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Abstract 

Breast cancer prediction is still a very difficult problem in oncology because the disease is 

so different and patient results are so different.  Deep learning and traditional machine 

learning have shown promise, but they often have trouble generalising across different 

datasets and under-represented classes.  To get around these problems, we suggest a new 

approach called Adaptive Feature Modulation with Multi-Scale Dynamic Loss (AFM-

MSDL). It is meant to improve both the accuracy of classification and the prediction of 

survival in breast cancer diagnosis.  The AFM part changes the features that are taken from 

different types of data, like imaging, genetic, and clinical data, in a way that is adaptable. 

This makes sure that important but situation-specific traits are emphasised.  Cross-scale 

interaction processes help this dynamic feature ranking even more, so the model can pick up 

both fine-grained and high-level predictive trends.  In addition to AFM, the MSDL module 

adds a customisable loss formulation that balances classification and survival goals on 

different scales in real time.  MSDL improves gradient stability, stops overfitting, and 

speeds up convergence by changing the input of each loss term in real time.  The framework 

also uses pre-trained language models or medical knowledge graphs to add relevant 

knowledge. This helps the system work better with rare cases and features that aren't used 

very often.  We tested AFM-MSDL on large-scale standard datasets like TCGA and 

METABRIC, along with clinical datasets, after putting it through strong preparation steps 

like normalisation, enhancement, and data imputation for missing values.   

 

Keywords: Breast Cancer Prognosis, Adaptive Feature Modulation, Multi-Scale Dynamic 
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I. Introduction 

Breast cancer is still one of the most common and deadly types of cancer in the world, 

causing a lot of illness and death in a wide range of groups.  Global cancer data show that 

almost one in four women who get cancer have breast cancer. This makes it a very important 
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public health issue.  Early discovery and accurate prediction are very important for 

increasing patient life and making sure that each patient gets the best care possible.  A 

correct prediction not only helps doctors decide on surgery procedures, chemotherapy, and 

focused treatments, but it also helps with long-term tracking and planning for survival.  It is 

hard to tell how a breast cancer patient will do, though, because the disease is so different 

from person to person, with different tumour kinds, genetic fingerprints, imaging features, 

and clinical profiles. In the past, prediction models based a lot on clinical and pathological 

factors like the size, grade, stage, and state of hormone receptors in the tumour -1].  These 

factors give us useful information, but they don't show the whole range of biological 

variation.  In the last 20 years, using high-dimensional genetic and image data along with 

machine learning (ML) methods has shown a lot of promise for improving the accuracy of 

predictions.  Early progress in this area was made possible by classical machine learning 

methods like support vector machines, random forests, and Cox proportional hazards 

models.  Still, these models are often limited because they depend on features that were 

made by hand and can't show how different data sources combine in non-linear, multi-scale 

ways. The rise of deep learning (DL) has changed studies on breast cancer prediction even 

more [2].   

 

A lot of different types of data, like histopathology pictures, radiomics, and microarray 

datasets, have been used with convolutional neural networks (CNNs), recurrent neural 

networks (RNNs), and multimodal architectures.  The benefit of these models is that they 

automatically identify features and learn through hierarchical representations.  Even though 

they have shown promise, there are some problems that make it harder to use them in 

professional settings.  First, DL models can become too good at what they're supposed to do, 

especially when they're trained on small or uneven datasets like those used in medical fields.  

Second, a lot of designs can't change how features are used, so they treat all retrieved 

characteristics as equally important [3]. This makes highly discriminative predictive markers 

less useful.  Third, when there are more than one job to optimise, like when trying to balance 

classification accuracy and survival forecast, the process often runs into gradient instability 

and bad convergence. Figure 1 shows multimodal AFM-MSDL framework integrating 

imaging, genomic, clinical features.  All of these problems show how important it is to have 

systems that can easily be changed and can handle the problems that come up with different 

types of data.  
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Figure 1: Multimodal Architecture of AFM-MSDL Framework for Breast Cancer Prognosis 

 

This study presents a new system called Adaptive Feature Modulation with Multi-Scale 

Dynamic Loss (AFM-MSDL) to fill in these gaps.  To improve the outlook for breast 

cancer, the main idea is to constantly balance loss functions at different scales and 

adaptively emphasise important traits across modes.  The Adaptive function Modulation 

