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Abstract 

Intrusion Detections Systems (IDS), which are consequently vital for safeguarding digital 

infrastructure, counter evolving cyber threats. Often, conventional IDS systems including 

signature-based and anomaly-based battle dynamic attack patterns and high false warning rates. 

Artificial intelligence (AI) driven solutions, especially reinforcement learning (RL) and graph-

based models—have grown more popular in reaction to their capacity to adapt and identify 

sophisticated threats. As a result, the lack of transparency that is associated with AI-driven 

intrusion detection systems provides a significant challenge for decision-makers in the field of 

cybersecurity. Growing confidence and interpretability in AI-based intrusion detection have 

been greatly influenced by explainable artificial intelligence (XAI). Emphasizing their efficacy 

in modeling network traffic, enhancing detection accuracy, and guaranteeing decision 

transparency, this paper seeks to investigate the incorporation of explainability in graph-based 

reinforcement learning models for IDS. Using secondary data gathering from online databases 

covering the years 2018 to 2025, a qualitative research approach is employed. The study 

methodically surveys research on explainability methods in AI-driven IDS, graph-based 

intrusion detection, and reinforcement learning applications in cybersecurity. Though 

explainability systems increase interpretability with minimal accuracy loss, the results show 

that graph-based RL improves intrusion detection and network traffic analysis by utilizing 

structural links. Nevertheless, problems including adversarial assaults, computation costs, and 

the trade-off between openness and performance remain. The research shows that using 

explainable artificial intelligence in graph-based RL IDS can significantly increase detection 

capabilities and user confidence, hence promoting more efficient and responsible cybersecurity 

solutions, future studies should concentrate on increasing the scalability, durability, and real-

time applicability of explainable graph-based RL models in the field of cyber security. 
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Introduction 

As cyber-attacks have grown in complexity and frequency, cyber security has emerged as a 

major concern in the modern digital landscape. Often inadequate against advanced persistent 

threats (APTs), polymorphic malware and zero-day vulnerabilities [1, 2], conventional security 

measures like firewalls and antivirus software fall short. By way of network traffic monitoring, 

identification of hostile activities, and alerting of security staff of potential hazards, IDS are a 

vital defensive tool. Notable disadvantages of conventional IDS techniques, including 

signature-based and anomaly-based detection, exist [2, 3]. While anomaly-based Intrusion 

Detection Systems generate higher false positive rates because of their reliance on deviations 

from normal traffic patterns, Signature-based Intrusion Detection Systems rely on established 

attack patterns, hence rendering them worthless against new threats [3, 4]. Attacks' complexity 

drives the need for sophisticated detection techniques able to dynamically adapt to new threats 

while maintaining accuracy and efficiency [4]. Without rule sets, RL is a potent cybersecurity 

tool since it can learn and adjust to fresh attack patterns. Reinforcement learning-based 

intrusion detection systems can identify and mitigate threats by treating network security as a 

sequential decision-making problem [5, 6]. Graphical models of network traffic can clarify 

structural relationships between nodes and identify uncommon interactions faster than flat-

feature models [7, 8]. Combining graph neural networks (GNNs) with RL increases attack 

detection by leveraging network data spatial and temporal correlations. Though they have 

promise, artificial intelligence-driven intrusion detection systems lack transparency. Many 

deep learning-based security systems run as "black boxes," which makes it challenging for 

cybersecurity experts to know, assess, and depend on their choices [9]. By providing human-

interpretable insights into IDS decisions, XAI helps to close this gap by increasing confidence 

and supporting regulatory compliance. The figure 1 illustrates the trade-off in AI/XAI-based 

cybersecurity between three key aspects.  

This review article aims to investigate the integration of explainable artificial intelligence into 

graph-based reinforcement learning models for intrusion detection, hence assessing their 

effectiveness in modelling network traffic, improving detection accuracy, and guaranteeing 

decision transparency. The paper is structured as follows: Beginning with a presentation of 

conventional Intrusion Detection Systems (IDS) and their related problems, the paper then 

thoroughly examines graph-based learning and reinforcement learning in the framework of 

cybersecurity. Then, it evaluates performance and trust elements and studies explainability 

techniques in AI-driven Intrusion Detection Systems. The report points out research gaps and 

offers next paths to enhance the usability of explainable graph-based reinforcement learning 

models in cybersecurity. 
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Figure 1. Effective and explainable cybersecurity solutions – An overview [9] 

Intrusion Detection Systems – An Overview 

Cybersecurity depends on IDS, which provide tools to spot illicit access and dangerous actions. 

