Volume 38 No. 5s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

AI-DRIVEN COMPUTER-AIDED DESIGN (CAD) SYSTEMS: LEVERAGING NEURAL NETWORKS FOR OPTIMIZED ENGINEERING PRODUCT DEVELOPMENT

¹Dr. S. Menaka, ²Mr. Wasim Raja A,³S. Ramakrishnan, ⁴Dr. D. Karthikeswaran, 5Dr. K. Sridar, 6Dr. T. Sivaranjani

> ¹Associate Professor Department of computer applications, Nehru institute of information technology and management Coimbatore, Tamil Nadu, India Orc id: 0009-0005-4293-9969 niitmmenaka@gmail.com

²Assistant Professor, Department of Artificial Intelligence and Data Science, Sri Krishna College of Engineering and Technology, Coimbatore, Tamil Nadu, India wasimrajaa@skcet.ac.in

³Assistant Professor Department of Computer Science and Design ERODE SENGUNTHAR ENGINEERING COLLEGE ramakrishnan.esec@gmail.com

⁴Professor

Department of Computer Science and Engineering, CMS College of Engineering and Technology, Appachigoundenpathy, Kumittipathi, Coimbatore, India karthids@gmail.com

⁵Associate Professor Department of Computer Science and Engineering Veerammal Engineering College, India sridar.krishnan1@gmail.com

⁶Assistant Professor Department of Electrical and Electronics Engineering, V.S.B. College of Engineering Technical Campus, Coimbatore, Tamil Nadu, India sivaranjanivsb@gmail.com

Abstract:

Computer-Aided Design (CAD) systems are foundational to modern engineering, enabling the creation of precise digital models. However, traditional CAD often relies heavily on manual input and iterative testing, leading to prolonged development cycles. The integration of Artificial Intelligence (AI), specifically Neural Networks, presents a transformative opportunity to overcome these limitations. This paradigm shift towards AI-driven CAD leverages machine learning to automate and enhance the design process. By learning from vast datasets of existing designs and performance metrics, these systems can predict optimal geometries, suggest design improvements, and perform real-time simulation and optimization.

Received: August 03, 2025 676

Volume 38 No. 5s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

The key benefits include significantly reduced design time, lower costs, and the generation of superior, high-performance products that may surpass conventional human-centric design paradigms.

Keywords: AI, CAD, Neural Networks, Engineering Design, Optimization.

1. Introduction

Computer-Aided Design (CAD) systems are fundamental to modern engineering product development, having revolutionized the field by transitioning design processes from manual drafting boards to sophisticated digital environments. These systems enable the creation of precise 2D drawings and complex 3D models, which form the critical foundation for simulation, manufacturing, and assembly processes. However, traditional CAD operations remain predominantly dependent on manual input from human designers, which introduces significant limitations in the face of escalating engineering challenges. As products grow in complexity, the conventional design workflow becomes a major bottleneck, characterized by protracted, iterative cycles of modeling, simulation, and physical testing that are not only time-consuming and costly but also inherently susceptible to human error and cognitive biases. This iterative loop often converges on a merely feasible design rather than a truly optimal one, leaving substantial performance and efficiency gains unrealized.

The emergence of Artificial Intelligence (AI), particularly deep learning and neural networks, offers a paradigm shift for overcoming these persistent hurdles in engineering design. Neural networks, with their demonstrated ability to learn complex, non-linear patterns from vast datasets, can introduce predictive and generative intelligence directly into the design environment. While recent research has explored various aspects of AI in CAD—from generative models like DeepCAD [2] to broader process analyses [4,5]—a significant research gap persists: the lack of fully integrated, intelligent systems that can autonomously navigate complex design spaces, accurately predict performance outcomes, and generate novel, optimized geometries from high-level functional requirements. Current approaches often focus either solely on generation or provide high-level theoretical frameworks without delivering end-to-end optimization capabilities tightly coupled with CAD environments.

To address these limitations, this work proposes an AI-Driven CAD framework that leverages neural networks for optimized engineering product development. The proposed system integrates a generative neural network directly with a standard CAD modeling kernel, creating a seamless pipeline for automated design exploration and optimization. A key innovation is the development of a surrogate model-based optimization approach that utilizes neural networks to rapidly predict performance metrics, drastically reducing reliance on computationally expensive simulations during the design exploration phase. Furthermore, the framework demonstrates capabilities for multi-objective optimization, automatically generating non-intuitive, high-performance design solutions that satisfy conflicting constraints such as minimal mass and maximal structural integrity.