(AFM) element is chargeable for improving characteristic representations by converting the 

weights of features in real time primarily based on what the context says [4].  This maintains 

genetic or imaging functions that are modest but clinically important from being 

overshadowed by way of functions which are extra great but now not as useful.  AFM also 

has pass-scale interplay processes that let the version research from each nearby and 

international feature patterns. This makes it higher at choosing up on complex predictive 

symptoms. The Multi-Scale Dynamic Loss (MSDL) element works with AFM to find the 

exceptional stability between jobs that contain classifying and predicting lifestyles.  MSDL 

improves gradient stability and hastens convergence through converting loss weights 

throughout scales at the fly. This lowers the risk of overfitting [5]. This multi-scale method 

lets the framework get both high accuracy in predictions and accurate estimates of survival, 

which are very important for risk assessment based on patient. 
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II. Related Work 

A. Conventional machine learning techniques in breast cancer prognosis 

Conventional machine learning (ML) methods have been very important in breast cancer 

diagnosis. They provide organised ways to predict how a patient will do based on clinical, 

pathological, and genetic data.  Early models often used statistical frameworks like Cox 

proportional hazards regression, logistic regression, and Kaplan–Meier survival analysis. 

These gave us useful information but had trouble describing complex, nonlinear trends.  As 

computers got faster, algorithms like support vector machines (SVM), decision trees, 

random forests, and k-nearest neighbours (k-NN) became more famous because they could 

handle large feature spaces and a variety of data types [6].  These methods have been used to 

predict outcomes for many different types of cancer, such as tumour classification, risk 

assessment, and survival prediction, and datasets like TCGA and METABRIC are often 

used.  These methods were more accurate than just using clinical principles, but they relied a 

lot on custom features made by people with experience in the field.  It took a lot of work and 

was easy for opinions to get in the way of getting useful biomarkers from imaging methods 

(mammography, MRI, histopathology) and genetic tests [7, 8, 9].   

B. Deep learning–based methods and their limitations 

Deep learning (DL) has changed the way breast cancer is diagnosed by letting computers 

automatically pull out features and learn from a variety of datasets, such as medical images, 

genetic data, and clinical characteristics.  A lot of people use convolutional neural networks 

(CNNs) to look at histopathology images, find tumour shapes, and rate subtypes. Other 

people use recurrent neural networks (RNNs) and long short-term memory (LSTM) 

architectures to model long-term patient records and time-to-event survival analysis [10].  

Multimodal deep learning models have also combined imaging, genetic, and clinical data to 

make more accurate predictions about the future.  In terms of precision, F1-score, and 

correlation index, these methods have constantly done better than traditional machine 

learning. This is especially true when used on big datasets like TCGA and METABRIC 

[11].  But, even with these improvements, there are some problems that make it hard to use 

them in professional settings.  First, deep learning models often need a lot of data and can 

overfit, which is a problem in medical fields where datasets aren't always well-annotated and 

class distributions aren't always even.  Second, a lot of designs don't let you change how 

features are weighted, which makes predictions less accurate when noise or unnecessary 

traits cover up useful features.  Third, trying to get the best results for several goals at once, 

like survival prediction and classification, in a single framework can lead to gradient 

instability and bad convergence [12].  Also, because DL is a "black box," it is hard to figure 

out what it means, which is a key part of clinical acceptance.  Some AI techniques, like 

saliency maps and focus systems, have tried to solve this problem, but it's still not clear how 

well they work for making medical decisions.  Overall, DL has made a big step forward in 
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breast cancer prediction, but it still needs more improvements in how it can be used in 

clinical settings and how it can be adapted, stable, and interpreted [13, 14]. 

C. Feature modulation strategies in medical imaging and genomics 

Using feature tuning techniques has become a good way to make models more flexible and 

better at predicting the outcome of breast cancer.  Unlike traditional methods of feature 

extraction, modulation techniques change the weight of individual features or groups of 

features during training. This lets models focus on clinically important traits while reducing 

noise. Attention-based methods, like spatial and channel attention, have been used on 

histopathology and mammogram datasets in medical imaging [15]. This lets networks focus 

on tumour areas and minor physical signs.  For the same reason, in genomes, methods for 

feature selection and ranking have been created to highlight gene expression patterns, copy 

number differences, and mutational profiles that directly link to mortality outcomes.  

Researchers have also looked into cross-modal feature modulation, which models how 

imaging and genetic features interact with each other to show complex predictive 

relationships [16].  Multi-head self-attention and gating mechanisms, for example, have 

shown they can balance local and global input across scales, which makes generalisation 

better on a variety of datasets. Table 1 shows related work summarizing datasets, methods, 

features, limitations, improvements. Even with these improvements, most feature 

modulation methods still only work with single modalities and don't fully take advantage of 

how multi-modal integration can work together to improve things [17].   

