster Head Selection (CHS) techniques has 

enhanced them to achieve adaptive and energy-efficient dynamic clustering [40]. Foundational 

strategies for hierarchical routing were provided by classical CHS protocols like LEACH (Low 

Energy Adaptive Clustering Hierarchy), HEED (Hybrid Energy-Efficient Distributed 

Clustering), and TEEN (Threshold-sensitive Energy Efficient sensor Network protocol). 

Nevertheless, these approaches face challenges in their static properties, probabilistic CH 

election, and limited scalability for IoT applications, in reference [15] and [30]. Smart and 

scalable CHS approaches are needed that deal with increasing size and complexity of the 

network while adapting to changing conditions in the network and conserving energy [8]. More 

sophisticated CHSs use some metaheuristic algorithms like Genetics Algorithms (GA), Particle 

Swarm Optimization (PSO), Ant Colony Optimization (ACO), and Whale Optimization 

Algorithm (WOA) to competitively select the best CHs based on multiple criteria such as 

remaining energy, node degree, distance from the base station, and cost of transmission [11], 

[22]. These optimization algorithms that are based on nature are greatly adaptable to dynamic 

IoT environments since they can efficiently explore wide solution spaces and converge toward 

optimal or near-optimal solutions [3]. At the same time, CHS approaches based on machine 
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learning have also emerged. These approaches can predict the suitable changes to be made in 

CH selection and update it in real time by using historical data and recognizing regularly 

occurring trends in the nodes behavior. The application of both supervised methodologies like 

Decision Trees (DT), Support Vector Machines (SVM), Naive Bayes Classifiers, as well as 

unsupervised approaches K-means and hierarchical clustering, aid in identifying and 

classifying nodes with beneficial CH traits [26], [49]. Furthermore, recent research focuses on 

applying reinforcement or deep learning for CHS tasks involving continuous real-time decision 

making.  [13], [33]. 

The issues of CHS design still remain towards energy efficiency. Most sensor nodes function 

in difficult and remote locations, where changing or recharging the battery is not an option. 

Thus, optimizing battery life, prolonging data transmission, and enhancing the overall 

longevity of the network are critical design goals [45]. Several intelligent CHS strategies have 

been shown to extend network lifetime by up to 50% compared to traditional protocols [9],[31]. 

Furthermore, balanced clustering in which CH roles are assigned in cycles based on energy 

levels and network changes helps to mitigate the premature energy-depletion death of critical 

nodes [17]. The heterogeneous feature of IoT networks adds more complexity in CHS design 

as the sensor nodes can differ in terms of energy capacity, computational resources, and 

communication range. Heterogeneous-aware clustering protocols factor in these dissimilarities 

and therefore, designated higher-performing nodes as CHs, which resulted in improving 

dependable data aggregation and decreasing energy discrepancies at the cluster level [35]. On 

the other hand, homogeneous clustering disregards all these factors and considers all nodes as 

equal, which is preferable in small-scale, single-modal IoT systems, but in large-scale multi-

modal systems, this approach leads to poor performance [39]. 

Like every other aspect of CHS implementation, scalability and robustness both have 

considerable importance. When the IoT WSNs grow in size, the clustering algorithm should 

scale proportionally without communication or computational expense. Schemes for 

distributed clustering that confine the autonomy boundary of the system can greatly enhance 

responsiveness and mitigate single point failures [6], [25]. Moreover, the integrity and 

trustworthiness of CH selection and stable communication within the clusters must be 

maintained while addressing node compromise, sinkhole, and selective forwarding attacks 

[42]. The functions of data aggregation and compression undertaken by CH nodes is important 

in energy savings because they eliminate redundant transmissions. Aggregation methods such 

as averaging, suppression, and transformation reduce the amount of information transmitted 

while retaining important elements. Each of these aggregation methods impacts the accuracy 

of the data while conserving energy and thus requires precise tuning of the CH’s capabilities. 

In addition, the data-aware CHS methods incorporate the data generation rate and spatial-

temporal correlation with event detection patterns to adjust cluster changes [4], [28],  [7]. 

Development of Edge Computing, Software Defined Networking (SDN), and Blockchain offer 

promising integrations for improving CHS. For example, SDN's centralized control and global 

visibility capabilities to the network can enhance decision-making for CH selection [19]. 

Likewise, edge computing facilitates the offloading of complicated CHS computations to the 
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edges, decreasing strain on resource-constrained nodes [41]. Conversely, Blockchain can 

ensure secure and tamper-proof CH selection in adversarial settings which other systems may 

find difficult to offer [46]. This research manuscript aims to design and analyze various CHS 

approaches for IoT-based WSNs that are energy-efficient, scalable, and emphasize intelligent 

clustering. We study the implementation of traditional and modern techniques based on 

optimization algorithms, machine learning models, hybrid models, and evaluate them against 

benchmark measures like energy consumption, network lifetime, CH distribution, and message 

overhead [10], [27], [38]. Furthermore, the influence of node heterogeneity, node 

communication range, and data correlation on CH selection is analyzed. Therefore, the decisive 

factor to increase energy efficiency and scalability while strengthening the robustness of the 

sensor networks in WSNs enabled by IoT lies in the strategy for selecting Cluster Heads. This 

study advances the optimization of network metrics and longevity of IoT systems [2], [12], 

[36] by incorporating advanced intelligent algorithms and dynamic parameters.   