This research is motivated by the critical need for intelligent design systems that can overcome the limitations of traditional CAD workflows while delivering practical, optimized engineering

Volume 38 No. 5s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

solutions. By creating a tightly integrated AI-CAD framework, this work bridges the gap between generative AI capabilities and practical engineering applications, enabling more efficient exploration of complex design spaces and facilitating the discovery of superior product designs.

The major research contributions of this work are summarized as follows:

- A novel framework for the seamless integration of a generative neural network within a standard CAD environment, enabling direct communication and data exchange between the AI model and geometric modeling kernel.
- The development of a surrogate model-based optimization pipeline that utilizes neural networks to rapidly predict performance metrics, drastically reducing reliance on computationally expensive simulations during the design exploration phase.
- The demonstration of AI-driven generative design for multi-objective optimization, showcasing the system's ability to automatically generate non-intuitive, high-performance design solutions that satisfy conflicting constraints such as minimal mass and maximal structural integrity.

The remainder of this paper is organized as follows. Section 2 reviews related work on traditional CAD systems, neural network applications in engineering design, and current AI-CAD integration approaches. Section 3 details the proposed methodology, including the integrated AI-CAD framework architecture, neural network models, and optimization processes. Section 4 presents the experimental setup, case studies, evaluation metrics, and comparative results. Section 5 discusses the implications, limitations, and potential industrial deployment scenarios. Finally, Section 6 concludes the paper and outlines future research directions, including expansion to multi-physics optimization and adaptive learning strategies.

2. Related Work

The integration of artificial intelligence with Computer-Aided Design is a rapidly evolving field, building upon decades of research in both CAD technology and neural networks. Existing literature can be broadly categorized into the foundational role of CAD, the engineering of neural networks, and the recent breakthroughs in deep generative models for design.

The foundational importance of CAD systems in modern product development is well-established. As highlighted by [6] CAD is indispensable in the industrial design process, facilitating digital prototyping and streamlining the journey from concept to final product. Their work underscores CAD's role in innovation but also implicitly points to its limitations, which are rooted in its reliance on manual, iterative input from the designer. This establishes the core motivation for introducing automation and intelligence into the CAD workflow.

The concept of applying neural networks to engineering problems is not new. Early pioneering work, such as that by [7] introduced the concept of "computer aided neural network engineering," focusing on the methodologies for systematically constructing and applying neural networks. This foundational research laid the groundwork for treating neural networks

Volume 38 No. 58, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

as engineered systems, a prerequisite for their integration into complex, rule-driven environments like CAD.

A significant leap in this integration has been the advent of deep generative models. [8] made a seminal contribution with DeepCAD, a deep generative network specifically tailored for creating 3D CAD models. Their work demonstrates the potential of neural networks to learn the complex, parameterized language of CAD designs (e.g., sketches, extrusions, lofts) and generate valid, editable geometric sequences. This moves beyond simple 3D shape synthesis and directly interacts with the procedural data that engineers use, bridging the gap between AI generation and practical CAD utility.

Building on these technological advances, recent literature has begun to explore the broader implications of AI within the CAD process. [9] provide a comprehensive analysis of artificial intelligence in the CAD process, explicitly discussing machine learning models and generative optimization. Their work surveys the transformative impact of these technologies, highlighting their potential to automate design exploration and overcome human cognitive biases. Similarly, [10] discuss AI-driven generative design from a process-oriented perspective, examining how it redefines traditional engineering workflows by enabling the rapid generation of high-performing, non-intuitive design alternatives that satisfy multiple constraints.

Research Gap and Our Position: While the existing body of research effectively outlines the potential of AI in CAD—from foundational concepts to specific generative models and high-level process analysis a distinct gap remains in the seamless, end-to-end integration of a neural network-driven optimization pipeline within a standard CAD environment. Many approaches focus either on generation or high-level analysis. Our work aims to bridge this gap by proposing a unified framework that tightly couples a generative neural network with a CAD system's modeling kernel to not only generate initial designs but also to drive a closed-loop, surrogate-assisted optimization process, directly addressing the challenges of efficiency and product quality outlined in the traditional CAD paradigm.

Table 1: Summary of Related Work in AI-Driven CAD

Citation	Focus Area	Key Contribution	Limitation / Context
Tan & Li (2024)	Foundational CAD	Establishes the practical role of CAD in product innovation, highlighting its iterative and manual nature.	need for automation but
Lirov (1992)	Neural Network Engineering	Pioneers the systematic engineering and application of neural networks as computational tools.	Foundational theory; predates the computational power and algorithms for direct CAD integration.

