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Abstract

Growing computational demand across cloud, fog, and edge infrastructures is intensifying
energy consumption and carbon emissions, yet existing scheduling frameworks typically
treat power draw as a static, short-term metric. This narrow view struggles with the fluid
geography of modern workloads bursty, migratory, and thermally entangled leading to
inefficient energy use and weak carbon accountability. To confront these gaps, we
introduce a five-stage resource—energy orchestration model that explicitly intertwines
spatio-temporal energy prediction, quantum Inspired optimization, live task migration,
thermal dynamics, and carbon-economic feedback. The pipeline begins with Multi-Modal
Spatio-Temporal Energy Profiler (MSTEP), which continuously profiles heterogeneous
nodes through tensor decomposition and graph-temporal convolution, forecasting per-
node energy use over 5-second horizons and improving power-capping accuracy by about
12%. Its predictive map drives the Energy-Aware Quantum Inspired Resource
Orchestrator (EQUIRO), a classical Hamiltonian optimizer borrowing from quantum
annealing to escape local minima, cutting energy consumption by roughly 18% while
lowering latency. The resulting plan is enacted by Reinforcement-Driven Adaptive Task
Migrator (R-ATM), where policy-gradient agents treat migration as a continuous-time
control problem, reducing unnecessary moves by ~20%. To prevent thermal hotspots
created by such migrations, Cross-Layer Thermal-Aware Cooling Optimizer (CLTACO)
applies physics Informed neural networks to couple micro-scale thermal diffusion with
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macro cooling strategy, yielding around 15% better power usage effectiveness. Finally,
Carbon Impact Feedback and Economic Optimizer (CIFEO) close the loop by translating
operational data into carbon-weighted pricing and deferral schedules, achieving near-
neutral or positive margins with an estimated 25% cut in carbon footprint. This integrated
architecture demonstrates how predictive, cross-layer intelligence can transform cloud-
fog-edge scheduling from reactive energy management into proactive carbon-aware
economics, pointing toward greener and more economically resilient distributed
computing.

Keywords: Cloud Computing, Fog Computing, Edge Computing, Energy Optimization,
Carbon-Aware Scheduling, Process

1. Introduction

Rapid growth of cloud services, edge analytics, and fog-based middleware changes
computational resource deployment and consumptions. Real-time video analytics, industrial
IoT, and autonomous mobility require ultra-low latency and consistent throughput, yet their
infrastructure is energy and carbon Intensive. Workload bursts, renewable energy availability,
and thermal dynamics vary with local climate, complicating the move from monolithic data
centers to geo-distributed micro—data centers and fog nodes [1, 2, 3]. Traditional energy
management methods ignore spatio-temporal details and focus on immediate power needs or
periodic averages. They schedule poorly, migrate workloads, and raise operating expenses
due to their reactive nature, wasting carbon reduction opportunities. Another issue is siloing
system layers. Existing methods often optimize compute allocation, job relocation, and
cooling measures independently, ignoring their intricate relationships. An aggressive task
movement plan may create thermal hotspots that increase cooling system energy demand [4,
5, 6], negating computational savings. Carbon accounting is usually a post-hoc report,
limiting its impact on real-time economic or ecological trade-offs. Energy, thermal, and
economic signals cannot reinforce one other in this fragmented operational landscape.

A five-stage framework for predictive, carbon-aware scheduling across cloud—fog—edge
ecosystems is proposed to overcome these concerns. MSTEP continuously models energy
usage using tensor decomposition and graph-temporal convolution to give five-second
prediction energy maps for heterogeneous nodes. The Energy-Aware Quantum Inspired
Resource Orchestrator (EQUIRO) uses these projections to negotiate energy—latency trade-
offs that heuristics fail. Hamiltonian formulations and gradient-assisted tunneling regimens
are used. R-ATM regulates migrations continually using multi-agent policy-gradient learning
to execute the orchestration plan. Cross-Layer Thermal-Aware Cooling Optimizer uses
physics informed neural networks to predict and control heat transfer to complete the thermal
loop. Finally, the Carbon Impact Feedback and Economic Optimizer (CIFEO) controls
scheduling cycles using carbon-weighted price and deferral approaches from operational
results. Integrating predictive analytics, quantum Inspired optimization, and carbon-
economics transforms resource scheduling from reactive energy management to proactive,

Received: August 08, 2025

1136



International Journal of Applied Mathematics

Volume 38 No. 4s, 2025
ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

environmentally conscious economics. It claims to reduce energy use and carbon impact
while maintaining SLAs and economic feasibility for next-generation distributed computing
infrastructures to meet performance and sustainability objectives.

A. Motivation & Contribution

This research was driven by the contradiction between expanding computing demand and
carbon neutrality. Fog clusters near urban aggregation sites and edge micro—data centers in
industries, automobiles, and smart buildings are distributed computing solutions. Tier energy
signatures and operational constraints vary in process. Typically, scheduling algorithms
prioritize throughput or latency over energy efficiency. Despite explicitly considering energy,
strategies respond to consumption spikes rather than spatio-temporal workload migrations or
local renewable variations in process. Due to the absence of integration between compute
allocation, heat management, and carbon economics, solutions are fragmented and often
conflicts.

This work uses a multi-layered architecture to solve these issues. Combining physics,
reinforcement learning, quantum inspired optimization, and predictive modeling The
proposed architecture combines predictive and cost-effective energy decisions with
temperature management in a single pipeline. EQUIRO calculates near-optimal allocations
that balance energy and delay without local minima using fine-grained spatio-temporal
energy signatures from the MSTEP module. Allocations become R-ATM active migration
commands that respond to network jitter and workload drift. CLTACO uses computational
dynamics to manage cooling, and CIFEO includes carbon cost into pricing and deferral
techniques. Beyond incremental efficiency gains, their contributions form a carbon-aware
resource scheduling paradigm. Experimental improvements in RMSE, power capping, and
PUE show a considerable reduction in energy usage and carbon emissions while maintaining
or enhancing economic performance, setting a standard for sustainable distributed computing
sets.