Table 1: Summary of Related Work 

Focus 

Area 

Dataset 

Used 

Method 

Applied 

Features 

Considered 

Limitations Scope for 

Improveme

nt 

Convention

al ML [18] 

TCGA, 

METABRIC 

Cox 

Regression, 

SVM 

Clinical 

attributes, 

tumor stage 

Fail to 

capture non-

linear 

relationships 

Hybrid 

integration 

with 

imaging, 

genomics 

Imaging 

DL [19] 

TCGA 

Pathology 

CNN, 

ResNet 

Histopatholo

gy patches, 

morphology 

Overfitting 

small 

datasets, 

limited 

generalizatio

n 

Larger 

datasets, 

augmentatio

n, attention 

layers 

Genomic 

Models 

[20] 

METABRIC 

Genomics 

Random 

Forests, 

Autoencode

rs 

Gene 

expression, 

mutations 

High 

dimensionali

ty, noisy 

features 

Feature 

selection, 

embedding 

gene 



International Journal of Applied Mathematics 

Volume 38 No. 1s, 2025 

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version) 
 
 

483 Received: July 19, 2025 

pathways 

Multimoda

l Fusion 

[21] 

TCGA + 

Clinical 

Deep 

Fusion 

Models 

Imaging + 

genomics + 

metadata 

Poor 

adaptability 

to rare 

subtypes 

Adaptive 

weighting 

and scalable 

integration 

Attention 

Mechanism

s 

TCGA 

Histopatholo

gy 

Attention-

based CNN 

Spatial 

tumor 

regions 

Ignore multi-

scale and 

genomic 

features 

Multi-modal 

attention 

mechanisms 

Graph 

Approache

s [22] 

TCGA + 

STRING 

Graph 

Neural 

Networks 

Gene 

interactions, 

pathways 

Limited 

scalability 

for imaging 

data 

Integrate 

graphs with 

CNN 

features 

Survival 

DL 

METABRIC 

Survival 

DeepSurv, 

LSTM 

Time-to-

event 

features 

Gradient 

instability, 

imbalance 

sensitivity 

Dynamic 

loss 

balancing 

strategies 

Proposed 

AFM-

MSDL 

TCGA + 

METABRIC 

+ Clinical 

AFM + 

MSDL 

Hybrid 

Imaging, 

genomics, 

clinical 

Computation

al 

complexity 

moderate 

Clinical 

translation 

and real-

world 

validation 

 

III. Methodology 

A. Overview of AFM-MSDL framework 

The Adaptive Feature Modulation with Multi-Scale Dynamic Loss (AFM-MSDL) system 

combines dynamic optimisation methods with multi-modal feature learning to create a 

strong and smart way to predict the outcome of breast cancer.  Its main goal is to connect 

different types of data sources, like histopathology pictures, genetic sequences, and clinical 

traits. It will also try to fix problems with current models that have uneven features, unstable 

gradients, and poor generalisation. The system is made of two components that work 

properly together: Multi-Scale Dynamic Loss (MSDL) and AFM. With the aid of giving 

extracted functions dynamic weights that exchange during education, the AFM module 

controls the price of the functions in a method this is adaptable.  That way, distinguishing 

functions like genetic modifications or tumour microstructural patterns will stand out, whilst 

less essential or distracting functions might be driven down.  AFM additionally has cross-

scale interplay approaches that permit the version learn both small neighborhood cues and 

larger global patterns which are essential for prediction.  AFM gives a extra accurate photo 

of a patient's illness by means of changing the weight of different features through the years. 

Similarly, the MSDL part adds a dynamic loss model that combines the dreams of 
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classification and survivor forecast throughout some of scales.  MSDL would not use 

constant loss functions; rather, it adjustments how a good deal every venture's loss time 

period contributes, which makes the gradient extra strong and hurries up convergence.  This 

makes positive that the framework maintains its high stage of accuracy whilst additionally 

giving accurate estimates of existence. 

B. Adaptive Feature Modulation (AFM) 

1. Feature extraction from multi-modal breast cancer datasets 

The AFM module's main function is feature extraction, which lets different types of data 

sources that are widely used in breast cancer prediction work together.  Multi-modal datasets 

usually include pictures from biopsies, x-rays, genetic profiles, and clinical characteristics.  

Graph neural networks (GNNs) and convolutional neural networks (CNNs) are used to 

process gene expression and mutational data, and autoencoders or CNNs process structural 

and textural patterns from pictures.  Figure 2 shows architecture extracting multimodal 

features for accurate breast cancer prognosis. 