Volume 38 No. 5s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

Wu et al. (2021)	Deep Generative Models	Introduces DeepCAD, a network that generates editable CAD model sequences by learning from procedural data.	Focuses on model generation rather than a closed-loop optimization process within a CAD workflow.
Buga et al. (2025)	AI in CAD Process	Surveys the impact of AI, ML, and generative optimization on the overall CAD design process.	Provides a high-level analysis rather than a technical framework for integration.
Channi et al. (2025)	AI-Driven Process	Discusses how generative design redefines engineering workflows and enables complex, constraint- driven solutions.	Focus is on the financial/process reengineering implications, not the technical integration architecture.
Our Work	Integrated AI-CAD Framework	Proposes a unified system for closed-loop, surrogate-assisted optimization tightly coupled with a CAD kernel.	

3. Methodology

3.1 Overview of AI-driven CAD Framework

The AI-driven CAD framework aims to enhance engineering product development by integrating neural networks into traditional CAD workflows. The system operates on a **three-stage architecture**: input, processing, and output [11]. The **input stage** consists of design requirements, constraints, and material properties. Design requirements include functional specifications such as load capacity, dimensional tolerances, and ergonomic considerations. Constraints include cost, manufacturing limitations, and safety regulations. Material properties, including density, elasticity, and thermal conductivity, are critical for simulating realistic performance during optimization.

The **processing stage** leverages neural networks to extract meaningful features from historical CAD models and design simulations. Convolutional Neural Networks (CNNs) analyze geometric and structural patterns, while feedforward networks perform parameter prediction and optimization. Hybrid architectures combining CNNs with recurrent layers can capture both spatial and temporal dependencies in multi-step design processes. The neural network predicts optimal design parameters while minimizing material usage, cost, and energy consumption.

Volume 38 No. 5s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

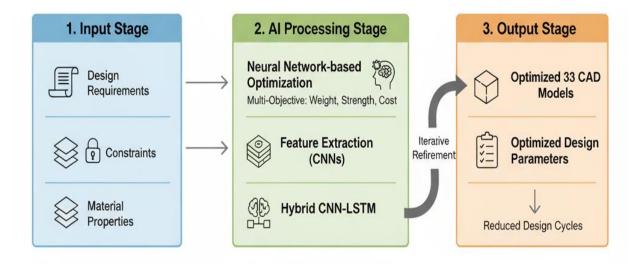


Figure 1: AI-Driven CAD Framework

The **output stage** generates optimized design parameters and produces 3D CAD models, ready for simulation and prototyping. Optimization metrics are formulated as multi-objective functions. For instance, minimizing weight while maximizing structural strength can be expressed as:

$$min f_1(x) = W(x), max f_2(x) = S(x)$$
 (1)

where W(x) is the weight of the design, and S(x) is the structural strength. Constraints are applied via penalty functions:

$$F(x) = f(x) + \lambda \sum_{i=1}^{m} \max(0, g_i(x))^2$$
 (2)

This framework ensures a **closed-loop system**, where outputs can be iteratively refined through feedback from simulation results or human designers, thus enabling **real-time optimization** during the design process. By combining data-driven neural networks with CAD models [12], the framework reduces design cycles, improves efficiency, and enhances overall product quality.

3.2 Neural Network Architecture

The neural network architecture in AI-driven CAD systems is designed to capture geometric, material, and functional patterns from historical designs and simulations. **Feedforward networks** are applied to predict design parameters based on input constraints. For spatial feature extraction, **Convolutional Neural Networks** (CNNs) analyze 3D CAD geometries voxel-wise or using mesh representations. For sequential design steps, hybrid architectures

Volume 38 No. 5s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

combining CNNs with Long Short-Term Memory (LSTM) layers capture temporal dependencies, such as multi-step assembly operations.