2. Review of Existing Models used for Cloud Analysis

Intelligent scheduling for cloud, fog, and edge computing has improved energy, latency, and
sustainability with each generation sets. Gupta and Tripathi's detailed cloud scheduling
algorithm assessment [2] laid the groundwork with heuristics, metaheuristics, and early
machine-learning methods for mapping jobs to distributed resources. Taxonomies explained
resource utilization, expense, and deadline issues. Singh and Chaturvedi [29] introduced the
cost—time—energy triangle and multi-criteria optimization in a heterogeneous environment
using an adaptive particle swarm optimization (PSO) method for cloud—fog deployments. The
findings showed predictive mechanisms beyond heuristic tinkering. Energy awareness and
fine-grained control become research priorities with microservices and edge-centric
architectures. An energy-aware Kubernetes scheduler by Rao and Li [3] minimizes power
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utilization depending on container workload patterns. Yan [4] modified Wombat
Optimization Algorithm for cloud scheduling quality-of-service assurances, indicating an
increasing trend to hybridize bio Inspired algorithms with service-level constraints. Qi et al.
[5] created IPAQ, a multi-objective, time-aware fog computing algorithm that balances
latency-sensitive edge operations with global optimization. Saeedizade and Ashtiani's entire
taxonomy of scientific process scheduling [9] showed how modifying computational graphs

might optimize deadlines and resource uses.

Table 1. Model’s Empirical Review Analysis

Ref | Method Main Objectives | Findings Limitations
[1] | Al-driven  job | Provide a | Identifies trends in | Does not propose a
scheduling comprehensive deep learning and | new algorithm;
review of Al- | reinforcement depends on surveyed
based job | learning for | literature for
scheduling in | predictive and | quantitative validation

cloud computing

adaptive scheduling;
highlights the shift to
carbon and energy-
aware frameworks

[2] | Survey of cloud | Classify heuristic, | Establishes a detailed | Lacks experimental
scheduling metaheuristic, taxonomy and | implementation;
techniques and machine- | compares strengths of | limited discussion of

learning heuristics vs. | carbon-aware strategies
scheduling metaheuristics for
methods cost and deadline

optimization

[3] | Energy-aware Reduce  energy | Achieves significant | Focused on
scheduler  for | consumption in | energy savings in | Kubernetes; does not
Kubernetes microservice containerized generalize to hybrid

deployments environments by | multi-cloud or edge
dynamically
adjusting CPU
allocation

[4] | Modified QoS-aware task | Improves  deadline | Tested  mainly in
Wombat scheduling for | satisfaction and load | simulated
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Optimization cloud computing | balance while | environments;
Algorithm reducing  execution | scalability to very large
cost clusters unverified
[5] | IPAQ multi- | Optimize energy | Achieves global | Performance sensitive

objective time-
aware scheduler

and response time
in fog computing

Pareto-optimal trade-
offs
and  energy  for
latency-sensitive fog
workloads

between time

to prediction accuracy
of workload arrival

[6] | Carbon-aware Minimize carbon | Cuts carbon | Relies on accurate and
cost optimizer and energy cost | emissions while | timely carbon Intensity
across geo- | lowering  operating | data; less tested in
distributed  data | costs by relocating | edge-heavy scenarios
centers tasks to  greener
regions
[7] | Quality Optimize multi- | Reduces project | Focused on project
transmission & | skill project | rework and improves | workflows; not directly
rework network | scheduling delivery quality | applicable to cloud/fog
reconstruction through network- | task migration
based planning
[8] | Sustainable Energy-efficient | Decreases energy use | Requires detailed
workflow workflow and improves | workload labeling;
classification & | management in | sustainability through | limited exploration of
scheduling geo-distributed classification-driven | real-time dynamic
clouds task placement changes
[9] | Comprehensive | Map scientific | Provides a systematic | Does not test new
taxonomy of | workflow categorization  and | algorithms; primarily
workflow algorithms  and | highlights open | descriptive
scheduling future  research | issues like dynamic
gaps energy pricing
[10] | Graph-enhanced | Optimize Improves Computational
EPSO heterogeneous convergence and | complexity grows with
resource resource  utilization | graph  size; limited
scheduling using | by embedding graph | validation on large-
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graph-enriched structures into EPSO | scale  heterogeneous
particle  swarm networks
optimization
[11] | MADQL Dynamic job | Learns adaptive | Training overhead is
(Multi-Agent scheduling in | policies that reduce | high; depends on large
Deep Q- | serverless latency and cost | historical traces
Learning) computing while balancing
resources across

serverless functions

[12] | Soft computing | Efficiently = map | Enhances  response | Requires manual
approach for | tasks to resources | time and reduces | parameter tuning; lacks
task scheduling | with fuzzy logic | energy in  cloud | full-scale deployment

and evolutionary | simulations evidence
methods

[13] | Review of ML- | Survey machine | Summarizes No implementation;
based resource | learning supervised, leaves open the
allocation approaches to | unsupervised, and | integration of multiple

cloud  resource | RL-based strategies; | ML methods
management identifies data

sparsity as  key

challenge

[14] | Stochastic Improve edge | Captures request | Complexity increases
request resource randomness to reduce | with request diversity;
placement placement under | over-provisioning not deeply evaluated

stochastic and enhance | under extreme
demand throughput burstiness

[15] | EcoTaskSched | Energy-efficient | Lowers energy | Requires reliable IoT
(hybrid ML) task scheduling in | consumption and | telemetry and training

IoT-based  fog- | improves task | data; transferability to
cloud systems completion time | non IoT tasks is limited
using a hybrid of ML
and heuristics

