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Abstract

Deep Reinforcement Learning (DRL) faces significant deployment challenges in safety-critical
autonomous systems—such as self-driving vehicles and surgical robots—due to the inherent
opacity of policy decisions, where unexplained failures obstruct diagnostics and accountability.
This work introduces Causal Policy Optimization (CPO), a novel framework that
fundamentally addresses this limitation by integrating Structural Causal Models (SCMs) with
policy gradient optimization (e.g., PPO). CPO’s core innovation leverages do-calculus-based
interventions to modify policy gradients, embedding causal invariances directly into the
learning process. Extensive validation across CARLA driving simulations, Safety Gym robotic
environments, and physical TurtleBot3 deployments demonstrates that CPO achieves 40-60%
higher interpretability than traditional XAI methods (SHAP/LIME), quantified by the Causal
Fidelity Score (CFS=0.89), while preserving >95% of the performance of conventional policies
(cumulative return: 9.72 vs. 9.91 for PPO). Crucially, CPO reduces collision rates by 74.8% in
edge-case scenarios and generates real-time, auditable causal explanations (e.g., "Emergency
braking triggered by pedestrian trajectory (B=0.67)"). This breakthrough enables regulatory
compliance and precise liability attribution, advancing trustworthy autonomy for high-stakes
applications where human lives depend on transparent decision-making.

Received: August 07, 2025 346



International Journal of Applied Mathematics
Volume 38 No. 4s, 2025
ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

Keywords: Interpretable Reinforcement Learning, Causal Policy Optimization,
Autonomous Systems Safety, Structural Causal Models, Policy Gradient Algorithms

Introduction

The ascendancy of deep reinforcement studying (DRL) in self-sustaining cyber-physical
structures—spanning self-driving motors, collaborative robotics, and business automation—
has induced exceptional operational competencies. Still, this advancement is grossly
constrained by the interpretability gap related to high-dimensional policy networks. Algorithms
based on proximal policy optimization (PPO) and actor-critic architectures are relatively robust
in simulation, often showing impressive skill performance; however, they are not easy or safe
to deploy in actual safety-critical situations. Recently, even unexplained disengagement of
autonomous vehicles in edge cases (Cheng et al., 2024) and spontaneous, uncontrolled robot
movements in obstructed physical areas highlight our central concern - our current deep
reinforcement learning systems cannot provide clear explanations of their decisions. The latter
is not only an issue of design complexity; it is that the policies they learn have unarticulated
causal pathways from sensory inputs to actions - correlational relationships that do not entail
causation. Post-hoc explainable Al (XAI) methods cannot resolve this challenge. As
Carmichael (2024) notes, "most techniques produce explanations that do not align with any
meaningful reasoning behind the decisions," particularly when using policy gradients due to
time dependencies which complicate interpretation.

The inadequacy of current XAl paradigms manifests acutely in dynamic self-maintaining
structures. Techniques like SHAP values or interest mapping, while illuminating function
significance, cannot distinguish whether a sensor input (e.G., pedestrian trajectory) brought on
a movement (e.G., emergency braking) or simply correlated with contextual variables (e.G.,
visitors alerts). This indeterminacy impedes root-motive analysis in some unspecified time in
the future of failures, as evidenced with the aid of way of Appuhamilage, (2021) in their have
a look at of collision eventualities in which saliency maps misattributed causality to historical
past pixels in desire to crucial sellers. More substantially, as Scholkopf et al. (2021) emphasize,
"correlational factors lack counterfactual validity"—they cannot answer whether modifying
specific causal drivers may alter results. Such capability is imperative for self-reliant systems
running in open-worldwide environments, in which protection assurances require verifiable
causal chains between states, moves, and results.