Signature-based IDS identifies known threats using known attack signatures; anomaly-based 

IDS detects abnormalities from normal behavior using statistical or AI-driven models; hybrid 

IDS combines both methods to increase detection accuracy and versatility [10]. Although 

anomaly-based IDS can identify new threats, it may generate more false positives; signature-

based IDS is excellent at locating current threats but weak against zero-day attacks. Traditional 

Intrusion Detection Systems face many challenges, including scalability constraints, the 

changing nature of attack vectors, and an increasing amount of network traffic. As cyber threats 

grow in complexity, static rule-based models become ineffective; adaptive learning models that 

can develop with emerging threats are therefore required. AI and machine learning (ML) 

methods have been applied in IDS as a result, hence facilitating quick decision-making and 

automated threat identification. Though there have been developments, traditional machine 

learning-based intrusion detection systems have drawbacks like data imbalance, susceptibility 

to hostile attacks, and a lack of explainability. Many machine learning models operate as black-

box systems, hence perplexing the reading of detection outcomes for security professionals. 

Moreover, to stay successful against evolving threats, static machine learning models require 

regular retraining [10, 11, 12]. These deficiencies draw attention to the significance of more 

strong, clear, and flexible Intrusion Detections Systems architectures—including 

reinforcement learning and graph-based approaches—which can continuously learn from new 

threats while maintaining interpretability and dependability in cybersecurity applications. 

Graph-Based Approaches in Intrusion Detection 

Graph-based approaches have emerged as a powerful paradigm in IDS, using the natural 

structural properties of network traffic to enhance threat identification. Cybersecurity depends 

on graph theory since it uses organized graphs to model complex network interactions, with 

nodes representing people, equipment, or IP addresses and edges indicating data flows or 

communication links. This strategy helps to catch contextual links and dependencies 

sometimes overlooked by more traditional approaches. Unlike traditional IDS, which examine 

network behaviour in isolation, graph-based methods assess the overall structure of network 

traffic, therefore allowing the detection of complex and dynamic attack patterns [6, 7]. Graph 

analytics allows security systems to more quickly identify anomalies, map attack propagation, 
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and follow enemy movements inside a network than signature-based or purely statistical 

approaches. 

 

Figure 2. General architecture for intrusion detection with GNN-based methods1 

Graph-based IDS relies fundamentally on the depiction of network traffic as graphs. This 

means turning raw network data into an ordered representation where nodes represent network 

entities—servers, users, applications—and edges indicate interactions like data transfers, 

authentication attempts, or session connections. This organized depiction facilitates enhanced 

understanding of traffic patterns, aiding in the differentiation of typical interactions from 

possible hazards. Moreover, dynamic graphs allow real-time monitoring and modification of 

developing attack methods by means of temporal evolution of edges and nodes. By detecting 

patterns from graph-structured data, GNNs enhance this capacity and enable the automatic 

detection of anomalies including botnet operations, data exfiltration, or APTs [7, 13]. These 

models include methods including “Graph Convolutional Networks (GCNs)”, “Graph 

Attention Networks (GATs)’’, and Graph Auto encoders to uncover latent links and draw 

possible detrimental actions from relational patterns. The figure 2 below illustrates the General 

architecture for intrusion detection with GNN-based methods. 

 

The comparative advantages of graph-based intrusion detection over conventional methods 

include its capacity to capture non-linear dependencies, predict developing threats, and 

diminish false positives. Conventional machine learning-based intrusion detection systems 

depend on predetermined feature sets and frequently falter against adversarial attacks, but 

graph-based solutions utilize structural relationships and contextual awareness, rendering them 

more resilient. Moreover, GNNs facilitate semi-supervised learning, permitting detection 

models to function well despite the scarcity of labelled data. A significant benefit is the 

scalability of graph-based Intrusion Detection Systems, as network security graphs can 

effectively manage extensive network topologies [13, 14]. Nonetheless, despite their 

advantages, obstacles include processing cost, the necessity for real-time adaptation, and the 

intricacies of explainability persist as subjects of continuing investigation. Graph-based 

 
1 https://www.researchgate.net/figure/General-architecture-for-intrusion-detection-with-GNN-based-
methods-In-a-first_fig1_370733865 
 

https://www.researchgate.net/figure/General-architecture-for-intrusion-detection-with-GNN-based-methods-In-a-first_fig1_370733865
https://www.researchgate.net/figure/General-architecture-for-intrusion-detection-with-GNN-based-methods-In-a-first_fig1_370733865
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methodologies signify a revolutionary advancement in intrusion detection, improving detection 

precision, flexibility, and robustness against contemporary cyber threats. 

 

Reinforcement Learning for Intrusion Detection 

Reinforcement Learning provides a robust foundation for intrusion detection by facilitating 

adaptive and autonomous security mechanisms against dynamic cyber threats. Reinforcement 

Learning fundamentally relies on Markov Decision Processes (MDP), wherein an agent 

engages with an environment to ascertain best actions via trial and error. The agent obtains 

rewards or punishments contingent upon its behaviours, thereby refining its policy over time 

to optimize long-term security results. The self-learning feature of reinforcement learning 

renders it especially appropriate for intrusion detection, as cyber threats continually evolve, 

necessitating dynamic and context-sensitive countermeasures [5, 6]. In contrast to conventional 

static IDS models, RL-based IDS may adjust to novel attack patterns, optimize resource 

distribution, and improve detection precision without depending exclusively on predetermined 

signatures or labelled datasets. The figure 3 illustrates the overview of reinforcement learning 

based IDS in detail. 