[16] | Network-aware | Reduce latency | Achieves low-latency | Limited discussion of

container and improve | container placement | energy and carbon
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scheduling throughput at the | by modeling network | metrics; mostly tested
edge congestion in small edge clusters
[17] | STAR RIS- | Energy-aware Enhances energy | Early-stage; relies on
based  energy | resource control | efficiency and | 6G infrastructure not
management in 6G IoT | coverage using | yet widely deployed
networks reconfigurable
intelligent surfaces
[18] | Carbon-aware Sustainable Minimizes carbon | Focused on routing;
ant colony | routing in | cost while finding | direct application to
system generalized TSP | near-optimal routes cloud or fog scheduling
is indirect
[19] | Multi-cluster Energy-aware Improves energy | Tailored to  edge
communication | resource efficiency and | clusters; less relevant
optimization optimization for | communication for centralized cloud
edge devices quality across multi- | settings
cluster edge systems
[20] | BigOPERA Opportunistic and | Improves elasticity | May face overheads in
elastic ~ resource | and reduces big data | highly dynamic real-
allocation for big | processing time in | time streaming
data frameworks | heterogeneous scenarios
environments
[21] | Fuzzy Task scheduling | Balances exploration | Fuzzy rule tuning is
reinforcement in fog-cloud IoT | and exploitation to | non-trivial; lacks full
learning systems reduce makespan and | proof of scalability
energy use under
uncertainty
[22] | SM-PCCTSA Enhance VM | Improves migration | Complexity of
with SKD-RBM | migration and | cost and task | combined methods
scheduling response time using | may hinder real-time
combined stochastic | responsiveness
and RBM-based
strategies
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[23] | HyperGAC Entropy-driven Uses information | Sensitive to entropy
resource entropy to maximize | estimation  accuracy;
allocation for | resource  utilization | requires extensive
cloud-edge-end and minimize energy | monitoring data
computing

[24] | MPPPSO Multi-parametric, | Improves fog | Performance depends
priority-driven computing task | on accurate parameter
PSO for fog | performance and | weighting; still
systems energy efficiency simulation-heavy

[25] | Novel resource | Enhance resource | Increases throughput | Mobility patterns

allocation  for | distribution in | and reliability under | beyond test cases may
vehicular ad-hoc | multi-cloud mobile vehicular | reduce effectiveness
networks vehicular workloads
networks
[26] | Two-phase Multi-objective Achieves shorter | Designed for
cascaded scheduling for | makespan and better | manufacturing/AGV
memetic integrated shops | energy usage by | domain; adaptation to
algorithm with AGYV | blending memetic | [T workloads not direct
transport and multi-objective
optimization
[27] | RL-based multi- | Energy-efficient | Reduces energy and | Training requires
objective fog-cloud latency through | extensive historical
scheduler industrial [oT | adaptive multi- | workload data
task scheduling objective
reinforcement
learning
[28] | Multimodal Adaptive Improves scheduling | Computational
deep scheduling  and | under uncertain | intensity may hinder
reinforcement robustness for | global logistics | edge deployment
learning IoT logistics conditions

[29] | Adaptive PSO Cost, time, and | Balances cost and | Less focus on carbon
energy-aware deadlines while | metrics; depends on
workflow saving energy with | heuristic parameter
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scheduling in | adaptive swarm | settings
cloud—fog behavior
environments

[30] | CASA deep RL | Cost-effective Reduces charging | Application-specific;
electric ~ vehicle | cost and grid impact | limited generalization
charging while meeting user | to broader cloud/fog
scheduling constraints scheduling

Iteratively, Next, as per table 1, Carbon awareness grew as sustainability concerns grew.
Chen et al. [6] improved energy cost across geo-distributed data centers while accounting for
carbon intensity, projecting regulatory and market signals that will impact cloud economics.
Sharma et al. [8] used environmental and operational characteristics to classify and schedule
energy-efficient workflows in spread-out data centers. Li and Schaposnik [18] added carbon-
aware reasoning to an ant colony system for routing issues to expand the sustainability
discourse to combinatorial optimization, whereas Alqahtani et al. [17] employed
reconfigurable intelligent surfaces to make 6G IoT networks energy conscious The
investigations went beyond decreasing kWh to managing carbon cost and grid interaction
settings. Machine learning expanded the technical toolbox. Kaur et al. [11] used MADQL, a
multi-agent deep Q-learning framework, to show how reinforcement learning (RL) can
dynamically balance exploration and exploitation in volatile serverless Rathee and Dalal [13]
reviewed supervised, unsupervised, and RL-based machine learning—based resource
allocation approaches. Vijayalakshmi and Saravanan [27] used RL-based multi-objective
energy-efficient scheduling in fog—cloud industrial IoT systems to show that adaptive policy
learning outperforms fixed heuristics when workloads and energy prices change. Jaiprakash
et al. [12] used soft computing hybrids for Lu [28] enhanced multimodal deep RL to improve
global logistics adaptive scheduling and robustness by combining IoT data streams with
intelligent resource orchestrations.

Fog and edge computing had heterogeneity and real-time adaption concerns. Using
probabilistic demand modeling, Gao and Cai [14] examined stochastic request patterns to
optimize broad edge resource deployment. To reduce edge latency, Qiao et al. [16]
implemented network-aware container scheduling. Li et al. [19] improved edge-device
performance with energy-aware multi-cluster communication systems. Kausar and Pachauri
[22] used better virtual machine migration and stochastic optimizations to optimize work
scheduling, while Ghafari and Mansouri [21] used fuzzy RL to address fog—cloud IoT
scheduling uncertainty sets. Sehrawat [24] used multi-parametric and priority-driven
algorithms to improve particle swarm optimization for fog systems, whereas Isaac et al. [25]
created resource allocation models for multi-cloud vehicle ad hoc networks, a challenging
mobile edge computing set. Eventually, multi-objective metaheuristics merged learning and
optimization. Zhang et al. [10] used graph-based approaches to improve particle swarm
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optimization for heterogeneous resources, while Wang and Pan [26] created a two-phase
cascaded memetic algorithm for multi-shop scheduling with automated guided vehicles that
encodes domain-specific constraints in hybrid heur Peng et al. [7]'s network reconstruction
enhances multi-skill project scheduling for engineering and software collaborative
workflows. As streaming analytics and batch-processing activities increase, Caderno et al.
[20] built BigOPERA to provide opportunistic and elastic resource allocation for big data
frameworks. Instead of heuristics, Chen et al. [23] created HyperGAC to allocate cloud—
edge—end resources using information entropy. Energy efficiency was a theme.
EcoTaskSched by Khan et al. [15] reduces [oT fog—cloud energy use using machine learning
and heuristic optimization. Container-level work is augmented by loT workloads and
spatiotemporal patterns. Singh and Chaturvedi's adaptive PSO [29] examined cloud—fog
workflow energy and cost. Zhang et al. [30] integrated computational energy optimization to
smart grid and e-mobility ecosystems to plan electric car charging (CASA) at the application
edge using deep reinforcement learning sets.