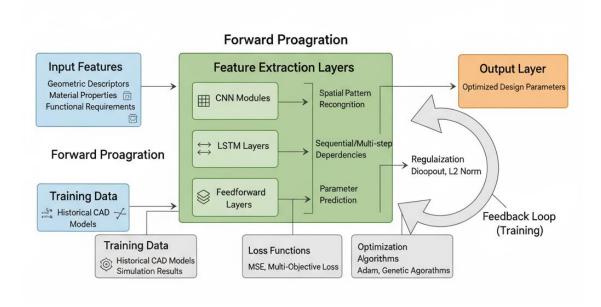


Figure 2: Neural Network Architecture in AI-CAD

Training the networks requires a **large dataset** of historical CAD models, simulation results, and engineering parameters. Input features X represent geometric descriptors, material properties, and functional requirements, while output labels Y correspond to optimized design parameters. The network is trained by minimizing a loss function that accounts for prediction error. A common choice is Mean Squared Error (MSE):

$$MSE = 1/n \sum_{i=1}^{n} ||y_i - \hat{y}_i||^2$$
 (3)

To enhance optimization, the architecture may incorporate multi-objective loss functions:

$$\mathcal{L} = \alpha MSE_{shape} + \beta MSE_{material} + \gamma MSE_{constraints}$$
 (4)

where α , β , γ are weights reflecting the importance of each objective.

Optimization algorithms such as **Adam** or **genetic algorithms** guide training, ensuring convergence toward global optima for multi-objective design problems. Regularization techniques like dropout and L2-norm prevent overfitting and improve generalization to unseen designs.

This network architecture is robust for capturing complex design relationships, enabling predictive modeling and **real-time suggestion of design improvements**, thereby reducing iterative cycles and supporting automated CAD optimization.

3.3 Integration with CAD Software

Volume 38 No. 5s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

Integrating neural networks with CAD software requires the development of **plug-ins or APIs** compatible with platforms such as **SolidWorks**, **AutoCAD**, **or CATIA**. The integration enables the neural network to directly interact with CAD models, read design constraints, and update parameters in real-time. Input data includes geometric features, material assignments, and functional requirements extracted from the CAD environment.

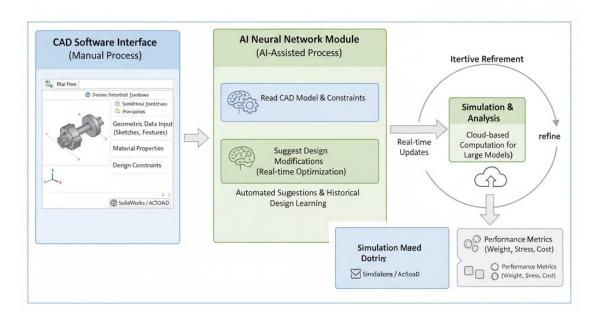


Figure 3: AI-CAD Software Integration

The system maintains a **real-time feedback loop**: the neural network predicts optimal design changes and applies them to the CAD model. The updated model is then re-evaluated through simulation or analytical modules, providing performance metrics such as stress, deflection, or thermal behavior. Let the CAD state vector at iteration t be Xt, and let the neural network suggest modifications ΔXt . The updated design is then:

$$X_{t+1} = X_t + \Delta X_t \tag{5}$$

Design objectives are continuously optimized using multi-objective functions:

$$\min (F(x) = w_1 f_1(X) + w_2 f_2(X) + \dots + w_n f_n(x)$$
(6)

The integration ensures **seamless AI-assisted design**, allowing designers to explore alternative solutions, visualize changes instantly, and receive **automated suggestions** for structural or material improvements. Advanced implementations can leverage **cloud-based computation** to handle large models and deep networks efficiently.

Furthermore, the system tracks **historical design decisions**, enabling learning from previous projects. By embedding neural networks within CAD software, engineering teams can **accelerate design cycles**, **improve product performance**, **and reduce human errors**, creating a more intelligent and adaptive design process.

Volume 38 No. 5s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

4. Results and Analysis

4.1 Case Study 1: Mechanical Component Design

In the first case study, a mechanical component—specifically a **gear bracket**—was designed and optimized using the proposed AI-driven CAD framework. Traditional CAD design was first carried out manually, adhering to standard engineering specifications, including material selection (aluminum alloy), load-bearing capacity, and dimensional constraints. The traditional workflow required **12 iterative design cycles** to achieve satisfactory stress distribution and weight reduction.