By enabling real-time decision-making and anomaly detection in large networks, Deep RL, 

which combines RL with deep neural networks, improves cyber security. DRL-based intrusion 

detection can independently categorize threats, prioritize notifications, and execute pre-

emptive responses by simulating attack-defence situations. These systems' foundation is the Q-

learning based algorithms: 

"Q(st, at) ← α[rt+1 + γmaxaQ(st+1,a) − Q(st, at)"  -----------------------------Eq. (1) 

Where 

Q(st, at) – It is the Q-value for the state st and action at. 

α  - It is the learning rate 

rt+1 – It is the reward received after taking action at. 

γ - It is the discount factor, which determines the importance of future rewards 

maxaQ(st+1,a)  -It is the estimated maximum future rewards for the next state st+1 

 
Figure 3. Reinforcement learning based IDS2 

 
2 https://www.researchgate.net/figure/Proposed-reinforcement-learning-based-IDS-for-IOT-
data_fig1_359075718 

https://www.researchgate.net/figure/Proposed-reinforcement-learning-based-IDS-for-IOT-data_fig1_359075718
https://www.researchgate.net/figure/Proposed-reinforcement-learning-based-IDS-for-IOT-data_fig1_359075718
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By choosing actions depending on the existing network sate St (represented by the graph 

embedding), the RL agent is charged with dynamically identifying threats. To maximize long 

-term rewards, the agent discovers an optimal strategy, π^* (a|S_t ). Which is 

 π∗(a|St) to maximize the long -term rewards. Where: 

"π∗(a|St) = argπ max E [Rt|St, π]" ------------------------------------- Eq (2) 

Furthermore, reinforcement learning-driven adaptive defensive mechanisms improve intrusion 

detection system effectiveness by dynamically modifying detection thresholds, revising 

security policies, and implementing countermeasures according to the intensity of an assault. 

Nonetheless, implementing reinforcement learning in cybersecurity entails problems like 

training complexity, processing demands, exploration-exploitation dilemmas, and adversary 

interference [15]. Despite these difficulties, RL-based IDS can improve real-time threat 

mitigation, network resilience, and security concerns in modern cybersecurity systems. 

Explainability in Ai-Driven Intrusion Detection 

AI-driven intrusion detection must be explainable to improve cybersecurity decision-making 

transparency, reliability, and interpretability. Cybersecurity specialists struggle to understand 

warning triggers as AI-driven intrusion detection systems (IDS) get more complex. Their 

decision-making procedures typically resemble black-box models. Insufficient interpretability 

can lead to false positives, missed threats, and regulatory compliance issues [16]. Explainability 

helps security analysts validate threat classes, investigate warnings, and develop detection 

models to improve network security by revealing model behaviour. 

Two primary techniques for explainability are post-hoc and intrinsic. Post-hoc explainability 

techniques such as SHAP and LIME retrospectively assess model forecasts. While LIME 

approximates complex models with simpler, understandable models to clarify local decision-

making, SHAP assigns relevance scores to input features highlighting their impact on 

categorization. Moreover, deep learning model attention mechanisms highlight important input 

areas affecting an IDS choice, thereby improving analyst interpretation [16, 17]. These 

approaches allow specialists in cybersecurity to verify, diagnose, and improve AI-driven 

Intrusion Detection Systems, hence ensuring that the responses are clear and accurate. 

The increasing fascination in Explainable artificial intelligence (XAI) arises from the need to 

render machine learning models more open. XAI techniques like LIME (Local Interpretable 

Model-agnostic Explanations) and SHAP (SHapley Additive exPlanations) provide ways to 

understand the forecasts of black-box models. XAI can enable security analysts to know why 

a particular action was taken in the framework of RL-based IDS, hence fostering confidence in 

the system. SHAP uses the Shapley value defined as: 

"∅i(f) = ∑
|S|!(|N|−|S|−1)!

|N|!s⊆N{i} [f(S ∪ {i}) − f(S)]" ----------------------------Eq (3) 
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Where, 

∅i(f) – It is the Shapley value for feature i,  

S – It is a  subset of the features excluding i, 

N - It is the set of all features, 

Techniques like SHAP are included in XAI to clarify the choices of the RL agent. For every 

choice, the algorithm calculates feature importance ratings indicating which elements—such 

network characteristics—most influenced the identification of harmful activity. 