3. Proposed Model Design Analysis

The proposed integrated model operates as a tightly coupled cyber-physical system in which
predictive energy profiling, quantum Inspired resource allocation, adaptive migration, cross-
layer thermal control, and carbon-economic feedback continuously influence one another in
process. At its core, the design seeks to minimize a global cost functional Via equation 1,

J = j [E() + AC C(6) + AL L(O]dE ... (1)
0

Where, E(t) represents overall energy consumption across all nodes, C(t) instantaneous
carbon intensity weighted by regional emission factors, L(t) service latency penalty, and AC,
AL trade-off multipliers for carbon and latency priorities. A cascade of specialized procedures
contributes sub-equations to these functional sets during the optimization. Figure 1 shows the
Multi-Modal Spatio-Temporal Energy Profiler (MSTEP) forming the first layers iteratively.
It sees heterogeneous nodes as a dynamic energy field e(x,y,t), where (x,y) are fog and edge
cluster spatial coordinates and ‘t’ are timestamp sets. A connected tensor graph process
controls its forecasting Via equation 2,

de(x,y,t)
Jt
With D the diffusion matrix capturing workload migration and ® a source term derived from

= FV-(DVe)+ ®(x,y,t) ....(2)

CPU/GPU utilization and renewable inflow sets. The predicted per-node energy trajectory is
expressed Via equation 3,

t+At

&i(t + At) = f gi' T(s)ds ...(3)

t
Where, T(s) is the decomposed temporal mode and g; the graph embedding of node ‘i’ sets.

This continuous formulation allows sub-second anticipation of energy bursts and provides the
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energy map input to the next stages. Iteratively, Next, as per figure 2, Feeding on MSTEP’s
predictions, the Energy-Aware Quantum Inspired Resource Orchestrator (EQUIRO) casts
scheduling as a Hamiltonian minimization task in process. The resource allocation state
Vector ‘s’ is optimized Via equation 4,

H(s) = Yhixsi + Z Jij xsi*sj..(4)
i<j
Where, hi represents local energy-latency bias and Jij captures inter-node coupling such as
network delay and migration cost sets. The simulated tunneling dynamics evolve according to
a gradient-assisted Schrodinger-like process represented Via equation 5,
ds

= = —Vs* H(s) + nVs?H(s) ...(5)

MSTEP Layer

(CPU/GPU Sensors | Network Throughput ) (Temperature Sensors ) ([Renewable Data)
o)

Tensor-Graph Conv

Energy Map

EQUIRO Layer

(Energy Map |nput) [SLA Req.] (‘rask DAGs)

Hamiltonian Form

Quantum Tunneling Sim

Optimal Plan

R-ATM Layer

Copllmal Plan) (LIVB Metrlcs)

Migration Cmds

CLTACO Layer

(Migrallon Cmdaj (Amblenl Senscrsj

PINN Thermal Model

HVAC Control Opt

Cooling Set-points

((Cooling Set-points ) (Power mm-j ((carbon Feeds)

Multi-Obj Opt

Pricing & Deferral

Carbon-Aware Plan

Figure 1. Model Architecture of the Proposed Analysis Process

With the second term imitating quantum tunneling to escape local minima sets.
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Figure 2. Overall Flow of the Proposed Analysis Process

These equations yield a near-optimal allocation ‘s*’ that balances energy and latency in the
presence of non-convex trade-offs. Iteratively, Next, as per figure 3, The Reinforcement-
Driven Adaptive Task Migrator (R-ATM) operationalizes s* through continuous temporal
control sets. Each agent maintains a policy nf(als) updated by the policy gradient rule Via
equation 6,

Ve J(0) = E[VO log m6(a | s)Qn(s,a)]...(6)
Where, Qm is a model-predictive critic forecasting long-term energy and latency impact sets.
Migration cost is described by a differential relation Via equation 7,

dM(t) . . . .

T [ ui(®) I xi(t) — xi(t = 8) Il di...(7)
With pi the task intensity and xi the placement vector, ensuring that only energy-beneficial
migrations are executed in process. Thermal dynamics are addressed by the Cross-Layer
Thermal-Aware Cooling Optimizer (CLTACO) sets. Using physics Informed neural
networks, the temperature field T(x,y,z,t) obeys a heat diffusion process Via equation 8,
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oT
pep 5o = V-(kVT)+ Q(x,y,2t) ...(8)

Input
e Real-time sensor streams: CPU/GPU utilization, temperature,
network throughput, renewable energy availability
e Service-level agreement (SLA) requirements and task
dependency graphs
o Regional carbon-intensity and electricity price feeds
e Cooling system actuator states and historical workload traces

Output
e Predictive node-level energy map with fine-grained time
horizon

e Optimal resource allocation plan with estimated energy and
latency costs

o Real-time task migration commands with confidence levels

e Optimized cooling and airflow set-points

o Carbon-aware pricing and task deferral schedules for next-cycle
planning

Process

1. Collect and pre-process all input data from sensors,
cloud/fog/edge nodes, and external carbon markets.

2. Feed cleaned data to MSTEP to construct multi-modal spatio-
temporal profiles and generate predictive energy maps for each
node at short time intervals.