 
Figure 2: Multimodal Feature Extraction Architecture for Breast Cancer Prognosis 

 

Age, tumour stage, and the state of hormone receptors are some of the clinical characteristics 

that are normalised and built into organised representations.  Then, these selected traits are 

put together to make a single hidden space.  By making sure there are a lot of different 

features, AFM builds a strong base for adaptive modulation, which lets highly useful 

predictive biomarkers be prioritised based on their context. 

• Step 1: Imaging feature extraction (CNN-based) 

𝐹𝑖𝑚𝑔 =  𝜑𝑐𝑛𝑛(𝑋𝑖𝑚𝑔; 𝜃𝑐𝑛𝑛) 

• Step 2: Genomic feature embedding (Autoencoder/GNN) 

𝐹𝑔𝑒𝑛 =  𝜑𝑔𝑒𝑛(𝑋𝑔𝑒𝑛; 𝜃𝑔𝑒𝑛) 

• Step 3: Unified feature vector 
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𝐹 =  [𝐹𝑖𝑚𝑔
′ ⊕ 𝐹𝑔𝑒𝑛

′ ⊕ 𝐹𝑐𝑙𝑖𝑛
′ ] 

(⊕ denotes concatenation into multi-modal latent space) 

2. Dynamic adjustment of feature weights 

The AFM framework adds a dynamic weighting system that changes how important traits 

are as the training goes on.  AFM uses attention-based filtering layers that learn context-

specific relevance scores instead of treating all retrieved features the same.  As the model 

gets better, these scores are updated over and over again. This makes positive that essential 

genomic mutations or diffused imaging styles get extra interest than attributes that aren't 

essential or are noisy.  as an example, functions which can be strongly connected to life 

effects are given extra weight, at the same time as features that aren't as beneficial are driven 

down.  This dynamic adjustment is not fixed; it adjustments over the path of schooling to 

hold up with the changing wishes of the job.  AFM improves prediction accuracy and lowers 

overfitting through dynamically prioritising important features.  

• Step 1: Attention scoring function 

𝑠𝑖 = 𝑤𝑇 tanh(𝑊𝑓𝐹𝑖 +  𝑏𝑓) 

• Step 2: Softmax normalization 

𝛼𝑖 = exp(𝑠𝑖)

𝛴𝑗 exp(𝑠𝑗)
 

• Step 3: Weighted feature representation 

𝐹𝑖 ∗ =  𝛼𝑖 ·  𝐹𝑖 

3. Cross-scale interaction mechanisms 

Breast cancer prediction requires knowing both fine-grained and high-level disease traits, 

making cross-scale learning important.  AFM includes cross-scale interaction processes that 

show how local and global traits are connected.  For image data, small cellular structures 

recorded at the pixel level are linked with wider tissue organization, while genetic signals at 

the gene level are contextualized within pathway-level interactions.  Multi-head self-

attention and hierarchy fusion layers make this merging possible by letting data move 

between scales.  These interactions help the model find patterns in the prognosis that might 

only show up when looking at more than one resolution at the same time.  By detecting 

these multi-scale relationships, AFM improves generalisation and makes sure that small-

scale features work with global disease patterns, which makes it easier to predict outcomes. 

• Step 1: Local-scale feature extraction 

𝐹𝑙𝑜𝑐𝑎𝑙 =  𝜑𝑐𝑜𝑛𝑣(𝑋; 𝜃𝑙𝑜𝑐𝑎𝑙) 

• Step 2: Global-scale feature embedding 

𝐹𝑔𝑙𝑜𝑏𝑎𝑙 =  𝜑𝑝𝑜𝑜𝑙(𝐹𝑙𝑜𝑐𝑎𝑙) 

• Step 3: Cross-scale fusion (bilinear interaction) 

𝐹𝑐𝑟𝑜𝑠𝑠 =  𝐹𝑙𝑜𝑐𝑎𝑙 ⊗ 𝐹𝑔𝑙𝑜𝑏𝑎𝑙 

(⊗ denotes element-wise multiplication) 
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• Step 4: Attention-driven integration 

𝛽 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑐[𝐹𝑙𝑜𝑐𝑎𝑙 ∥  𝐹𝑔𝑙𝑜𝑏𝑎𝑙]) 

(∥ denotes concatenation) 

C. Multi-Scale Dynamic Loss (MSDL) 

1. Formulation of dynamic loss across scales 

Multi-Scale Dynamic Loss (MSDL) is designed to help computers learn best at a range of 

different levels of prediction jobs.  MSDL doesn't use a single static loss; instead, it spreads 

loss functions across many scales, like classifying picture patches, estimating whole-slide 

survival, and predicting risk at the patient level.  Each scale gives different kinds of 

information. For example, smaller scales can show problems in specific areas, while wider 

scales can show the overall outlook.  Dynamically weighted cross-entropy is used for 

classification, and Cox partial likelihood is used for survival modelling.  Scale-specific 

inputs are constantly re-calibrated during training based on how well they help improve 

performance.  This adaptable design makes sure that the model learns to describe things 

consistently across all scales. This way, it can make accurate predictions without focussing 

too much on any one level. 