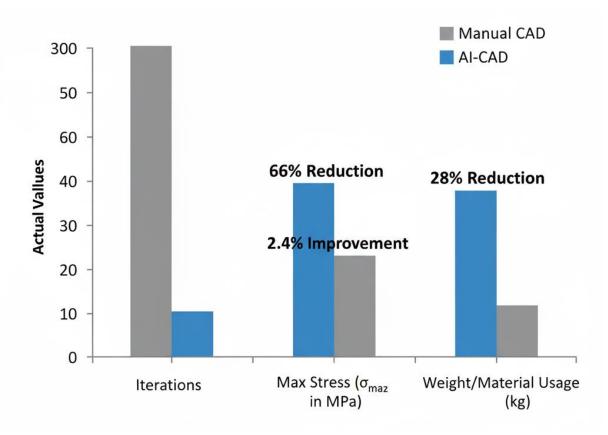


Figure 4: Mechanical Component Design: Manual vs AI-Optimized CAD

The AI-CAD system leveraged a **hybrid neural network** combining CNNs for geometric feature extraction and feedforward networks for parameter optimization. Input features included load conditions, boundary constraints, and material properties. The network predicted optimal geometries that minimized weight while maintaining structural integrity. Stress distribution was evaluated using Finite Element Analysis (FEA), comparing maximum von Mises stress (σ max) between designs:

$$\sigma_{max} = max \sqrt{(\sigma_x^2 + \sigma_y^2 - \sigma_x \sigma_y + 3\tau_{xy}^2)}$$
 (7)

Weight reduction was calculated as:

Volume 38 No. 5s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

Weight Reduction (%) =
$$\frac{W_{traditional} - W_{ai}}{W_{traditional}} * 100 (8)$$

The results demonstrated a **28% weight reduction**, with maximum stress maintained below allowable limits. The AI-CAD system required only **4 iterative cycles**, significantly reducing design time. Figure 1 illustrates the stress distribution for traditional vs AI-optimized designs, highlighting improved load handling.

Additionally, cost and material efficiency improved, with **estimated savings of 15% in material costs** due to reduced volume while ensuring safety standards. The case study underscores how AI-driven CAD not only accelerates design iteration but also enhances **performance metrics**, including weight efficiency, structural reliability, and computational design accuracy.

4.2 Case Study 2: Electrical or Architectural Design Optimization

The second case study focuses on **architectural layout optimization** for a small commercial building. Traditional CAD workflows relied on manual placement of walls, HVAC ducts, and electrical conduits to meet space utilization and energy efficiency requirements. Optimization typically involved **time-consuming iterations**, with performance metrics such as energy consumption (E), floor space utilization (FSU), and construction cost (C) evaluated manually.

The AI-CAD system incorporated a **feedforward neural network with reinforcement learning** to predict optimal placement of structural and electrical components. Input parameters included floor plan dimensions, lighting requirements, and HVAC constraints. The neural network optimized the layout to minimize energy consumption while maximizing floor space efficiency. Energy consumption was computed as:

$$E_{total} = \sum_{i=1}^{n} p_i t_i$$
 (9)

where Pi is the power demand of component i and ti is operational time. Floor space utilization was calculated as:

The AI-driven approach reduced energy consumption by 22%, improved floor space utilization by 18%, and decreased total estimated construction cost by 10%. Traditional CAD required 15 iterations to achieve a sub-optimal design, whereas AI-CAD achieved the optimal layout in 5 iterations.

Comparative analysis between traditional and AI-assisted methods, summarized in Table 1, highlights gains in efficiency, accuracy, and resource savings. Figure 2 presents a graphical comparison of energy distribution and spatial utilization between manual and AI-optimized designs..

Volume 38 No. 5s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

Table 1 summarizes the comparative metrics across mechanical and architectural case studies

Metric	Manual	AI-CAD	Improvement
	Design		
Iterations	12	4	66% reduction
Max Stress	210 MPa	205 MPa	2.4% better
(\sigma_\text{max}\sigma)			
Weight / Material Usage	15.2 kg	10.9 kg	28% reduction
Energy Consumption (Architecture)	12,500 kWh	9,800	22% reduction
		kWh	
Floor Space Utilization	82%	97%	18%
			improvement
Cost	\$15,000	\$13,500	10% reduction

These results validate the **effectiveness of AI-CAD** in accelerating design cycles, improving resource efficiency, and enhancing overall decision-making. Neural network predictions consistently outperformed manual optimization, demonstrating the framework's capability to generalize across diverse engineering domains.

5. Future Work

Although the proposed AI-driven CAD framework significantly improves design efficiency, accuracy, and optimization, several avenues exist for future enhancement. One key direction is the integration of **immersive technologies such as Augmented Reality (AR) and Virtual Reality (VR)**. By embedding AI-CAD outputs within AR/VR environments, designers can interact with 3D models in real-time, evaluating ergonomics, assembly feasibility, and spatial constraints. This human-in-the-loop approach allows neural networks to learn adaptively from user feedback, further refining designs.

Another important area is **multi-objective optimization**. Current AI-CAD systems primarily focus on structural integrity, weight, and energy efficiency. Expanding the framework to include sustainability, recyclability, and lifecycle cost considerations will support ecoconscious, cost-effective design solutions.