To remedy this, we introduce Causal Policy Optimization (CPO), an integrative framework
embedding structural causal models (SCMs) at once into coverage gradient optimization. CPO
outperforms in asserting counterfactual reinforcement learning processes—which mostly focus
on model-primarily based planning (Vaskov et al., 2024) or reward shaping (Deng et al.,
2023)—about the effect of do-calculus (Jin et al. 2023) to dynamically limit policy updates
through counterfactual reasoning. In particular, it recasts the policy gradient as:

T

Vo] (0) = Ec~n, [X Vo logme(ac|st) - (At + A - Pscm(se, ar))]
t=0

where ®scm quantifies the causal effect of action ar through SCM-derived interventions,
thereby aligning policy improvements with identifiable cause-effect relationships. This
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architectural advancement will lead stores inherently to analyze causally grounded guidelines
whose position common feel can be audited through SCM interrogation.

Our contributions generate excitement for the field along 3 high major dimensions: First, CPO
is the first coverage gradient model that intrinsically reflects causal invariances along the route
of optimization, instead of post-justification methods. Second, we install the Causal Fidelity
Score (CFS), a novel metric based on causal graph edit distance that objectively quantifies
explanation fidelity to ground-truth structural equations, addressing the evaluation gap
highlighted in Scholkopf et al. (2021). Third, we validate CPO in high-fidelity self-contained
settings that include CARLA urban driving benchmarks under adverse weather, and physical
Turtlebot3 navigation in cluttered human-inhabited spaces, and filling the simulation reality
gap so prevalent in current DRL research (Assaad et al., 2008).

The balance of the paper sequentially addresses those contributions: Section 2 approaches
related work; Section 3 sets the theoretical basis for CPO; Section 4 lays out experimental
methods; Section 5 lays out empirical results; Section 6 discusses implications and challenges;
Section 7 closes.

Literature Review

The foundation of contemporary self-sustaining structures increasingly relies on deep
reinforcement learning (DRL), where coverage gradient methods, especially Proximal Policy
Optimization (PPO) (Gu et al., 2021) and Trust Region Policy Optimization (TRPO) (Meng et
al., 2021), have observed remarkable success in mastering complex tasks ranging from robot
locomotion (Zhang & Han, 2024) to autonomous vehicle control (Kiran et al., 2021). These
algorithms optimize parameterized policies via gradient ascent using Monte Carlo estimates to
explore high dimensional state spaces. However, their "black-box" nature raises significant
interpretability issues. For example, Lehmann (2024) experimentally discovered that coverage
gradients exploit spurious correlations in reward signals, leading to policies that suffer
catastrophic failures when deployed in distributionally shifted environments. This fragility
becomes acute in safety-critical settings; for instance, Waymo's (2022) safety report illustrated
18 unexplained disengagements by DRL-based controllers across problematic traffic
situations, exposing the operational hazards of opaque decision-making (Rouff & Watkins,
2022).

Consequently, Explainable RL (XRL) approaches have emerged and can broadly be categorize
as publish-hot and intrinsic methods. Post-hoc methods such as SHAP (Min et al. 2023) and
LIME (Polat Erdeniz et al., 2022) retrospectively mapped coverage selections to observable
features. While they are powerful for static classifiers, and Wang and Aouf (2024)
demonstrated their limitations in DRL, essentially on the grounds that very long sequences of
actions in dynamic systems can lead to explanation myopia— consider SHAP values assigned
to a self-driving car's breaking action, which inherently ignored causal dependencies based on
earlier acceleration decisions. Similarity, virtue based intrinsic methods (Cheng et al., 2025;
Hu et al., 2024) visualize highlight states but do not provide a good cause-ceased link, in
Dazeley et al's (2023) findings of drone navigating tasks, attention maps included clouds as
relevancy over obstacles that can lead to the crashing of the drone. These limitations highlight
a critical disconnect between contemporary XRL system what features drove decisions and
traces back to reasons why the features were causally consequential.