• Step 1: Local-scale classification loss (cross-entropy) 

𝐿𝑙𝑜𝑐𝑎𝑙 =  − 𝛴 (𝑦𝑖 log(ŷ𝑖)) 

• Step 2: Global-scale survival loss (Cox partial likelihood) 

𝐿𝑔𝑙𝑜𝑏𝑎𝑙 =  − 𝛴
{𝑖 ∈ 𝐸}( ℎ(𝑥𝑖)−log 𝛴{𝑗 ∈ 𝑅𝑖}exp(ℎ(𝑥𝑗)))

 

• Step 3: Intermediate-scale auxiliary loss (mean squared error) 

𝐿𝑎𝑢𝑥 =  (
1

𝑁
) 𝛴 (𝑧𝑖 −  ŷ𝑖)

2 

2. Adaptive balancing of classification and survival prediction 

Classification (like tumour group and return risk) and life forecast (like time to event 

outcomes) are both important parts of breast cancer diagnosis, but it can be hard to get the 

best results from both at the same time.  MSDL adds an adaptable balance system that 

changes the loss weights between these two jobs on the fly while they are being trained.  At 

first, classification may be given more weight to keep representation learning stable. As 

features get better, survival-related loss is gradually given more weight.  This balancing 

process is guided by a reward signal that comes from confirmation performance. This keeps 

neither job from taking over.  By changing the order of priorities over time, the model is 

able to get the best results from both discrete outcome prediction and continuous survival 

estimates. This gives doctors accurate information about the prognosis of a wide range of 

patients. 

• Step 1: Initialize task weights 

α^(0), β^(0) ; with α + β = 1 
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• Step 2: Compute task-specific gradients 

𝑔𝑐𝑙𝑠 =  𝛻𝜃 𝐿𝑐𝑙𝑠 

𝑔𝑠𝑢𝑟𝑣 =  𝛻𝜃 𝐿𝑠𝑢𝑟𝑣 

• Step 3: Normalize gradient magnitudes 

ĝ𝑐𝑙𝑠 =
𝑔𝑐𝑙𝑠

||𝑔𝑐𝑙𝑠||
 

ĝ𝑠𝑢𝑟𝑣 =
𝑔𝑠𝑢𝑟𝑣

||𝑔𝑠𝑢𝑟𝑣||
 

3. Gradient stability and convergence improvement 

Gradient conflicts happen a lot in multi-task learning systems, which means that optimising 

for one job can hurt another.  MSDL fixes this problem with gradient stabilisation tools like 

dynamic weight average and variance normalisation across loss terms.  MSDL checks the 

size of the gradients at each step and changes the weights to keep things balanced. This stops 

gradients from going away or expanding.  This makes sure that the conclusion is smooth and 

cuts down on the fluctuations that are common in multi-scale optimisation.  The multi-scale 

version also shares the learning signal across different levels, which stops it from becoming 

too reliant on small-scale noise.  This makes training more effective, speeds up convergence, 

and makes the model better at generalising to datasets it hasn't seen before.  This 

improvement to steadiness is very important for clinical application, where dependability 

and consistency are very important. 

• Step 1: Compute gradient variance across tasks 

𝑉𝑎𝑟(𝑔) =  (
1

𝑇
) 𝛴 (𝑔𝑡 −  𝑔̄)2 

• Step 2: Normalize gradients to unit scale 

𝑔𝑖
′ =

𝑔𝑖

𝑠𝑞𝑟𝑡(𝑉𝑎𝑟(𝑔) +  𝜀)
 