"∅i(f) = ∑
|S|!(|N|−|S|−1)!

|N|!s⊆N{i} [f(S ∪ {i}) − f(S)]"--------------------------- Eq (4) 

On the other hand, models especially in graph-based and RL-driven IDS include natural 

intrinsic explainability. Presenting a natural framework for intrusion detection, GNNs capture 

relational interdependence across network nodes and edges and provide understandable 

insights on connection strength and node relevance. RL models can also be designed with 

explained reward functions, boosting the transparency of their decision-making processes [17]. 

Still, often explainability means sacrificing precision and economy. While very accurate deep 

learning models lack openness, more understandable models could sacrifice performance. The 

evolution of AI-driven Intrusion Detections Systems that are both successful and responsible 

in cybersecurity defense depends on finding balance among detection accuracy”, computation 

efficiency, and interpretability. 

Integration of Graph-Based Learning with Reinforcement Learning for ids: 

Combining graph-based learning with RL for IDS creates a novel approach for adaptive threat 

mitigation and real-time attack identification. With nodes signifying devices, edges expressing 

connections, and relational dependencies showing behavioural patterns, GNNs shine at 

describing complex network topologies. The result is a more dynamic and context-sensitive 

intrusion detection system competent of proactively reducing incursions when combined with 

reinforcement learning, which continuously learns and adapts to new threats. Using GNNs to 

produce sophisticated graph representations of network traffic and including these 

representations into RL-based decision models allows IDS to dynamically change detection 

rules, forecast hostile behaviours, and improve countermeasures in real time. GNNs' message-

passing mechanism modifies node characteristics depending on their neighbours: 

"hv
(k)

= σ(W(k). ∑ hu
k−1 + b(k)

u∈N(v) )" ----------------------------------- Eq (5) 

Where, 

hv
(k)

 – It is the feature vector of node v adter kth interation (or layer), 

W(k) – It is the weight matrix for layer k, 

N(v) – It represents the neigbbours of node v, 
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hu
k−1 − It is the feature vector of neighbor u from the previous layer, 

σ  -It is the activation funciton (e.g., ReLU) 

 b(k)  - It is the bias term for layer k, 

As defined by, the GNN updates node features depending on nearby node information by 

means of message passing between nodes. 

"hv
(k)

= σ(W(k). ∑ hu
k−1 + b(k)

u∈N(v) )" -------------------------------- Eq (6) 

Where, 

hv
(k)

 – It is the updated feature vector of node v layer k 

W(k) and b(k)  - They are the trainable weight and bias matrices 

N(v  It represents the neighbors of node v 

Graph-based RL enables intelligent network traffic monitoring and adaptive threat mitigation 

by means of the  conceptualizing of intrusion detection as a sequential decision-making 

problem. Using relational data, the IDS agent monitors the network graph, finds anomalies, 

and computes suitable countermeasures by means of trial and error learning. Reinforcement 

learning methods, especially deep Q-networks (DQNs) and policy-gradient approaches, may 

enhance defence measures by means of network state transition analysis. Ensuring that security 

rules can change in reaction to new threats helps to achieve this. Graph embedding's use in 

reinforcement learning improves the generalization ability of the model, which thus allows 

intrusion detection systems to identify new attacks more efficiently than is feasible with 

conventional signature-based approaches [18]. Though it offers certain benefits, the 

combination of GNNs with RL raises several issues. The notable computational complexity is 

a major issue since both graph-based learning and reinforcement learning need a great deal of 

resources for training and inference.  

Moreover, keeping large networks made up of millions of nodes and edges causes scale 

problems that render real-time analysis a resource-consuming task. Reward engineering—the 

design of an acceptable reward function for intrusion detection—is a major difficulty. This 

function has to balance system performance, false positive rates, and detection accuracy [18]. 

Finally, adversarial assaults on graph topologies and reinforcement learning rules create a 

security concern and call for strong defenses to prevent model exploitation. Facing these 

obstacles is essential to completely exploit the possibilities of graph-based reinforcement 

learning for the creation of solutions for next-generation intrusion detection systems. 

METHODOLOGY AND COMPARATIVE ANALYSIS OF VARIOUS STUDIES 

This table now offers exact accuracy rates as cited in the study, so enabling a more obvious 

comparison of the effectiveness of several approaches.  