The interpretability crisis has sparked interest in causal inference frameworks. Structural
Causal Models (SCMs) (Jin et al. 2023) formalize cause-impact relationships through directed
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acyclic graphs (DAGs) and do-calculus operators, allowing for counterfactual reasoning (e.G.,
"Would the robot have collided if Object X was absent?"). Wu causality (Wu, 2023) also makes
available statistical tests for temporal precedence, yet to be valid, these tests rely on the
assumption that there are no latent confounders. This assumption often fails in partially
observable autonomous environments (Zeng et al, 2024). Recent efforts to integrate causality
into RL have yielded promising but fragmented advances. Model-based approaches dominate:
Vaskov et al. (2024) used SCMs to simulate counterfactual trajectories for safe planning, while
Deng et al. (2023) applied causal discovery to reward function design. These methods,
however, treat causality as an external validator rather than an optimization constraint, leaving
policy gradients untouched. Hu et al. (2022) made strides by embedding causal graphs into Q-
learning, but their value-function-centric approach is incompatible with policy gradient
paradigms that underpin modern autonomous systems. Hu et al.’s (2023) causal policy
gradients constitute the nearest antecedent, but their work simply adjusts benefit estimates the
usage of causal bounds—falling brief of structural integration with gradient updates and
offering no mechanism for real-time rationalization era.

The discipline thus confronts a conspicuous void: no framework exists that endogenously
integrates SCMs into coverage gradient optimization to simultaneously beautify overall
performance and generate auditable causal explanations. As Deng et al. (2023) concluded of
their survey, "Current causal RL strategies either sacrifice coverage performance for
interpretability or forfeit causal rigor for scalability." This gap impedes deployment in domain
names like medical robotics (Morales et al., 2021) and business autonomy (Varadarajan et al.,
2022), where regulatory compliance needs both excessive overall performance and causal
traceability. Our work bridges this via introducing causal invariances without delay into policy
gradient updates—an innovation enabling real-time interpretability without compromising
operational efficacy.

Methodology

Our Causal Policy Optimization (CPO) framework synthesizes structural causality with policy
gradient optimization through a recursively coupled architecture, wherein a Causal
Intervention Module dynamically constrains coverage updates while producing real-time,
auditable factors. This bidirectional integration—stimulated by using Jin et al.’s causal
hierarchy (Jin et al. 2023) but novel in its gradient-stage implementation—resolves the causal
misalignment pervasive in conventional deep reinforcement gaining knowledge of (DRL),
wherein rules make the most spurious correlations (Lehmann, 2024). As illustrated
computationally, raw sensor streams (LiDAR, RGB, IMU) from autonomous systems feed into
a feature extractor, whose outputs condition both the policy network and a differentiable
Structural Causal Model (SCM) engine. Crucially, gradient signals from the policy loss are
intercepted by the SCM module, which computes counterfactual action effects via do-
operators, then reprojects causally rectified gradients back into policy optimization. This closed
loop ensures actions satisfy invariant cause-effect relationships even in non-stationary
environments.

Algorithmic Formalization

CPO’s core innovation resides in augmenting advantage estimates with causal effect
quantifiers. Consider a policy mg parameterized by 6. The standard policy gradient theorem
yields:
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T
Vo] (0) = Ec~n, [X Vo logme(at|st) A(st, ar)]

t=0

where A(st, at) denotes the generalized advantage estimator (Abbott et al., 2022). CPO
introduces a *causal advantage Acausal that integrates SCM-derived interventions:

Acausa (5,6 = As6,0) + 2 (B 40y [RE)] = Egapa RG]
¢SCM?St,at)

Here, ®scm quantifies the causal effect of action a: by contrasting interventional (Pdo(a,)) and
observational (P(at)) state transitions (Jin et al. 2023). The gradient update thus becomes:

T

VoJcro(8) = E: [, Vo logme(at|st) - Acausal(St, ar)]
t=0

The causal coefficient A balances reward maximization against causal fidelity, optimized via
constrained Bayesian methods (Assaad and Shakah, 2024):

A* = argmin[Lreward(A) + ¥ * Leawsa(D)], ¥ >0
2

This formulation compels policies to favor causally valid actions, mitigating the "reward
hacking" prevalent in DRL (Chen et al., 2024).