The manuscript is organized as follows for the subsequent sections. The literature on CHS 

algorithms and cluster-based routing in WSNs and IoT is discussed in Section 2. The suggested 

CHS, including its nodes, characteristics, selection criteria, and algorithm design, is explained 

in Section 3. Section 4 presents the evaluation measures and the simulation setup. Section 5 

covers the competition findings and provides a full comparison evaluation of the results versus 

other models. In Section 6, conclusions, insights, limitations, and suggestions for further 

research are discussed. 

 

Literature Review 

Emerging as a crucial component of the Internet of Things systems, Wireless Sensor Networks 

have gained significance in IoT based applications such as environmental monitoring, military 

surveillance, smart healthcare, smart city infrastructure, and automation in industriesBecause 

sensor nodes have limited energy resources, one of the main issues is meeting the network's 

energy and longevity needs[1]. This problem can be optimally solved by employing clustering 

and cluster head selection (CHS) techniques. In the clustering protocols, the nodes are arranged 

into groups or clusters and each is controlled by a cluster head, which is responsible for data 

aggregation and forwarding to the base station. This improves the performance by minimizing 

the repetitive data transfer in the hierarchy as well as balancing the energy consumption among 

nodes [2]. Some foundational work was done in this area through the initial clustering protocols 

like LEACH (Low-Energy Adaptive Clustering Hierarchy) [3] which performs CH election 

through a probabilistic approach to regulate the energy dissipated in the network, though its 

performance in heterogeneous networks with more complex topologies degrades. 

To address the weaknesses of LEACH, numerous sophisticated CHS protocols have been 

created. HEED uses intra-cluster communication cost along with residual energy for CH 

election, thus improving energy balance during the clustering process [4]. Further along in 

innovation, TEEN (Threshold sensitive Energy Efficient sensor Network protocol) and 

PEGASIS (Power-Efficient Gathering in Sensor Information System) enhance the efficiency 

of data routing and transmission, but tend to be inflexible and less adaptable to dynamic 
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environments [5]. In a bid to make the systems more adaptable and robust, these strategies 

drawn inspiration from biological systems and metaheuristic approaches for CH selection. 

Such algorithms include Genetic Algorithm, Particle Swarm Optimization, Ant Colony 

Optimization, Artificial Bee Colony (ABC), Grey Wolf Optimization (GWO), Whale 

Optimization Algorithm (WOA), and Firefly Algorithm (FA), to name a few. With stronger 

optimizations, these approaches have emulated natural behaviour and improved energy 

efficiency along with overall performance in Wireless Sensor Networks [6][7]. 

 

Despite the ability to provide efficient optimal solutions, PSO-based CHS protocols are 

becoming increasingly common. They the social behaviour of bird flocking. The PSO makes 

use of base station distance, residual energy, and node density, among others, to optimize CH 

selection. Consequently, the network lifetime is enhanced and energy consumption is balanced, 

which is an improvement from the previous approaches [8][9]. Ant colony based ACO 

algorithms are known for methodology that reduce latency and increase the reliability of data 

transmission. This works by constructing the best possible routing based on pheromone trails. 

This response was previously noted in [10][11]. Same objectives are pursued by ABC 

algorithms which focus on energy and communication costs to determine the best possible CH 

as emulated from the intelligent foraging of honey bees. GWO has applied this approach using 

energy and coverage metrics for CH selection [13]. He GWO’s hierarchical approach works 

well with WSNs CHS problems because of the structure of GWO and the clustering nature of 

WSNs. 

New developments brought about the creation of hybrid CHS algorithms which integrate 

multiple metaheuristic methods. An example would be a hybrid PSO-GA algorithm that 

incorporates PSO's global search ability along with GA's crossover and mutation operators 

thereby improving the convergence and solution quality of the algorithm [14]. Another example 

of a hybrid model merges WOA with GWO which utilizes the exploration-exploitation balance 

to improve CH selection efficiency [15]. These hybrid models overcome the weaknesses of 

individual algorithms and lead to better overall energy efficiency and network lifetime. 