Table 1. Comparative Analysis 
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References Methodology Findings Limitations 

Thang & 

Pashchenko 

(2019) 

Multistage ML-

based IDS for 

WiFi networks 

Achieved 98.9% detection 

accuracy for WiFi 

intrusions 

Limited to WiFi 

networks; lacks 

adaptability to 

emerging attack 

patterns 

Palmer, 

Rogers & 

Mcfly (2020) 

Graph-based 

study of industrial 

control system 

(ICS) network 

traffic 

Detected 88.2% of 

anomalous behaviours in 

ICS networks 

Lacks real-time 

detection capabilities 

Abou Daya et 

al.,  (2020) 

ML-based graph-

based bot 

detection 

(BotChase) 

 

Identified botnet (Botchase) 

activities with 99% 

accuracy 

Large-scale networks' 

high computational 

cost 

 

Neupane et al., 

(2022) 

Survey on 

explainable IDS 

(X-IDS) 

Provided a comparative 

analysis of existing XAI 

methods; noted that most 

models maintain 

explainability at the cost of 

5-10% accuracy drop 

No empirical 

validation of proposed 

methodologies 

Baahmed et al. 

(2023) 

GNN for intrusion 

detection method 

and the 

explanation 

GNN-based IDS achieved 

99.54% accuracy with 

improved interpretability 

Model interpretability 

and explainability 

trade-offs remain a 

challenge 

Lo (2023) 

Graph 

representation 

learning for 

cyberattack 

detection 

Enhanced forensic analysis 

and attack attribution; 

increased detection rate to 

99.54% 

Requires large datasets 

for effective learning 

Kaya et al. 

(2024) 

 

X-CBA: 

Explainability-

aided CatBoost 

model for IDS 

Achieved 99.47% detection 

accuracy, improving 

interpretability in decision-

making 

Explainability 

performance in 

complex cyberattacks 

not fully assessed 

Adhikari & 

Thapaliya 

(2024) 

Explainable AI 

(XAI) models for 

malware and 

XAI-based models 

improved interpretability 

Focuses on theoretical 

concepts rather than 

real-world deployment 



International Journal of Applied Mathematics  

Volume 38 No. 4s, 2025   

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)  

 

Received: August 02, 2025  1170 

intrusion 

detection 

while maintaining 80% 

accuracy 

Farrukh et al. 

(2024) 

Xg-NID: 

Heterogeneous 

graph neural 

network with 

LLM for IDS 

Demonstrated 97.2% 

detection accuracy by 

integrating multimodal data 

High computational 

complexity for large-

scale deployment 

Shokouhinejad 

et al. (2025) 

Graph learning 

and XAI for 

malware 

detection 

Combined graph learning 

and explainability, 

achieving around 94% 

classification accuracy. 

Graph reduction and 

embedding techniques have 

tackled issues with 

scalability and efficiency, 

whilst explainability has 

connected high detection 

accuracy with actionable 

insights. 

Trade-off between 

detection performance 

and explainability 

Kalutharage et 

al. (2025) 

The combination 

of neurosymbolic 

learning and 

domain 

knowledge-

driven 

explainable 

artificial 

intelligence for 

Internet of Things 

attack detection 

and response 

Achieved 97.1% detection 

accuracy, improving 

interpretability and response 

efficiency in IoT networks 

Increased 

computational 

complexity and 

dependency on high-

quality domain 

knowledge for 

effective reasoning 

Ahanger et al. 

(2025) 

Graph Attention 

Networks (GAT) 

for IoT intrusion 

detection 

Achieved 99% accuracy in 

detecting IoT-based 

intrusions 

High memory 

consumption and 

computational 

overhead in large-scale 

IoT environments 

Ahmed et al., 

(2025) 

Signature-based 

intrusion 

detection system 

Improved precision and 

recall for attack detection, 

Due to the reliance on 

signature-based 

approaches, there is 
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that makes use of 

machine learning, 

deep learning, and 

fuzzy clustering 

with 96.5% detection 

accuracy 

limited generalization 

to attacks that have not 

yet been seen. 

 

Kumar et al., 

(2025) 

Modified Graph 

Neural Network 

(GNN) with 

Explainable AI 

(XAI) for multi-

class malware 

detection 

Enhanced classification 

accuracy to improving 

malware categorization and 

explainability 

Model complexity may 

hinder real-time 

detection capabilities 

Wazid et al. 

(2025) 

Explainable deep 

learning for IoT-

enabled 

Intelligent 

Transportation 

Systems (ITS) 

malware 

detection 

Achieved 99.7% detection 

accuracy, improving threat 

detection in smart 

transportation 

Model robustness 

against adversarial 

attacks remains a 

challenge 

 

A varied range of machine algorithms can be used for analysis and their applications for 

vulnerability analysis and threat identification is performed and their performance are 

evaluated based on the parameters shown in the table (2). 

 

Table 2. Matrix for Performance Analysis 

Metric  Description 

Accuracy Percentage of correctly identified intrusion vs. benign traffic. 

Precision Proportion of actual intrusions among those predicted as intrusions. 

Reduces false positives. 

Recall 

(Sensitivity) 

Proportion of actual intrusions that were correctly identified. Reduces false 

negatives. 

F1-Score Harmonic mean of precision and recall, balancing both for imbalanced 

datasets. 

Detection 

Time 
Average time in milliseconds taken to detect an intrusion event. 