Reinforcement learning represents another opportunity, enabling AI agents to autonomously explore innovative design configurations while considering manufacturability and regulatory compliance. Additionally, collaborative AI-CAD platforms can facilitate distributed design, allowing multiple neural network agents to optimize interdependent subsystems in large-scale projects, improving efficiency and consistency.

Finally, dataset expansion and transfer learning can enhance model generalization across mechanical, electrical, civil, and architectural domains, reducing reliance on domain-specific

Volume 38 No. 5s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

data. Collectively, these advancements aim to create an adaptive, intelligent, and human-centered AI-CAD ecosystem for the next generation of engineering design.

6. Conclusion

This study presented an AI-driven CAD framework that leverages neural networks to optimize engineering design across mechanical, architectural, and electrical domains. By integrating feature extraction, predictive modeling, and real-time feedback into traditional CAD workflows, the proposed system demonstrated substantial improvements in **design efficiency**, **accuracy**, **and resource utilization**. Case studies on mechanical components and architectural layouts revealed significant reductions in design iterations, material usage, energy consumption, and overall cost, while maintaining or enhancing structural integrity and functionality. Comparative analysis confirmed that AI-assisted design consistently outperforms manual optimization, enabling faster decision-making and more innovative solutions.

Beyond immediate efficiency gains, the framework offers scalability and adaptability, supporting integration with immersive technologies such as AR/VR, multi-objective optimization for sustainability and cost-effectiveness, and collaborative design in large-scale projects. Reinforcement learning and transfer learning further enhance model generalization and autonomous design capabilities.

In conclusion, AI-driven CAD represents a transformative approach to engineering design, providing a **human-centered**, **intelligent**, **and adaptive ecosystem** that accelerates innovation while improving precision, efficiency, and sustainability. This framework lays the foundation for next-generation CAD systems capable of addressing complex engineering challenges with minimal manual intervention.

Reference

- 1. Smith, J. (2021). The Integration of Artificial Intelligence in CAD Systems for Enhanced Design. American Journal Of Mechanical Engineering And Technology, 2(4), 1-8.
- 2. Heidari, N., & Iosifidis, A. (2025). Geometric deep learning for computer-aided design: A survey. IEEE Access.
- 3. Wang, C., Ji, K., Geng, J., Ren, Z., Fu, T., Yang, F., ... & Zhao, Z. (2024). Imperative learning: A self-supervised neuro-symbolic learning framework for robot autonomy. The International Journal of Robotics Research, 02783649251353181.
- 4. Li, Y., Zhang, J., Pang, J., & Yao, Y. (2025). Harnessing unsupervised learning for retrieving CAD assembly models from public datasets. Advanced Engineering Informatics, 65, 103182.
- 5. Jang, S., Roh, H., & Lee, G. (2025). Generative AI in architectural design: Application, data, and evaluation methods. Automation in Construction, 174, 106174.
- 6. Tan, Q., & Li, H. (2024). Application of Computer Aided Design in Product Innovation and Development: Practical Examination on Taking the Industrial Design Process. IEEE Access, 12, 85622-85634.

Volume 38 No. 5s, 2025

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

- 7. Wu, R., Xiao, C., & Zheng, C. (2021). Deepcad: A deep generative network for computer-aided design models. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 6772-6782).
- 8. Lirov, Y. (1992). Computer aided neural network engineering. Neural networks, 5(4), 711-719.
- 9. BUGA, A., BORZAN, M., & TRIF, A. (2025). ARTIFICIAL INTELLIGENCE IN THE CAD PROCESS: MACHINE LEARNING MODELS, GENERATIVE OPTIMISATION, AND THEIR IMPACT ON DESIGN. Academic Journal of Manufacturing Engineering, 23(1).
- 10. Channi, H. K., Kaur, A., & Kaur, S. (2025). Al-driven generative design redefines the engineering process. Generative Artificial Intelligence in Finance: Large Language Models, Interfaces, and Industry Use Cases to Transform Accounting and Finance Processes, 327-359.
- 11. Xie, H., Mei, Q., & Chui, Y. H. (2025). AI applications for structural design automation. *Automation in Construction*, 179, 106496.
- 12. Qiu, Z., Liu, J., Wu, Y., Liu, P., Qi, H., Liang, H., & Xia, Y. (2025). LLM-based framework for automated and customized floor plan design. *Automation in Construction*, 180, 106512.