3. Provide MSTEP’s energy map along with SLA requirements
and task graphs to EQUIRO, which computes near-optimal
resource allocation by exploring energy-latency trade-offs.

4. Pass EQUIRO’s allocation plan to R-ATM, which continuously
monitors live node metrics and network conditions to issue real-
time task placement and migration commands.

Figure 3. Pseudo Code of the Proposed Analysis Process

Where, ‘k’ is thermal conductivity and Q represents heat generation from active nodes. The
optimizer adjusts cooling control u(t) by minimizing the loss which is represented Via

equation 9,

L= muin(t)J (@I T — Tset 12+ B Il u(t) 12]dt ... (9)
0
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Thus linking real-time migration patterns with fan speed and fluid flow for optimal power
usage effectiveness. Finally, the Carbon Impact Feedback and Economic Optimizer (CIFEO)
integrates all upstream outputs. The dynamic carbon cost is captured Via equation 10,

C(t) = [yr(ter(t)dr...(10)
Where, yr(t) is regional carbon intensity and er(t) is energy consumption per region in the
process. Profit-carbon trade-offs are expressed Via equation 11,

T
E = max(¢), d(t) f [R(p(6),d(®) — oC@®)]dt .. (11)

With pricing p(t) and deferral d(t) as decision variables and R the revenue function in
process. This formulation enables carbon-aware pricing and deferral that maintain or improve
economic margins. By integrating these equations, the system arrives at a final optimization
task that represents the entire process Via equation 12,

S
min(t), 6, u(t), p(¢t), d(t)]
T
0

+ AC C(t) + AL L(t)]dt ...(12)
This global equation fuses predictive energy mapping, quantum Inspired scheduling,
reinforcement-driven migration, thermal optimization, and carbon-economic control sets. It
captures the central design principle of the integrated model: each stage supplies both
constraints and signals to the next, while the terminal carbon-aware economic layer closes the
feedback loop to the beginning, enabling the distributed infrastructure to operate with
minimal energy and carbon cost under realistic workload dynamics.

4. Validation Result Analysis

The experiment simulated a cloud—fog—edge ecology with controlled energy and temperature.
A three-tier structure included a 48-core OpenStack cloud cluster (Intel Xeon Gold, 256 GB
RAM, 10 GbE network), four fog clusters with 16-core AMD EPYC processors and 128 GB
RAM, and eight edge micro—data centers with NVIDIA Jetson Xavier boards with integrated
GPUs and 32 High-resolution power meters (sampling at 100 ms), thermal probes, and
renewable energy simulations (injected solar and wind availability) captured diverse
operational scenarios at each node. The workload portfolio had real and simulated application
traces. Synthetic [oT streams were generated at 10 000 events/s with burst factors up to 4% to
imitate sensor data spikes. Microsoft Azure and Google Borg cluster traces were used to
acquire real task arrival patterns and DAG architecture. Each model module was stressed
using carefully selected input parameters: With a 5 s mean re-sampling window, CPU/GPU
utilization ranged from 20% to 95%, network throughput from 50 Mbps to 1 Gbps to mimic
edge congestion, and customizable climatic chambers cycled ambient temperature between
15 and 40 °C. NREL Solar Integration dataset scalable renewable availability profiles showed
0.2-1.0 kW per fog cluster daily variability. To simulate varying grid-mix circumstances,
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regional carbon intensity data were simulated using a mean of 320 g CO./kWh and stochastic
fluctuation of +40 g for the economic layer. Service-level agreements set a 30 ms end-to-end
latency budget, which EQUIRO adjusted for energy savings and QoS compliance with a 0.1
USD per ms penalty coefficient.

Broad and contextual training and validation datasets. Diurnal cycles and renewable
intermittency were captured by MSTEP's graph-temporal energy modeling using 600 hours
of historical power and heat data from EdgeBench and Grid'5000. Trained EQUIRO and R-
ATM with job graphs with 100 to 500 nodes and edge weights from Gaussian distributions
centered at 3 ms network delay, with long-tail outliers mimicking unpredictable edge
congestion. CFD simulation heat maps were seeded into micro—data center temperature fields
and cross Validated against physical measurements given during sustained 80% CPU loads
for CLTACO thermal modeling. CIFEQ's carbon—economic optimization used these trials'
cooling set-points and power profiles and PJM real-time market dataset dynamic energy
pricing signals with 0.05-0.25 USD/kWh price fluctuations. All algorithms were written in
Python with TensorFlow 2.13 for deep learning and executed on a dedicated NVIDIA A100
GPU cluster to separate training overhead from operational scheduling. To ensure stability
during workload spikes, EQUIRO's Hamiltonian coupling coefficient Jij (0.5-1.5 kWh/ms)
and reinforcement learning discount factor y=0.95 were modified using five-fold temporal
cross Validation In Process. This rigorous and reproducible testbed tests and validates the
integrated model, which includes energy prediction, quantum Inspired optimization, adaptive
task migration, temperature management, and carbon-aware economics in process.

Table 2: Energy Prediction Metrics Table 3: Resource Allocation Metrics Table 4: Task Migration Metrics

Table 5: Thermal & Cooling Metrics

Table 7: End-to-End Performance

o & o ) o o
el o o o o ﬂﬁw‘” o p
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o

Latency and SLA Related Indicators

Figure 4. Model’s Integrated Result Analysis
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Well-established, available datasets were used to simulate cloud, fog, and edge workload and
energy. The Google Borg Cluster Trace, which catalogs millions of task events with CPU,
memory, and disk metadata, provided most historical job arrival and resource-usage patterns.
To simulate high Velocity IoT and edge applications, EdgeBench incorporated camera and
sensor-driven workloads with severe latency limitations and bursty arrival patterns. To
estimate renewable energy inputs, the NREL Solar and Wind Integration Data offered
minute-level irradiance and wind-speed records for numerous seasons and areas. Carbon
intensity dynamics and electricity market pricing were analyzed using real-time emissions
and pricing data from the PJM Interconnection open market feed, which offers regional CO-
emissions rates (g CO2/kWh) and locational marginal prices at five-minute resolution They
provided a multi-scale view of temporal workload fluctuations, renewable intermittency, and
carbon—economic swings to drive the model's prediction and optimization layers.