Explainability 

Score 

A subjective or model-derived score (e.g., SHAP values, rule extraction 

quality) on how well the model decisions can be understood by humans. 
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The different algorithms used are CNN, RNN, XGBoost, GNN, and EGL, their characterise 

such as, Local Reputation Field, Conventional Layers, Layer Stacking, Pooling Layers, 

Activation Functions, Fully Connected Layer and End-to-End Learning for the detection of 

security vulnerabilities is presented in the table (3).  

 

Table 3. Matrix for Performance Analysis 

Mo

del 

Local 

Reputati

on field 

Conventiona

l Layers 

Layer 

Stacking 

Pooling 

Layer 

Activ

ation 

Func

tions 

Fully 

Connec

ted 

Layer 

End-to-

End 

Learning 

CN

N 

Capture 

spatial 

patterns 

and 

minimize 

computed 

cost and 

over 

fitting 

ya,b

= ∑ ∑ wi,j.

k=1

j=0

k=1

i=0

 

xa + i. b

+ j 

 

 

Detection 

of port 

scanning, 

DDOS, or 

brute 

force 

attacks 

Multiple 

learnable 

filters in each 

layer  

 

Conv(k)

= F × k + b 

 

Detect SYN 

flood pattern 

Hierarchi

cal 

representa

tion able 

to capture 

simple 

and 

abstract  

 

hl+1

= σ(w(l)

× h(l) 

+b(l) 

 

Able to 

detect 

advanced 

attacks 

such as 

APTs 

Minimize 

sthe spatial 

dimension 

which 

reduces the 

number of 

parameters  

hi,j

= max {xm,n 

m, n

∈ window(i, j)} 

 

 

Make the 

IDS robust 

to noise 

and 

temporal 

shift 

Learn 

comp

lex 

patter

ns 

using 

non-

linear 

activa

tion 

functi

on. 

ReL

U, 

Leak

y 

ReL

U, 

ELU. 

σ(x)

= max(0, x) 

In 

anom

aly 

detect

ion 

Toward

s the 

end a 

fully 

connect

ed layer 

helps 

better 

predicti

on  

 

y

= σ(Wx

+ b) 

 

 

Intrusio

n 

detectio

n  

Gradient 

descent 

and back 

propagatio

n and 

minimize 

the loss 

function.  

L = 

− ∑ yilog (yî)

N

i=1

 

 

 

Detection 

of any 

evolving 

threats 

RN

N 

Each 

RNN unit 

Provide 

recent 

Use of 

multi-

Focus on 

most 

Funct

ions 

Maps 

hidden 

Entire 

model 
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The performance comparison using a test dataset from the public source is shown in the table 

(4) with their plot in the form of radar chart and graphical representation as in figure (4) and 

figure (5). 

 

Table 4. Performance Comparison of EGRL with Other Models in Intrusion Detection 

Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Detection 

Time (ms) 

Explainability 

Score  

EGL 96.9 95.7 97.4 97.1 120 9.1/10 

CNN 94.1 92.3 91.9 92.0 160 3.4/10 

RNN 91.9 90.0 90.7 90.3 180 2.8/10 

XGBoost 94.6 94.5 94.8 94.5 140 4.7/10 

GNN 95.6 93.7 96.1 94.9 130 5.2/10 
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The Radar Chart shows the comparison of the performance of Explainable Graphic 

Reinforcement Learning (EGRL) with other models across key metrics such as Accuracy 

(Blue), Precision (Green), Recall (Red) and F1 Score (Brown). The performance report 

indicates that EGRL consistently outperforms the other models across all parameters, 

indicating its effectiveness in intrusion detection tasks.  

 

 
Figure 4. Radar Chart – to compare all metrics in a single graph 

 

 
Figure 5. Performance Comparison of Models for Intrusion Detection 

 

Conclusion 

Though great advances have been achieved in graph-based network traffic monitoring, current 

IDS still battle scalability and real-time adaption. The conventional approaches fail to reflect 

the dynamic behavior of the network, therefore generating more false positives and reducing 

the detection accuracy. Although many models lack mechanisms for continuous retraining, 

which is required to properly handle evolving assault patterns, techniques for dynamic learning 

and adaptation have been studied. In addition, the integration of explainability in graph-based 

intrusion detection systems continues to be a difficulty. This is because the solutions that are 

now available prioritize detection accuracy over interpretability, which results in security 

decisions that are less visible. Furthermore, the evaluation of performance and explainability 

is frequently uneven and does not have defined benchmarks, which restricts the ability to 

compare different models simultaneously. Most AI-driven IDS fail to garner acceptability from 

cybersecurity professionals due to their black-box character, which is the reason why 

confidence and usability in these systems remain underexplored. Effectively addressing these 
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research gaps will necessitate the development of novel graph-learning frameworks, upgrades 

to reinforcement learning, and improved interpretability methodologies for the purpose of 

enhancing user trust and system usability. 