Furthermore, unique algorithms such as Sand Cat Swarm Optimization, Sandpiper 

Optimization Algorithm (SOA), and Moth Flame Optimization (MFO) have attained over 95% 

accuracy in selecting CHs [16][17]. Aside from these metaheuristic approaches, fuzzy logic-

based CHS methods have been used to deal with the vague nature of parameter values like 

energy, node degree, and the distance of the node to the base station. Fuzzy systems apply a 

rule-based logic mechanism using linguistic variables to determine how suitable the nodes are 

to function as CHs. The adaptive fuzzy clustering algorithms modify fuzzy logic rules as per 

the state of the network, making them particularly useful for CH selection [18]. Such models 

are well adapted in heterogeneous WSNs with nodes of differing energy levels and varying 

capabilities. Also, the application of fuzzy logic with some other metaheuristic has improved 

performance by merging the accuracy of fuzzy inference with the meta heurist’s capability of 

global search [19][20]. 
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Recently, both machine learning (ML) and deep learning (DL) have been used for CHS and 

clustering in WSNs. Optimal CHs are estimated based on historical data and features of the 

sensor nodes using both supervised and unsupervised learning techniques. Through model-

based reinforcement learning, sensor nodes can learn optimal CH selection policies based on 

interaction with the environment [21]. For accurate CH prediction, the features and patterns 

within WSN data are processed using deep neural networks and convolutional neural networks 

[22]. These methodologies are beneficial in highly scalable and dynamic IoT settings as they 

provide adaptive and intelligent solutions. With the deployment of WSN in critical 

applications, security-aware CHS algorithms are becoming more important. Secure CHS 

protocols use cryptographic trust-based techniques to counter Sybil, sinkhole, and spoofing 

attacks [23]. Trust-aware systems mitigate the influence of malicious nodes by electing CHs 

based on the historical and communicational trust values of the nodes. Thus, a node that has 

behaved well in the past does not suddenly “collude” with other nodes to falsely mask bad 

behavior. So, these systems ensure that malicious nodes are not elected as CHs [24]. In IoT-

based WSNs, applying energy-efficient CHS with other security features is crucial to ensuring 

reliable operations. 

 

As per the recent publications, several papers have analysed and examined the work of CHS 

algorithms with regards to the following: energy consumption, packet delivery ratio, end-to-

end delay, throughput, and network lifetime performance metrics. CHS algorithms have been 

thoroughly compared and evaluated in the literature. For benchmarking purposes, NS-2, NS-3, 

MATLAB, and OMNeT++ Simulation Tools are quite popular. It has been shown in the 

literature that omitting traditional approaches and employing heuristic or hybrid CHS strategies 

yields better results in terms of efficiency and scalability. As an example, a CHS protocol based 

on GWO (GREY WOLF OPTIMIZATION) increases the lifetime of the network by as much 

as 50 percent in comparison to LEACH and HEED. In the same way, such performance was 

also recorded by the hybrid model ABC-PSO in regards to the the ratio of packets delivered 

which exceeded 95 percent regardless of the state of the network simulation. 

Furthermore, the development of energy harvesting technologies have solar panels integrated 

in the sensor nodes, allowing for more flexible sensor node CH selection strategies. Energy-

aware and energy-harvesting-aware CHS protocols adjust dynamically to the role of CHs based 

on the energy available and the energy harvesting rate [31]. These protocols are less reliant on 

constant energy sources and improve the sustainability of the energy used in the network [32]. 

For Internet of Things applications that involve thousands of sensor nodes, the ability to scale 

becomes vital in relation to the CHS algorithms. ‘CHS’ scalable protocols do not sustain a 

decrease in performance with increasing computational complexity or communication 

overhead. These protocols improve system scalability through distributed decision making 

using local information instead of needing global coordination [33]. Further performance 

improvements include reduced transmission distances through mobile sinks due to balanced 

energy consumption across the clusters. 
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As WSNs adapt and merge with new technologies like 5G, edge computing, and blockchain, 

future studies will likely concentrate on context-aware, self-adaptive, and autonomous security 

CHS algorithms able to function without human intervention in multifaceted, ever-changing 

ecosystems [35][36][37]. Continuous advancements in wireless communication, artificial 

intelligence, and the miniaturization of hardware will further propel ingenuity regarding CHS 

algorithms. Interdisciplinary initiatives focussing on network design, data analytic fields, and 

cognitive computing could fundamentally alter the approaches for CH selection and clustering 

in IoT-based WSNs. Also, the uniformity of assessment criteria and benchmarking systems will 

allow for objective evaluations and the pre-implementation of CHS protocols in practical IoT 

settings [38][39][40]. Another critical aspect within cluster head selection is multi-objective 

optimization, balancing competing demands like energy utilization, latency, and area coverage. 

In recent years, there has been an increase in the adoption of hybrid algorithms for 

metaheuristics that focus on improving cluster head selection in IoT environments which are 

dynamic and heterogeneous due to the variety of disciplines they incorporate [39][40]. For 

example, the application of genetic algorithms to particle swarm optimization (GA-PSO) or 

the application of ant colony optimization to differential evolution (DE) has significantly 

improved energy efficiency as well as service quality routing in IoT-based wireless sensor 

networks [41][42]. With the ability to respond to changes in node networks topologies and 

energies, these hybrid methods greatly reduce network overhead while extending network 

lifetimes [43][44]. In addition, data and communication redundancy as well as cost have also 

been minimized by cluster formation optimization using ABC and TLBO [45][46]. Such 

advancements have been critical in resolving intricate IoT application issues, including those 

found in smart city frameworks and monitoring systems [47][48]. Furthermore, machine 

learning and artificial intelligence techniques are actively being utilized for intelligent CHS 

decision making. The prediction of optimal cluster head nodes based on learned previous 

network states is possible with reinforcement learning, deep Q-networks, and fuzzy logic 

systems [49][50]. 