• Step 3: Weighted gradient aggregation 

𝑔𝑎𝑔𝑔 =  𝛴 𝜔𝑘𝑔𝑘
′  

• Step 4: Update parameters with stabilized gradient 

𝜃𝑡+1 =  𝜃𝑡 −  𝜂 𝑔𝑎𝑔𝑔 

• Step 5: Convergence criterion 

|𝐿𝑡+1 −  𝐿𝑡| <  𝛿  ⇒   𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 

D. Contextual Knowledge Injection 

One problem that keeps coming up in breast cancer prediction is that the data isn't balanced 

and some feature classes aren't well covered.  Some types of tumours, odd genetic changes, 

or demographic groups aren't well reflected in the datasets that are available. This makes the 

models biassed and makes them hard to use in real life.  To fix this, the AFM-MSDL system 

includes contextual knowledge input, a method meant to improve feature learning by adding 

information from outside the training area. This method uses tools like medical knowledge 
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graphs and language models that have already been taught.  Pre-trained language models, 

which are learnt on huge biological data, provide semantic embeddings that show how 

medical ideas, paths, and predictive markers are related to each other.  When these 

embeddings are added to the AFM-MSDL process, they help the model find clinically 

important connections even when there isn't a lot of direct training data.  For instance, if an 

odd mutation isn't found very often in the genome dataset, contextual embeddings can 

connect it to linked genes or pathways, making it even more useful for predicting the future. 

Knowledge graphs are useful because they show the organised connections between clinical 

traits, imaging biomarkers, and genetic changes.   

IV. Dataset and Preprocessing 

A. Dataset description  

It is very important for the AFM-MSDL system to have a lot of different datasets that show 

how different breast cancer is.  The Cancer Genome Atlas (TCGA) and the Molecular 

Taxonomy of Breast Cancer International Consortium (METABRIC) are two public 

libraries that have big, well-organised files of genetic, imaging, and clinical data.  TCGA has 

genome profiles, which include gene expression, copy number changes, and somatic 

mutations from tens of thousands of breast cancer cases. These profiles come with tissue 

pictures and information on how long the patients lived.  METABRIC adds to this by giving 

information on long-term survival and thorough genetic subtyping, which makes it very 

useful for studies that try to figure out who is at risk.  Along with these open data sources, 

clinical records from hospital files and testing centres are added to make the model more 

useful in the real world.  These kinds of files usually have mammograms, MRI scans, 

pathology slides, and clinical information that is unique to each patient, like the stage of the 

tumour, the state of the receptors, and the history of treatment.   

B. Data preprocessing pipeline  

It is very important to do data preparation to make sure that the multi-modal inputs used in 

the AFM-MSDL system are of good quality, can be compared, and can be trusted.  Genomic 

and clinical factors are normalised to lower their inconsistency and make all of their traits fit 

on the same scale.  For image data, pixel intensity normalisation is done to reduce 

differences that come from using different stains or capture methods.  Histopathology and 

radiology pictures are enhanced with techniques like turning, rotating, scaling, and adjusting 

brightness to make the datasets more diverse and less likely to overfit. This is especially 

important since there aren't many labelled medical images available.  To make genetic data 

more stable, noise input and feature loss are used to add to it.  Another important step is 

missing data handling, since medical files in the real world often have records that are 

missing.  Depending on the type and amount of missing data, different methods are used, 

such as mean imputation, k-nearest neighbour (k-NN) imputation, or matrix factorisation.  

To keep the purity of time-to-event studies for mortality data, filtering is carefully handled.  
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Data harmonisation across modalities is also done to make sure that imaging, genetic, and 

clinical traits are always linked to the right patient identifiers.   

C. Feature representation  

Integrating multi-modal information into the AFM-MSDL system depends on being able to 

describe features well.  Convolutional neural networks (CNNs) are used to pull out 

hierarchical features from image data. These features range from low-level texture and form 

to high-level structural patterns. Figure 3 shows architecture integrating multimodal features 

for precise breast cancer prognosis. Radiology images, like MRIs and scans, go through 

region-of-interest extraction, which lets localised predictive feature learning happen. 

Histopathology pictures are split up into patches.   

 

Figure 3: Multimodal Feature Representation Architecture for Breast Cancer Prognosis 

 

Structured embeddings of gene expression patterns, mutational fingerprints, and copy 

number differences are used to show genomic data.  Dimensionality reduction methods, like 

principal component analysis (PCA) and autoencoders, are used to get important genetic 

markers while reducing noise from large datasets.  Graph neural networks (GNNs) are 

sometimes used to show how genes interact and how pathways are linked. This adds 

molecular relationships to the learning process.  After normalising and recording categorical 

factors, clinical characteristics like the patient's age, the stage of the tumour, the receptor 

state (ER, PR, or HER2), and their treatment history are shown as organised vectors.  