Future Scope 

Future study ought to concentrate on enhancing graph-based network traffic monitoring 

through the development of scalable and real-time graph processing methodologies to manage 

extensive, dynamic environments. Improving dynamic learning and adaptation by self-

learning, continually developing IDS models will enhance detection accuracy for emerging 

threats. Incorporating explainability techniques like SHAP, LIME, and attention mechanisms 

into graph-based learning would improve transparency, assisting cybersecurity professionals 

in comprehending AI-generated conclusions. Moreover, standardized evaluation frameworks 

must be established to systematically evaluate the trade-off between IDS performance and 

explainability, hence providing trustworthy benchmarking. Ultimately, cultivating trust and 

usability necessitates human-in-the-loop methodologies, wherein cybersecurity specialists 

engage with AI-driven Intrusion Detection Systems to authenticate warnings, enhance 

detection models, and augment reliability. By focusing on these aspects, future Intrusion 

Detection Systems will enhance adaptability, interpretability, and user-friendliness, hence 

assuring resilient real-time cybersecurity protections within intricate network infrastructures. 

 

Acknowledgement 

The authors extend the gratitude to Cyber Security Centre of excellence at Alliance University 

for supporting the completion of the research work. 

References 

 

1. Thapa, S., & Mailewa, A. (2020, April). The role of intrusion detection/prevention systems in 

modern computer networks: A review. In Conference: Midwest Instruction and Computing 

Symposium (MICS) (Vol. 53, pp. 1-14). 

2. Khraisat, A., Gondal, I., Vamplew, P., & Kamruzzaman, J. (2019). Survey of intrusion 

detection systems: techniques, datasets and challenges. Cybersecurity, 2(1), 1-22. 

3. Mallick, M. A. I., & Nath, R. (2024). Navigating the cyber security landscape: A 

comprehensive review of cyber-attacks, emerging trends, and recent developments. World 

Scientific News, 190(1), 1-69. 

4. Mehta, G., Jayaram, V., Maruthavanan, D., Jayabalan, D., Parthi, A. G., Bidkar, D. M., ... & 

Veerapaneni, P. K. (2024). Emerging Cybersecurity Architectures and Methodologies for 

Modern Threat Landscapes. Journal ID, 9471, 1297. 

5. Nie, M., Chen, D., & Wang, D. (2023). Reinforcement learning on graphs: A survey. IEEE 

Transactions on Emerging Topics in Computational Intelligence, 7(4), 1065-1082. 

6. Devailly, F. X., Larocque, D., & Charlin, L. (2021). IG-RL: Inductive graph reinforcement 

learning for massive-scale traffic signal control. IEEE Transactions on Intelligent 

Transportation Systems, 23(7), 7496-7507. 



International Journal of Applied Mathematics  

Volume 38 No. 4s, 2025   

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)  

 

Received: August 02, 2025  1178 

7. Alwasel, B., Aldribi, A., Alreshoodi, M., Alsukayti, I. S., & Alsuhaibani, M. (2023). 

Leveraging graph-based representations to enhance machine learning performance in IIoT 

network security and attack detection. Applied Sciences, 13(13), 7774. 

8. Ren, K., Zeng, Y., Zhong, Y., Sheng, B., & Zhang, Y. (2023). MAFSIDS: a reinforcement 

learning-based intrusion detection model for multi-agent feature selection networks. Journal of 

Big Data, 10(1), 137. 

9. Sarker, I. H., Janicke, H., Mohsin, A., Gill, A., & Maglaras, L. (2024). Explainable AI for 

cybersecurity automation, intelligence and trustworthiness in digital twin: Methods, taxonomy, 

challenges and prospects. ICT Express. 

10. Sayyed, T., Kodwani, S., Dodake, K., Adhayage, M., Solanki, R. K., & Bhaladhare, P. R. B. 

(2023). Intrusion Detection System. Int. J. of Aquatic Science, 14(1), 288-298. 

11. Elrawy, M. F., Awad, A. I., & Hamed, H. F. (2018). Intrusion detection systems for IoT-based 

smart environments: a survey. Journal of Cloud Computing, 7(1), 1-20. 

12. Kheddar, H. (2024). Transformers and large language models for efficient intrusion detection 

systems: A comprehensive survey. arXiv preprint arXiv:2408.07583. 

13. Islam, R., Devnath, M. K., Samad, M. D., & Al Kadry, S. M. J. (2022). GGNB: Graph-based 

Gaussian naive Bayes intrusion detection system for CAN bus. Vehicular 

Communications, 33, 100442. 

14. Caville, E., Lo, W. W., Layeghy, S., & Portmann, M. (2022). Anomal-E: A self-supervised 

network intrusion detection system based on graph neural networks. Knowledge-based 

systems, 258, 110030. 