In model tweaking, hyperparameters balanced energy efficiency, latency, and carbon
reduction. MSTEP set the tensor decomposition rank to 32 with a five-second temporal
window and graph-temporal convolution depth to three layers to capture short-term
correlations without overfitting. To encourage exploration beyond local minima sets,
EQUIRO's quantum Inspired optimization used a Hamiltonian coupling coefficient Jij (0.5-
1.5 kWh/ms) and a tunneling rate parameter n = 0.01. R-ATM prioritized long-term energy
savings using a 1x10—4 policy-gradient learning rate and y=0.95 discount factor. CLTACO's
neural network combines physical constraints with data-driven flexibility, utilizing a 5x10—4
learning rate and 0.1 thermal regularization weight. The carbon cost multiplier c\sigma was
changed between 0.4 and 0.6 in the final economic optimizer CIFEO to accommodate
regional policy options. The revenue elasticity parameter was 0.3 for constant profit-carbon
trade-offs. These hyperparameters were selected using multi-stage grid search and temporal
cross Validation to assure convergence and optimal performance across all interconnected
modules. The integrated model was tested on Google Borg trace, EdgeBench, NREL
renewable profiles, and PJM carbon—price feeds. Performance was compared using standard
metaheuristic schedulers, reinforcement-based edge orchestrators, and deep thermal—
economic optimizers [2-30]. We ran 48-hour tests with diurnal demand fluctuations and
varied renewable availability sets to determine metrics. Table 2 illustrates accurate profiling-
layer energy prediction. The MSTEP consistently reduced RMSE to under 4% and MAE in
process more than baselines.

Table 2: Energy-Prediction Accuracy and Power-Capping Performance of MSTEP

Metric Proposed Model | Method [2] | Method [8] | Method [30]

RMSE of energy (kWh) 0.42 0.78 0.74 0.69
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MAE of energy (kWh) 0.31 0.61 0.57 0.55
Forecast horizon (s) 5 10 10 8
Power-capping accuracy (%) | 92.1 79.8 81.5 83.4

Table 2 highlights spatio-temporal tensor decomposition and graph-temporal convolutions'
advantages. By anticipating load migrations and renewable fluctuations at 5 s, the profiler
improved prediction errors and permitted more aggressive, safe power cappings. Compare
cloud, fog, and edge resource-allocation efficiency in Table 3. Comparing baselines, our
quantum Inspired Hamiltonian optimization saved energy and delay.

Table 3: Resource-Allocation Efficiency of EQUIRO Across Cloud, Fog, and Edge Layers

Metric Proposed Model | Method [2] | Method [8] | Method [30]
Total energy (kWh) 1870 2260 2145 2032
Average latency (ms) 264 34.9 31.2 29.8

SLA violation rate (%) 1.8 5.5 4.1 3.9

Compute utilization (%) | 91.3 83.2 85.6 88.0

Table 3 shows how EQUIRO avoids local minima in complicated energy—latency trade-offs,
reducing its energy footprint and latency. Resource allocation without service set quality loss
is near-optimal. Table 4 shows task-migration dynamics. Reward-driven adaptive task
migrator (R-ATM) minimized unnecessary migrations while retaining responsiveness.

Table 4: Task-Migration Dynamics and Energy Impact of R-ATM Sets

Metric Proposed Model | Method [2] | Method [8] | Method [30]
Total migrations per hour 42 65 58 55
Unnecessary migrations (%) | 5.9 19.4 13.2 11.8
Average migration delay (ms) | 7.1 13.2 10.5 9.8
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Additional energy saved (%)

7.2

24

4.1

4.8

Table 4 illustrates that R-ATM's continuous-time control approach and policy-gradient agents

reduced duplicate migrations by 20%, saving energy and migration latency over discrete-time
scheduling sets. Table 5 exhibits CLTACO's cooling energy and thermal stability effects.

Table 5: Thermal Stability and Cooling Efficiency Improvements Achieved by CLTACO

Metric Proposed Method Method Method

Model 2] [8] [30]
PUE (Power Usage Effectiveness) | 1.22 1.41 1.36 1.29
Cooling energy (kWh) 230 340 310 280
Hotspot incidents (per day) 0.7 34 2.1 1.6
Thermal prediction error (°C | 0.8 2.1 1.8 1.3
RMSE)

The physics CLTACO neural network predicted heat propagation and provided proactive
cooling control. Table 5 demonstrates 15% PUE improvement over strongest baselines. The
carbon-economics layer appears in Table 6. CIFEO priced and deferred using upstream

operational data promptly.

Table 6: Carbon Impact and Economic Outcomes from CIFEO Operations

Metric Proposed Model | Method [2] | Method [8] | Method [30]
Carbon intensity (g CO2/kWh) | 235 312 287 264

Total carbon reduction (%) 254 9.7 14.3 19.1
Operating margin (%) 12.5 4.2 6.9 9.3

Revenue variation (%) +1.8 —4.5 —2.1 -1.3
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Figure 5. Model’s Overall Result Analysis

Table 6 indicates that carbon price signals and stochastic gradient dynamics consistently
reduced carbon intensity and increased operating margins for the process. Table 7 illustrates
final system performance when all modules work in process.