Proposed System Design 

The cluster formation procedure and data transfer between the source and destination nodes are 

shown in Figure 1. Each network node validates sensed data at the end of the network and 

sends cluster-creation signals to nodes within a specified Cluster Distance (CD). Sensor Node 

(SN) and Cluster Node (CD) are used to organise sensors into clusters. Each node checks the 

value of RN after receiving the broadcasted message. If its value is inside SN, it saves it to 

memory and compares CD to the distance between each node. When the distance between 

nodes is equal to or less than CD and the detected value falls within a specified RN, the nodes 

form a cluster.  
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Figure 1: Proposed System Architecture for dynamic cluster head selection 

 

Nodes will not transmit cluster formation messages with the same NID. Non-participating 

nodes in the SN & CD-based cluster creation procedures. Once the cluster assembly procedure 

is complete, each node stores its cluster member's NID, Node Location (NL), NTE, & Sink 

Location (SL), as well as battery power data, in its memory. Each node with the most energy 

calculates the minimum distance between each node within range, referred to as Cluster Head 

(CH), and transmits the CHID to the rest of the network. It also finds the Cluster Head 

Transmission (CHT) node with the shortest distance to the sink and provides CHTID. 

 

Research Methodology 

Figure 2 depicts the entire workflow for dynamic cluster head selection within the Internet of 

Things and Wireless Sensor Network ecosystem using optimization techniques. The workflow 

commences with the collection of data from the sensor nodes within the IoT or WSN system. 

These nodes collect the environmental data along with the operational parameters like the 

signal strength, battery status, and the geographical coordinates of the nodes. After data 

collection, the preprocessing stage involves data cleansing followed by data normalization. 

This step is particularly important when working with multiple datasets because it helps to 

minimize redundancy while enabling accurate feature extraction such as energy levels, 

distances between nodes, signal to noise ratio (SNR), and the density of the nodes.   The middle 

of the process is focused on cluster head selection with two powerful optimization algorithms: 

Moth Flame Optimization and Sine Cosine Search Optimization. These feature-based nature-

inspired metaheuristic approaches are aimed at intelligent and dynamic CH selection. MFO 

focuses on the navigational behavior of moths while SCSO balances exploration and 

exploitation through sine and cosine functions on refined candidate solutions. Both strategies 

focus on maximizing load balancing and prolonging the active lifetime of the network by 

minimizing the total consumption of energy through optimal CH selection. 
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Figure 2: workflow of proposed work  

Following the CH Selection the model proceeds to Accuracy Detection and Quality of Service 

(QoS) parameter evaluation. At this stage, the performance of the selected CHs is assessed 

using network lifetime, packet delivery ratio, end-to-end delay, and energy-efficient cut 

metrics. The accuracy of the described CH selection approach is confirmed during simulation 

or real-time deployment, which guarantees the rigor of the optimization technique used.   On 

the whole, the diagram synthesizes and encapsulates the IoT and WSN smart, self-modifying 

methods for optimizing the CH Selection which improve the system’s dependability and 

energy-saving features in extensive applications. 

 

3.1: Design and Functioning of the Proposed Smart Crow Search Optimization Algorithm 

The Smart Crow Search Algorithm derives from the standard CSA and is based on the food 

hiding and decision-making processes of crows. SCSO is implemented in this work to aid in 

optimizing the Cluster Head Selection problem in a WSN with IoT capabilities. CHS is focused 

on reducing the cost of communication while improving energy efficiency. The objectives of 

SCSO in CHS are to reduce the intra-cluster communication distance, balance the energy 

consumption, and extend the life time of the network. In the first phase of SCSO, the sensor 

nodes S = {s1, s2, … , sn} are randomly located in the area A ⊂ ℝ2. Each node si starts with 

energy E0. The objective is to find subset CH ⊂ S, so that the corresponding energy-aware cost 

function is minimized. 

In the SCSO, each crow represents a potential clustering and thus, each candidate solution 

corresponds to one crow. A position vector Xi = [x1, x2, … , xd] gives the cluster head IDs 

selected from the available nodes, where d is the desired number of cluster heads. The memory 

and awareness probability modified by a learning factor determines the crow's velocity or 

movement. The outlined fitness function captures both the remaining energy and distance. 
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𝑓(𝑋𝑖) = 𝛼 ⋅
1

|𝐶𝐻|
∑ 𝐸𝑟𝑒𝑠
𝑗∈𝐶𝐻

(𝑗) + 𝛽 ⋅ (
1

|𝑆| − |𝐶𝐻|
∑ dist

𝑘∈𝑆\𝐶𝐻

(𝑘, 𝐶𝐻𝑘))

−1

 

where: 

• 𝐸𝑟𝑒𝑠(𝑗) is the residual energy of cluster head 𝑗, 

• dist(𝑘, 𝐶𝐻𝑘) is the Euclidean distance between node 𝑘 and its nearest cluster head 𝐶𝐻𝑘, 

• 𝛼 and 𝛽 are weighting coefficients such that 𝛼 + 𝛽 = 1. 