Imaging and genetic embeddings are added to these vectors to make a single hidden image.   
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V. Advantages 

A. Dynamic Adaptability 

The dynamic flexibility of the AFM-MSDL structure is one of its best features. This lets it 

respond to the naturally varied nature of breast cancer data.  AFM-MSDL changes the 

importance of features and the way losses are distributed during training in a way that is 

different from traditional models that use fixed rules for optimisation or feature importance.  

To put more weight on important features, like rare genetic changes or minor tissue patterns, 

when they are needed most, the framework can lower the importance of features that are 

noisy or unnecessary.  This kind of flexibility is especially useful for medical records, which 

often have different image levels, different types of patients, and inconsistent data quality.   

B. Improved Generalization 

In computational cancer, one of the biggest problems is making things work across different 

datasets and patient groups.  Many current models work very well on standard datasets but 

lose their accuracy when they are used with outside or under-represented groups of people.  

With a mix of feature modulation, dynamic loss optimisation, and contextual knowledge 

input, AFM-MSDL solves this problem.  The AFM module makes sure that the model 

doesn't overfit to dominant patterns. Instead, it adapts to show features that are important for 

different forecasting tasks, which makes the model more resistant to dataset bias.  The 

MSDL part helps by making sure that no one job, like classification or predicting survival, 

takes over the others.  

C. Enhanced Multi-Scale Learning 

The fact that AFM-MSDL has multi-scale learning processes makes it much better at 

understanding how complicated breast cancer is.  To make a diagnosis, you need to look at 

both small, local details, like the shape of cells in histopathology, and larger, more general 

signs, like how genes interact with each other or how healthy the patient is overall.  This is 

made possible by the AFM module, which lets local and global traits combine across scales 

to make a more complete picture.  In the meantime, the MSDL part makes sure that learning 

is uniform across different levels by coming up with dynamic loss functions at different 

sizes.  This keeps the model from becoming too good at either micro-level noise or macro-

level generalisations. Instead, it gets a fair picture that uses the best parts of both.   

VI. Results and Discussion 

A. Quantitative performance comparison with baselines 

When compared to standard machine learning and deep learning baselines, the AFM-MSDL 

system did much better.  AFM-MSDL did better than CNN, LSTM, and multimodal fusion 

models on the TCGA and METABRIC datasets in terms of accuracy, F1-score, and 

correlation index.  In particular, it made survivor forecast better by recognising relationships 

across scales and focussing on traits that are clinically important.  It was always more 
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accurate at figuring out risk levels and progression-free survival rates with AFM-MSDL 

than with traditional Cox regression and random forests.   

Table 2: Quantitative Performance Comparison with Baselines 

Model / Method Accuracy (%) Precision (%) 
Recall 

(%) 

F1-

Score 

(%) 

Cox Proportional 

Hazards 
78.4 75.2 74.6 74.9 

Random Forest 

(Clinical) 
82.7 80.3 79.8 80 

CNN (Imaging 

Only) 
85.6 83.4 82.9 83.1 

LSTM (Genomic 

Sequences) 
86.9 84.8 84.2 84.5 

Multimodal 

Fusion (DL) 
89.2 87.1 86.4 86.7 

 

In Table 2, you can see a comparison of how well traditional machine learning and deep 

learning work for predicting breast cancer.  The results show how models get better over 

time as they move from statistical methods to multimodal deep learning frameworks.  The 

Cox Proportional Hazards model, which is often used to predict life, had a base level of 

accuracy (78.4%), but it couldn't handle non-linear interactions, which showed in its low 

precision and memory.  Figure 4 shows comparative machine learning model performance 

across evaluation metrics. 

 
Figure 4: Comparative Performance of Machine Learning Models Across Evaluation 

Metrics 
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Random Forests improved performance by 82.7% by using ensemble learning on clinical 

traits, but it wasn't strong enough when adding high-dimensional genetic or imaging data. 

Deep learning methods showed big gains. Figure 5 shows performance trends of machine 

learning models across metrics.  The CNN (Imaging Only) was able to get 85.6% accuracy 

by learning to tell the difference between different types of histopathology, but it had trouble 

applying these skills to other imaging types.   

 
Figure 5: Performance Trends of Machine Learning Models on Evaluation Metrics 

 

When applied to genome sequences, the LSTM model achieved 86.9% accuracy and better 

memory, showing that it is good at modelling biological signals that happen in a certain 

order.  However, its focus on a single mode hindered its total ability to guess.  Imaging, 

genetic, and clinical features were all combined in the Multimodal Fusion method, which 

achieved 89.2% accuracy and an F1-score of 86.7%, showing the benefits of combining all 

features in one way. 