Table 7: End-to-End System Performance When All Modules Operate in Concert

Global Metric Proposed Model | Method [2] | Method [8] | Method [30]
Total energy saved (%) 24.8 11.3 15.7 19.4
Carbon footprint cut (%) 25.0 9.5 13.9 18.6
Average SLA compliance (%) | 98.2 93.1 95.7 96.4
Net cost reduction (%) 18.4 7.2 10.9 14.1

Table 7 exhibits predictive energy mapping, quantum-inspired optimization, adaptive
migration, thermal control, and carbon-aware economics benefits in progress. The proposed
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paradigm drastically decreases energy use and emissions while enhancing multi-tier
infrastructure service guarantees and profitability sets.

A. Validated Result Impact Analysis

Each layer of the integrated model enhanced performance, and the tables show how these
gains reinforce each other in a live cloud—fog—edge ecosystem. In Table 2, the Multi-Modal
Spatio-Temporal Energy Profiler (MSTEP) reduced energy-prediction error to 4% RMSE,
outperforming Methods [2], [8], and [30]. Predicting energy surges in 5 seconds allows data
centers and edge clusters to adjust workloads and cooling profiles to avoid costly over-
provisioning and brownouts during renewable troughs. Operations teams may close power
caps and smooth grid interactions in real time using precise, anticipatory energy maps instead
of lagging averages. Table 3 indicates that the Energy-Aware Quantum Inspired Resource
Orchestrator (EQUIRO) lowered energy consumption to 1.87 MWh and average latency to
26 ms using this predictive basis. Escape local minima using simulated quantum tunneling
reduced SLA violations to 1.8%. An urban edge network supporting autonomous vehicles
could have a perfect service or a safety-critical failure due to lower energy draw and
predictable low latency.

Table 4 shows how the Reinforcement-Driven Adaptive Task Migrator (R-ATM) decreased
unnecessary migrations by 20% and migration delays to 7 ms, boosting robustness. Low task
placement churn decreases hidden energy loss and service interruptions. Smart factories with
sensor clatter can stabilize processes and prevent cascading slowdowns with these solutions.
The Cross-Layer Thermal-Aware Cooling Optimizer (CLTACO) decreased PUE to 1.22 and
cooling energy by a third compared to the least efficient baseline (Table 5). Heat hotspots and
hardware stress can be reduced by facilities engineers to lower electricity bills and equipment
malfunctions. Finally, Tables 6 and 7 indicate system-wide economic and ecological payoffs.
CIFEQ's carbon Impact feedback reduced electricity consumption to 235 g CO2/kWh and
improved revenue, a remarkable feat in data-center economics for the process. Carbon and
profit numbers help meet area emissions regulations and qualify for green-energy incentives
in process. Figure 4, Figure 5 & Table 7 shows how layers reduce energy use by 25%, carbon
footprint by 25%, and net cost by 18%. These findings demonstrate that dispersed cloud—fog—
edge infrastructure operators are ecologically and financially sustainable. Predictive
analytics, quantum-inspired optimization, adaptive migration, and physics are shown.
Intelligent heat control meets sustainability and performance requirements. MSTEP's exact
forecasting and CLTACQO's cooling efficiency cascade through the layered design, boosting
benefits. The technology could help regional grids include more renewable electricity, offer
carbon-sensitive pricing in near real time, and retain high-quality digital services as energy
markets and climate policies tighten in process.
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B. Validated Hyperparameter Analysis

The integrated model was validated using a statistical analysis of performance indicators
from many 48-hour trial runs with different load profiles and renewable conditions. For
stability and reliability, projected values and fluctuations were computed for energy
consumption, latency, PUE, and carbon intensity. SLA compliance was 98.2% with a 0.9 %
variance, while energy savings averaged 24.8 % with a 1.3 % variance. Tight control under
various network conditions was shown by 26 ms latency and 2.4 ms standard deviation. The
mean carbon intensity in grams of CO: per kWh was 235 g, with a variance of £12 g,
suggesting consistency in carbon-reduction despite renewable scarcity. PUE cooling
performance was 1.22 with a variance of 0.04, showing that thermal optimization maintained
energy efficiency across operational cycles. The reported benefits were confirmed by paired
significance testing of the proposed model and baseline approaches. Skewed metrics like
SLA violation rates and migration counts were tested with non-parametric Wilcoxon signed-
rank tests, whereas average latency and PUE were tested with a two-sided Student's t-test.
Compared to Method [2] and Method [30], p Values routinely decreased below 0.01,
indicating that the improvements—such as the 18% lower energy use and 25% lower carbon
intensity—are not random variation. ANOVA demonstrated substantial variations in energy,
latency, and temperature characteristics across all techniques, with F-statistics exceeding the
key thresholds with 99% confidence. These results show that the integrated design delivers
reproducible, statistically validated benefits rather than performance spikes.

Baselines Method [2], Method [8], and Method [30] show technical significance and
comparison breadth. Modern cloud orchestration uses traditional metaheuristic scheduling
[2], making it a natural benchmark for energy—latency trade-offs. Method [8] was chosen for
its reinforcement-based edge orchestration, cutting-edge task migration, and local decision-
making that fulfills the R-ATM component's adaptive migration goals. A deep learning—
driven thermal and economic optimization pipeline in Method [30] provides a good platform
for evaluating the combined model's thermal- and carbon-aware layers. These baselines for
conventional scheduling, reinforcement learning, and deep thermal-economic optimization
provide a detailed evaluation of whether each module of the proposed architecture offers
value beyond best practices. Coefficient of variation (CV) analysis examined performance
consistency across time. Energy savings CV was below 5% even when renewable availability
fluctuated by greater than 40% diurnally, indicating strong repeatability. The CV for SLA
compliance and latency measures was < 3%, demonstrating peak and off-peak service
quality. Real-world deployments are variable due to grid disturbances, workload surges, and
seasonal variations, making statistical stability crucial. The benefits are robust to
environmental uncertainty and not controlled test artifacts, as low variance levels and
significant t- and ANOVA prove. With expected value estimation, variance measurement,
and formal significance testing, the study supports its findings empirically. Spatial-temporal
energy prediction, quantum Inspired scheduling, adaptive migration, thermal optimization,
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and carbon-economic control all showed statistically significant improvements, proving that
the integrated model outperforms established scheduling paradigms [2], [8], and [30],
providing a durable blueprint for energy- and carbon-conscious distributed computing sets.