15. Dos Santos, R. R., Viegas, E. K., Santin, A. O., & Cogo, V. V. (2022). Reinforcement learning 

for intrusion detection: More model longness and fewer updates. IEEE Transactions on 

Network and Service Management, 20(2), 2040-2055. 

16. Keshk, M., Koroniotis, N., Pham, N., Moustafa, N., Turnbull, B., & Zomaya, A. Y. (2023). An 

explainable deep learning-enabled intrusion detection framework in IoT networks. Information 

Sciences, 639, 119000. 

17. Le, T. T. H., Prihatno, A. T., Oktian, Y. E., Kang, H., & Kim, H. (2023). Exploring local 

explanation of practical industrial AI applications: A systematic literature review. Applied 

Sciences, 13(9), 5809. 

18. Zhong, M., Lin, M., Zhang, C., & Xu, Z. (2024). A survey on graph neural networks for 

intrusion detection systems: methods, trends and challenges. Computers & Security, 103821.  

19. Thang, V. V., & Pashchenko, F. F. (2019). Multistage System‐Based Machine Learning 

Techniques for Intrusion Detection in WiFi Network. Journal of Computer Networks and 

Communications, 2019(1), 4708201. 

20. Palmer, I., Rogers, E., & Mcfly, S. (2020). A Graph-Based Analysis of Industrial Control 

Systems Network Traffic. 

21. Abou Daya, A., Salahuddin, M. A., Limam, N., & Boutaba, R. (2020). BotChase: Graph-based 

bot detection using machine learning. IEEE Transactions on Network and Service 

Management, 17(1), 15-29. 



International Journal of Applied Mathematics  

Volume 38 No. 4s, 2025   

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)  

 

Received: August 02, 2025  1179 

22. Neupane, S., Ables, J., Anderson, W., Mittal, S., Rahimi, S., Banicescu, I., & Seale, M. (2022). 

Explainable intrusion detection systems (x-ids): A survey of current methods, challenges, and 

opportunities. IEEE Access, 10, 112392-112415. 

23. Baahmed, A. R. E. M., Andresini, G., Robardet, C., & Appice, A. (2023, September). Using 

graph neural networks for the detection and explanation of network intrusions. In Joint 

European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 201-

216). Cham: Springer Nature Switzerland. 

24. Lo, W. W. (2023). Graph representation learning for cyberattack detection and forensics. 

25. Kaya, K., Ak, E., Bas, S., Canberk, B., & Oguducu, S. G. (2024, June). X-CBA: Explainability 

Aided CatBoosted Anomal-E for Intrusion Detection System. In ICC 2024-IEEE International 

Conference on Communications (pp. 2288-2293). IEEE. 

26. Adhikari, D., & Thapaliya, S. (2024). Explainable AI for Cyber Security: Interpretable Models 

for Malware Analysis and Network Intrusion Detection. NPRC Journal of Multidisciplinary 

Research, 1(9), 170-179. 

27. Farrukh, Y. A., Wali, S., Khan, I., & Bastian, N. D. (2024). Xg-nid: Dual-modality network 

intrusion detection using a heterogeneous graph neural network and large language 

model. arXiv preprint arXiv:2408.16021. 

28. Shokouhinejad, H., Razavi-Far, R., Mohammadian, H., Rabbani, M., Ansong, S., Higgins, G., 

& Ghorbani, A. A. (2025). Recent Advances in Malware Detection: Graph Learning and 

Explainability. arXiv preprint arXiv:2502.10556. 

29. Kalutharage, C. S., Liu, X., & Chrysoulas, C. (2025). Neurosymbolic learning and domain 

knowledge-driven explainable AI for enhanced IoT network attack detection and 

response. Computers & Security, 151, 104318. 

30. Ahanger, A. S., Khan, S. M., Masoodi, F., & Salau, A. O. (2025). Advanced intrusion detection 

in internet of things using graph attention networks. Scientific Reports, 15(1), 9831. 

31. Ahmed, U., Nazir, M., Sarwar, A., Ali, T., Aggoune, E. H. M., Shahzad, T., & Khan, M. A. 

(2025). Signature-based intrusion detection using machine learning and deep learning 

approaches empowered with fuzzy clustering. Scientific Reports, 15(1), 1726. 

32. Kumar, S., Khot, V., Bhat, S., Ghare, A., & Kapadi, R. (2025). Multi-class Malware Detection 

using Modified GNN and Explainable AI. Frontiers of Innovation, 126. 

33. Wazid, M., Singh, J., Pandey, C., Sherratt, R. S., Das, A. K., Giri, D., & Park, Y. (2025). 

Explainable Deep Learning-Enabled Malware Attack Detection for IoT-Enabled Intelligent 

Transportation Systems. IEEE Transactions on Intelligent Transportation Systems. 

 

 