Each crow updates its position 𝑋𝑖 using a memory-based strategy: 

𝑋𝑖(𝑡 + 1) = {
𝑋𝑖(𝑡) + 𝑟 ⋅ 𝑓𝑙 ⋅ (𝑀𝑖(𝑡) − 𝑋𝑖(𝑡)), if 𝑟 > 𝐴𝑃𝑖(𝑡)
rand(𝐴), otherwise

 

where: 

• 𝑟 ∼ 𝑈(0,1) is a random number, 

• 𝑓𝑙 is the flight length coefficient, 

• 𝑀𝑖(𝑡) is the memory (best solution) of crow 𝑖 at iteration 𝑡, 

• 𝐴𝑃𝑖(𝑡) is the awareness probability controlling the chance of being followed. 

To improve convergence and avoid local optima, SCSO introduces an adaptive awareness 

probability: 

𝐴𝑃𝑖(𝑡) = 𝐴𝑃𝑚𝑖𝑛 + (𝐴𝑃𝑚𝑎𝑥 − 𝐴𝑃𝑚𝑖𝑛) ⋅ (1 −
𝑡

𝑡𝑚𝑎𝑥
)
2

 

The non-linear decreasing function supports exploration for the earlier iterations and focuses 

on exploitation in later stages. Each crow's memory 𝑀𝑖 is updated only if the new position 

meets an improved fitness benchmark. The stopping condition is either a maximum number of 

iterations 𝑡𝑚𝑎𝑥 or an insignificant improvement threshold.   

In addition, the energy-aware clustering employing SCSO results in choosing cluster heads 

with both high residual energy and optimal spatial geometry. Furthermore, the devised 

algorithm imposes a penalty on the selection of neighboring nodes as CHs to guarantee optimal 

distribution of clusters. The penalty is formulated as:  

𝑃(𝑋𝑖) = 𝛾 ⋅ ∑ 𝕀
𝑚,𝑛∈𝐶𝐻
𝑚≠𝑛

[dist(𝑚, 𝑛) < 𝑑𝑚𝑖𝑛] 

where 𝛾 represents a penalty coefficient, and 𝑑𝑚𝑖𝑛 is the minimum allowable inter-CH 

distance. The ultimate fitness function is given as: 

𝐹(𝑋𝑖) = 𝑓(𝑋𝑖) − 𝑃(𝑋𝑖) 
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Average fitness, the number of clusters formed, energy variance, and communication 

overhead are a few metrics utilized to analyze the convergence of the SCSO algorithm. The 

SCSO algorithm outperformed traditional methods in optimal cluster head selection, 

enhancing energy efficiency and load balancing while prolonging network lifespan. 

3.2: Design and Functioning of the Moth Flame Optimization Algorithm 

The Moth Flame Optimization Algorithm is a bio-inspired metaheuristic algorithms which 

imitates the transverse orientation behavior of moths towards light sources. This technique is 

employed in this work to improve the cluster head selection technique in IoT based WSNs by 

globally optimally distributing the cluster heads while conserving energy and reducing intra 

cluster distance. MFO maintains a population of moths 𝑀 = {𝑀1, 𝑀2, . . . , 𝑀𝑛} where each 

moth chracterizes a CH configuration is represented by position vector 𝑋𝑖 ∈ ℝ𝑑  for some d, 

the dimension of the solution. 

The essence of MFO is the optimal solutions which are defined as logarithmic spiral flight 

paths which moths use to reposition themselves with respect to the flames. Let 𝑋𝑖
𝑡 represent 

the position of moth 𝑖 at iteration 𝑡 and 𝐹𝑗
𝑡 represent the position of flame j. Then the position 

update rule is 

𝑋𝑖
𝑡+1 = 𝑆(𝑋𝑖

𝑡 , 𝐹𝑗
𝑡) = 𝐷𝑖 ⋅ 𝑒

𝑏⋅𝑙 ⋅ cos(2𝜋𝑙) + 𝐹𝑗
𝑡 

where: 

• 𝐷𝑖 =∥ 𝐹𝑗
𝑡 − 𝑋𝑖

𝑡 ∥ is the distance between moth and flame, 

• 𝑏 is a constant defining the shape of the spiral (typically 𝑏 = 1), 

• 𝑙 ∈ [−1,1] is a random number controlling the spiral direction. 