C. Validation using Practical Analysis with Real Time Use Case Scenarios

Imagine three large cloud clusters, six fog nodes near municipal substations, and forty edge
micro-centers near traffic signals and cameras in a mid-sized urban data center network.
Every day, this infrastructure uses 8 TB of sensor and video data and 4.2 MWh of power.
CPU and GPU use, rack temperature gradients, network throughput, and regional solar-wind
availability are measured every five seconds using the proposed integrated model. Early
morning commutes offer crisp video and traffic telemetry bursts, while late-night times have
low Variance. The Multi-Modal Spatio-Temporal Energy Profiler (MSTEP) generates tensor
representations that show latent relationships between space, time, and energy consumption
sets using non-stationary patterns. This dataset forecasts and evaluates the profiler's ability to
predict unpredictable load migrations. The integrated model exhibits engineering interactions
between energy, computing, and thermal dynamics. An inbound camera feed surge will boost
fog cluster energy demand by 15% in five seconds, according to MSTEP. EQUIRO instantly
examines allocations that sacrifice a slight network delay for a 12% savings in local power
draw. By monitoring these automated decisions and their consequences on root-mean-square
energy error and SLA compliance, operators may identify which nodes can withstand
aggressive down-scaling without breaching latency contracts and which must be over-
provisioned. Repeated model-driven trials on thermal margins and response delays provide
such knowledge, unlike static data.

Validating these ideas requires sensitivity analysis. Modifying inputs like renewable
availability or traffic surges within +20% of quoted range exposes module reactions.
MSTEP's prediction error might only increase by 0.4% RMSE when renewable availability
fluctuates, showing strong robustness, while EQUIRO's optimization cost might increase by
6% 1if network latency limits tighten, showing susceptibility. Similar stress points affect
migration policy thresholds for the Reinforcement-Driven Adaptive Task Migrator (R-ATM):
energy savings peak at 50 moves per hour. These sensitivity sweeps are serious—they reveal
where sensing, redundancy, or algorithmic fine-tuning could boost resilience sets. Real-world
constraints shape this process performance envelope. Since cooling equipment cannot
instantly change fan speeds beyond acceptable mechanical limits, the Cross-Layer Thermal-
Aware Cooling Optimizer (CLTACO) restricts airflow and fluid flow rate-of-change. With
late carbon pricing feeds, the Carbon Impact Feedback and Economic Optimizer (CIFEO)
must fill tiny gaps without disrupting pricing schedules. Another consideration is scalability.
The integrated model has shown efficiency gains on testbeds with up to 100 nodes, but
deployment across thousands of distributed sites requires partitioned learning and hierarchical
control to avoid communication overhead eroding the 24.8% energy savings and 25%
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carbon-footprint reduction observed in controlled trials. Engineers and academics can
scientifically comprehend the process by meticulously studying these dataset properties and
stressing modules. They can study which physical and computational factors dominate energy
dynamics at different scales, whether thermal projections hold up under sudden weather or
workload changes, and how economic incentives affect resource flows across time. Fine-
grained sensor data, predictive modeling, and multi-layer optimization turn regular
operational traces into a laboratory for uncovering sustainable computing principles, making
the model an optimization tool and a source of new technical and scientific information sets.

5. Conclusion and Future Scope

MSTEP, EQUIRO, R-ATM, CLTACO, and CIFEO comprise the five-stage integrated
architecture for predictive and carbon-aware resource scheduling across cloud, fog, and edge
infrastructures in process. The model's continuous energy and carbon performance control
loop includes spatial-temporal energy forecasting, quantum Inspired optimization,
reinforcement-driven migration, thermal management, and carbon—economic feedback.
Experimental results on Google Borg traces, EdgeBench workloads, and NREL renewable
profiles demonstrate its technical superiority. With 0.42 kWh RMSE and 92% power-capping
accuracy, the Multi-Modal Spatio-Temporal Energy Profiler (MSTEP) reduced prediction
error by over 45% compared to baseline techniques The Energy-Aware Quantum Inspired
Resource Orchestrator (EQUIRO) reduced mean latency to 26 ms, SLA violations to 1.8%,
and energy utilization to 1.87 MWh, saving 18% over state-of-the-art metaheuristics. The
Reinforcement-Driven Adaptive Task Migrator (R-ATM) cut unwanted migrations by 20%,
energy usage by 7%, and migration latency to 7 ms. CLTACO reduced cooling energy to 230
kWh and power utilization effectiveness to 1.22, 15% better than the best rival. CIFEO
reduced carbon intensity by 25% to 235 g CO./kWh, raised operating margin to 12.5%, and
slightly boosted revenue through operational improvements. Coordinated, predictive
scheduling can satisfy ecological and economic goals in distributed computing installations,
as the system saved 24.8% total energy, 25% carbon footprint, and 18.4% net cost sets.

Future Vision Analysis

Several avenues can expand this work. With dynamic renewable pricing and real-time grid
interaction and demand-response markets, the orchestrator may sell energy flexibility
directly and reduce carbon emissions beyond 30%. Implementations of precision hardware
telemetry like per-core voltage and frequency scaling signals could reduce energy margins.
Cross-domain federated learning lets data centers share model changes without exchanging
raw data, improving prediction accuracy across regions.
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Limitations

The results are promising, but constraints remain. Legacy or cost-sensitive edge contexts may
not have high-resolution sensors (power, temperature, network) at all tiers, which the
integrated design assumes. In real deployments, device heterogeneity and unmodeled
disturbances like sudden hardware failures or cyber-physical attacks might affect forecast
accuracy. The experimental setup used diverse datasets. Classical emulation works well for
the quantum Inspired optimizer, although quantum hardware speed-ups are envisaged..
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