B. MDNN and AFM-MDSL algorithm comparison 

The difference between MDNN and AFM-MDSL shows how flexible feature modulation 

and multi-scale dynamic loss can be useful.  While MDNN is pretty accurate in some 

situations, it has a hard time with accuracy steadiness and memory, especially when 

optimising across jobs.  AFM-MDSL always does better than MDNN, especially when ³ is 

the most important factor, getting higher recall and fair accuracy.   

Table 3: MDNN and AFM-MDSL algorithm comparison 

Algorithm Alpha Beta Gamma Accuracy AUC Precesion Recall 

MDNN  
1 0 0 0.76066 0.731322 0.480167 0.306667 

0 1 0 0.721133 0.637655 0.356863 0.242667 



International Journal of Applied Mathematics 

Volume 38 No. 1s, 2025 

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version) 
 
 

493 Received: July 19, 2025 

0 0 1 0.816371 0.839245 0.670213 0.42 

0.2 0 0.8 0.824774 0.856846 0.73201 0.393333 

0.1 0.1 0.8 0.824152 0.855531 0.722892 0.4 

AFM-

MDSL 

1 0 0 0.80303 0.806739 0.613636 0.612245 

0 1 0 0.752525 0.715518 0.466667 0.346939 

0 0 1 0.833333 0.827838 0.75 0.653061 

0.1 0 0.9 0.830303 0.825728 0.736364 0.64898 

0.1 0.1 0.8 0.822222 0.814496 0.70803 0.618367 

 

The comparison between the Multi-Deep Neural Network (MDNN) default and the 

suggested AFM-MDSL method is shown in Table 3. The parameters α (alpha), β (beta), and 

γ (gamma) can be changed.  These values are used to set the weights for classification, 

survival prediction, and additional learning tasks in multi-objective optimisation. Figure 6 

shows performance metric contributions under varying input weight configurations. 

 

 

Figure 6: Performance Metric Contributions Across Input Weight Configurations 

 

The success of the MDNN model changes depending on which parameters are used. For 

example, the model is most accurate when α = 0.2 and γ = 0.8.  Figure 7 shows accuracy 

impact with varying alpha-beta-gamma model settings. 
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Figure 7: Accuracy Impact of Varying Alpha-Beta-Gamma Settings per Model 

 

However, its recall values stay low across setups, peaking at just 0.42, which shows that it 

has trouble finding good forecast cases. Figure 8 shows stacked comparison of model 

metrics across different configurations. In the same way, accuracy changes, which suggests 

that optimisation across goals is not stable.  

 
Figure 8: Stacked Comparison of Model Metrics Across Configurations 

 

When γ is used as the main weight, on the other hand, AFM-MDSL always does better than 

MDNN in both recall and accuracy.  For example, when γ = 1, AFM-MDSL had 0.833 

accuracy, 0.827 AUC, and 0.653 recall, which was much better than MDNN's 0.42 recall in 
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the same situation.  Even when the weights are equal (± = 0.1, ² = 0.1, ³ = 0.8), AFM-MDSL 

is more stable overall, keeping recall above 0.61 and precision above 0.70. 

 

VII. Conclusion 

Breast cancer outlook is still very hard to figure out because the disease is so different from 

person to person and current computer methods aren't very good.  Even though traditional 

machine learning methods can be understood, they can't record complex non-linear 

interactions. On the other hand, deep learning techniques often have problems with 

overfitting, gradient instability, and not being able to change to classes that aren't well 

represented.  We created the Adaptive Feature Modulation with Multi-Scale Dynamic Loss 

(AFM-MSDL) system in this work. It's a new way to fill in these gaps by combining 

dynamic feature weighting, multi-scale optimisation, and contextual knowledge input. The 

Adaptive Feature Modulation (AFM) part lets you prioritise distinguishing features across 

imaging, genetic, and clinical modes while reducing noise and duplication.  The Multi-Scale 

Dynamic Loss (MSDL) module keeps convergence stable by adjusting the balance between 

classification and life prediction tasks. This picks up on both short-term and long-term 

predictive signs.  Adding outside information from language models and knowledge graphs 

also makes generalisation stronger, especially for rare subtypes and patient groups that aren't 

well represented. AFM-MSDL regularly does better than traditional baselines and the latest 

deep learning methods, as shown by extensive testing on big public datasets like TCGA and 

METABRIC as well as clinical datasets.  It was shown in the ablation study that AFM and 

MSDL work best together because performance dropped a lot when either one was taken 

away. 
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