The number of flames decreases linearly over iterations to focus the search: 

𝑁𝑓(𝑡) = round(𝑁 − 𝑡 ⋅ (
𝑁 − 1

𝑡𝑚𝑎𝑥
)) 

where 𝑁 is the initial number of flames. Moths are sorted based on their fitness values, and 

each moth is associated with a flame using: 

𝐹𝑗 = {
Flame𝑗 , 𝑗 ≤ 𝑁𝑓(𝑡)

Flame𝑁𝑓(𝑡), otherwise
 

The objective function for CHS optimization integrates energy, distance, and load balance: 

𝑓(𝑋𝑖) = 𝑤1 ⋅ (
1

|𝐶𝐻|
∑ 𝐸𝑟𝑒𝑠
𝑗∈𝐶𝐻

(𝑗)) + 𝑤2 ⋅ (
1

𝑁 − |𝐶𝐻|
∑ dist

𝑘∈𝑆\𝐶𝐻

(𝑘, 𝐶𝐻𝑘))

−1

+ 𝑤3 ⋅ 𝜎𝐸 

where: 

• 𝑤1, 𝑤2, 𝑤3 are weight factors, 



Received: July 18, 2025 

International Journal of Applied Mathematics 

Volume 38 No. 1s, 2025 

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version) 
 

644 

• 𝜎𝐸  is the standard deviation of residual energy among CHs. 

An additional constraint is added to penalize suboptimal clusters using: 

𝐶(𝑋𝑖) = 𝛿 ⋅ ∑ 𝕀

𝑗∈𝐶𝐻

[𝑛𝑗 < 𝑛𝑚𝑖𝑛] 

where 𝑛𝑗  denotes the number of individuals in cluster 𝑗, and 𝑛𝑚𝑖𝑛 is the minimum required 

number of individuals . Thus, the final fitness function becomes 

 

𝐹(𝑋𝑖) = 𝑓(𝑋𝑖) − 𝐶(𝑋𝑖) 

The convergence behavior of MFO is analyzed through the average fitness value and CH 

stability across rounds. To avoid stalling progress in finding an optimal solution, a mutation 

operator with a small probability 𝑝𝑚, is added, allowing for sudden changes in solver 

placement: 

𝑋𝑖′ = 𝑋𝑖 + 𝑝𝑚 ⋅ 𝜖, 𝜖 ∼ 𝒩(0, 𝜎2) 

This form of mutation helps the algorithm break free from local minima and retrieve new 

information from previously unexplored areas. Results from simulations validate that the MFO 

algorithm effectively manages the exploration–exploitation trade-off leading to optimal 

configurations of CHS’s with enhanced network longevity and reduced packet loss.  

Simulation Setup and Evaluation Metrics 

The simulation environment is set up using NS2 (version 2.35) to evaluate the effectiveness of 

the Smart Crow Search Optimization and Moth Flame Optimization algorithms for cluster head 

selection  in Internet of Things-based Wireless Sensor Networks. NS2 is well-known for its 

support of low-level networking protocols and discrete event simulation as well as its large 

adoption within wireless network research. The simulation setup represents a dynamic WSN 

with a 500m x 500m two-dimensional area which models a field where nodes are randomly 

dispersed to simulate actual IoT systems. Each simulation scenario consists of N = {50, 100, 

150, 200, 250, 300} sensor nodes with energy levels set to either homogeneous or 

heterogeneous based on the scenario. The sink node, or base station (BS), is placed either at 

the center or outside the deployment zone to evaluate performance under different network 

topologies. 

In NS2, simulation parameters are set with the aid of TCL scripts, which are also utilized for 

simulation results extraction and subsequent analysis through AWK scripts. For emulation of 

wireless protocol specific to IoT, MAC and PHY layers of IEEE 802.15.4 (ZigBee) are 

implemented on all nodes. Annihilation energy is set to 2 Joules per node with the initial energy 

as well as a fixed packet size of 4000 bits, also the first-order energy dissipation model is used 

as a baseline for the radio energy model. Each node applies a simplified model for energy 

consumption where reception and transmission are considered as: 
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𝐸𝑡𝑥(𝑘, 𝑑) = 𝐸𝑒𝑙𝑒𝑐 ⋅ 𝑘 + 𝐸𝑎𝑚𝑝 ⋅ 𝑘 ⋅ 𝑑
2 

𝐸𝑟𝑥(𝑘) = 𝐸𝑒𝑙𝑒𝑐 ⋅ 𝑘 

Where 𝑘 signifies the number of bits, 𝑑 is the Euclidian distance between the sender and 

receiver. The energy consumed by the electronics circuit is given as 𝐸𝑒𝑙𝑒𝑐 = 50 nJ/bit while 

the amplifier energy is given as 𝐸𝑎𝑚𝑝 = 100 pJ/bit/m
2
. This framework is realized in the 

energy-model extension of NS2 as Node/MobileNode.” 

Over the course of the 1000 seconds, several key metrics are recorded including energy 

depletion, CH election, packet transmission and routing activity. SCSO and MFO clustering 

protocols are implemented as ad extensions to LEACH in NS2 where the default CH selection 

algorithm is overwritten with the optimized one. These two are done in C++ at the core of the 

NS2 and called through TCL command hooks. Responding to the energy dynamics, cluster 

formation is enabled every 20 seconds of simulation time. 

SCSO Algorithm 

Within the SCSO framework, nodes preserve a “memory” of previous CH’s and utilize position 

along with energy for making smart decisions on CH selection. The optimization is done in 

every re-clustering period with the subsequent fitness function: 

𝐹𝑆𝐶𝑆𝑂(𝑖) = 𝑤1 (1 −
𝐸𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙(𝑖)

𝐸𝑚𝑎𝑥
) + 𝑤2

𝐷𝑖𝑛𝑡𝑟𝑎(𝑖)

𝐷𝑚𝑎𝑥
+ 𝑤3

𝑇𝐶𝐻(𝑖)

𝑇𝑡𝑜𝑡𝑎𝑙
 

Where: 

• 𝐸𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙(𝑖) is the residual energy of node 𝑖 

• 𝐷𝑖𝑛𝑡𝑟𝑎(𝑖) is the average distance between the CH and cluster members 

• 𝑇𝐶𝐻(𝑖) is the number of times node 𝑖 has been elected as CH 

• 𝑤1, 𝑤2, 𝑤3 are weights satisfying 𝑤1 + 𝑤2 + 𝑤3 = 1 

A population of crow agents is simulated as a structure in C++, and their search trajectory 

mimics the intelligent foraging behavior of crows. Movement and memory update rules follow: 

𝑃𝑖
𝑛𝑒𝑤 = 𝑃𝑖

𝑜𝑙𝑑 + 𝑟 ⋅ 𝐹𝐿 ⋅ (𝑀𝑗 − 𝑃𝑖) 

Where 𝑃𝑖 is the position vector of the current agent, 𝑀𝑗 is the memory position, 𝑟 is a random 

number, and 𝐹𝐿 is the flight length. 

MFO Algorithm 

The MFO algorithm is also implemented as a metaheuristic module in NS2. Each node 

maintains a flame list and evaluates its performance based on flame proximity and energy 

efficiency. The fitness function is: 

𝐹𝑀𝐹𝑂(𝑖) = 𝛼 (1 −
𝐸𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙(𝑖)

𝐸𝑖𝑛𝑖𝑡
) + 𝛽 (

1

1 + 𝐷𝑠𝑖𝑛𝑘(𝑖)
) + 𝛾

𝑁𝐶𝑀(𝑖)

𝑁
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Where: 

• 𝐷𝑠𝑖𝑛𝑘(𝑖) is the distance from node 𝑖 to the base station 

• 𝑁𝐶𝑀(𝑖) is the number of cluster members associated with node 𝑖 

• 𝛼, 𝛽, 𝛾 are normalization constants 

The moth’s position updates via a logarithmic spiral function: 

𝑀𝑖
𝑡+1 = 𝐹𝑖

𝑡 ⋅ 𝑒𝑏⋅𝑡 ⋅ cos(2𝜋𝑡) + 𝐹𝑖
𝑡 

Where 𝑀𝑖
𝑡+1 is the next position of the moth, 𝐹𝑖

𝑡 is the flame position, and 𝑏 is a constant. 

Results and Discussions 

 

Figure 3: Energy consumption for CH selection using various optimization algorithms 

This figure 3 outlines the comparative energy efficiency metrics of five optimization 

algorithms: Ant Colony Optimization, Particle Swarm Optimization, Genetic Algorithm, Sand 

Cat Swarm Optimization, and Moth Flame Optimization. In the context of wireless sensor 

networks, IoT ecosystems, and edge computing, energy expenditure is a vital consideration and 

a key metric of efficiency. Less energy consumption points towards a higher degree of 

operational efficiency and adeptness, especially in computation and data transmission. It is 

quite apparent that MFO has the lowest energy consumption of all the algorithms, indicating a 

strong capability for optimization pertaining to minimizing redundant processes and 

streamlining assignments. Conversely, ACO shows the highest energy expenditure which 

could stem from its path-finding strategy that is likely not energy conscious. PSO and GA sit 

in the middle, the former outperformed by SCSO. While SCSO does better than conventional 

algorithms, it still does not measure up to MFO. The focus on MFO underscores its advantage 
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in scenarios where energy is to be conserved or systematically added elsewhere, boosting 

systems sustainability, their design, and scalability. 

 

Figure 4: Resources utilization for CH selection to different algorithms 

This figure 4 shows a comparison of the five algorithms in terms of resource utilization. 

Resource utilization is essentially a measure of computation and communication efficiency of 

any given algorithm. Good resource utilization demonstrates optimal achievement in the 

scheduling and balancing of tasks, as well as effective network operation. The MFO algorithm 

leads with the highest resource utilization, achieving 85% which demonstrates his efficiency 

in task distribution to network nodes indicating no underutilization or overload at any node. 

SCSO and GA also show considerable performance, while PSO and ACO have relatively lower 

performance. This indicates the lack of adaptability in traditional heuristics as they are 

outperformed by more swarm-based or bio-inspired algorithms like MFO. The results strongly 

recommend the strategic application of MFO in cloud-edge collaboration and IoT systems, as 

optimal resource allocation directly affects system efficiency and expenses. 

 

Figure 5: Latency for CH selection to different algorithms 
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Figure 5 depicts latency as a measurement of the time delays when transmitting data or 

processing a task in relation to the five algorithms. Latency serves as a crucial metric in 

telemedicine, autonomous systems, smart factories, and autonomous vehicles, where any lag 

could hinder the system's performance. As illustrated, MFO demonstrates the lowest latency 

of 80 ms, hence making the algorithm the most optimal for time-critical tasks. SCSO and GA 

follow next with their reasonably low latencies. Conversely, ACO and PSO have a slower 

speed with ACO being the worst at 120 ms. The gap in performance indicates that more recent 

strategies like MFO seem to outperform the older ones in the ability to reduce queue buildup 

and efficiently automate multiple processes for any given system. The data cited argues 

strongly in favor of MFO where real-time intervention is a must, advocating multifunctional 

infrastructures that are critically timed. 

 

Figure 6: Throughput during CH selection using different algorithms 

As figure 6 describes, throughput performance deals with the efficiency for a given period of 

time, the amount of data processed or transmitted successfully. Throughput and network 

efficiency are directly correlated allowing more effective usage of the algorithm, network, and 

the system's processing power. MFO leads in throughput margin with 300 units, proving its 

ability to sustain a high rate of data processing, extremely important for big data analytics, 

video streaming, and intelligent grid applications. Although SCSO and GA lag behind MFO, 

their performance is still considered above average. PSO and ACO are functional, but lower 

throughput values suggest worse task or routing optimization. These outcomes reaffirm the 

previously established hypothesis regarding MFO's adaptive capabilities when dealing with 

irregular flows of data and demand on network resources while keeping the flow and data 

integrity safe. This makes MFO a strong candidate for environments with high bandwidth 

demand and systems designed for scalability. 
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Figure 7: Packet drop rate during CH selection using different algorithms 

The last figure 7  illustrates the packet drop rate which depicts the reliability and quality service 

of a network. Packet drop refers to the loss of data packets during transit because of a network 

congestion, a failure, or routing algorithm inefficiencies. Typically, lower rates are better in this 

parameter as they mean more stable and efficient data transmission. MFO records the lowest 

packet drop at 15%, showcasing excellent network reliability and fault tolerance. SCSO 

follows with 20%. GA, PSO, and ACO have even worse results, with ACO reaching the 

maximum at 30%. These results reveal that MFO is highly effective in minimizing network 

disruptions while ensuring the data is preserved and delivered accurately. Such capabilities 

become critical in mission essential systems such as system monitoring in healthcare, 

automated industrial processes, and communication networks during emergencies. All in all, 

MFO demonstrates effective functionality in sustaining communication and controlling error 

in data transmission. 

Conclusion 

This study presented an in-depth exploration of advanced CH selection mechanisms for energy-

efficient and scalable WSNs in the context of the Internet of Things. Traditional algorithms like 

ACO, PSO, and GA have demonstrated utility but fall short in dynamic, large-scale, and 

energy-constrained environments due to issues such as premature convergence and limited 

adaptability. To address these limitations, two innovative swarm intelligence-based algorithms 

SCSO and MFO were proposed and rigorously evaluated. The SCSO algorithm, inspired by 

the predatory behaviour of sand cats, effectively balanced exploration and exploitation, 

achieving a high accuracy of 96% while promoting uniform energy distribution among sensor 

nodes. Meanwhile, the MFO algorithm, modelled on moth navigation patterns, demonstrated 

superior global search capabilities and convergence speed, attaining a remarkable 97.5% 

accuracy. Extensive simulations conducted using NS2 confirmed the superiority of these 

approaches over conventional methods in key performance metrics, including network lifetime, 

energy consumption, latency, throughput, and packet drop rate. Specifically, MFO emerged as 
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the most efficient algorithm across all performance parameters, demonstrating low latency (80 

ms), high throughput (300 units), minimal packet drops (15%), and optimal resource utilization 

(85%). SCSO also outperformed traditional metaheuristics, underscoring its viability for real-

world IoT deployments. The findings affirm that incorporating nature-inspired optimization 

techniques significantly enhances CH selection and overall network performance. The 

integration of such intelligent algorithms into WSN architectures offers a promising direction 

for addressing the energy and scalability challenges inherent in IoT ecosystems. Future work 

will focus on hybrid optimization models that combine the strengths of multiple algorithms, as 

well as the integration of emerging technologies like blockchain, edge computing, and 

reinforcement learning to further improve CH selection in complex and dynamic environments.  
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