Experimental Environments

We deployed CPO across three escalating-complexity tiers, each with annotated SCM ground
truth:

Table 1: Environment Specifications and Causal Complexity

Adversarial Causal
Tier Platform SCM Variables Verss Validation
Conditions .
Mechanism
. . Safety Gym 18 cl.ls.cretege.g._, Actuator Synthetl.c SCMs
Simulation . collision_risk = . . with
(Jietal., . = noise, moving .
(Low) gripper_force X randomized
2023) — . obstacles
proximity) confounders
Dynamic
CARLA 52 continuous(e.g., occlusion, Programmable
Simulation 0.9.14 + pedestrian_intent = sensor SCM API
(High) Causal 0.7xvehicle velocity + dropout, (Vaskovetal.,
Extension 0.3xcrosswalk_status) adversarial 2024)
weather
. . Real clutter,
Physical | TurtleBot3 8 hybrid(e.g., lichtin Expert-
(Real) Waffle Pi + human_gesture — Vagrianc%: annotated video
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Adversarial Causal
Tier Platform SCM Variables versar Validation
Conditions .
Mechanism
Azure navigation_velocity: logs (Morales et
Kinect =0.82+0.05) al., 2021)

Tiered validation strategy. Safety Gym tests basic causal integration; CARLA evaluates
robustness under perceptual noise; TurtleBot3 confirms real-world viability. SCMs were
encoded as differentiable PyTorch modules, enabling automatic gradient propagation.

Metrics and Baselines
We quantified performance and interpretability using:

Performance Metrics
e Discounted Cumulative Return: })I_, yt ¢
e Task Success Rate: Binary outcome over 100 trials
e Collision Frequency: Critical safety violations
Interpretability Metrics
e Causal Fidelity Score (CFS):

CFS = 1 — I Epolicy - ESCM "F

Il Escm lIF
where E denotes adjacency matrices of causal graphs extracted from policies vs. ground
truth (Assaad et al., 2025).

o Inference Latency: Mean decision time (ms)

Table 2: Baseline Methods and Their Limitations

Baseline Key Mechanism Deficiencies Relative to CPO
PPO (Guet al., 2021) Vanilla policy Causal agnosticism; explanations
gradient unavailable
PPO + SHAP (Min et Post-hoc Shapley Explanations non-causal; latency >300ms
al. 2023) values
DAC (Huetal., 2022) | Causal Q-learning | Incompatible with policy gradients; no real-
time explanations

Baseline selection rationale. DAC represents state-of-the-art causal RL but operates at the
value-function level, rendering it unsuitable for policy-centric autonomous systems.

Table 3: Safety-Centric Evaluation Protocol

Metric CARLA (Sim) | TurtleBot3 (Real) | Threshold
Collision Rate (%) 32+09 7114 <10%
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Metric CARLA (Sim) | TurtleBot3 (Real) | Threshold
CFS 0.89+0.03 0.76 = 0.05 >0.75
Latency (ms) 110+ 12 140 + 18 <200

Safety benchmarks. CPO achieved sub-threshold collision rates while maintaining real-time
operation, satisfying ISO 21448 SOTIF standards for autonomous systems (Sun et al. 2023).

Implementation Details

e Network Architecture: 3-layer GRU (256 units) + SCM emulator (4-layer MLP)

e Training: 1M steps, Adam optimizer (Ir=3e-4), batch size=512

e SCM Integration: Causal effects ®scm computed via automatic differentiation
through SCM parameters

e Hardware: NVIDIA A100 (simulation), Jetson AGX Xavier (real-world)

Results & Analysis
Quantitative Performance Across Environments

CPO consistently demonstrated superior interpretability-performance Pareto -efficiency
compared to all baselines. As synthesized in Table 4, our framework achieved near-optimal
task performance while establishing unprecedented causal transparency—validating the core
thesis that gradient-level causal integration enhances both safety and auditability.

Table 4: Cross-Environment Performance Benchmarking

Causal Decision
Cumulative 3 Collision Stability (¢
Method Fidelity Latency (ms) o
Return (1) Score (1) Q) Rate (%) (]) | Return) (])
CPO 9.72 £ 0.31 0.89 + 0.05 122 £ 11 3.2+09 0.31
(Ours)
PPO 9.91 +0.18 0.32+0.08 98 £9 127+ 1.6 0.52
PPO +
SHAP 9.48 £ 0.42 0.61 £0.07 318 +24 89+12 0.49
DAC 8.23 £0.57 0.77 £0.06 185+ 16 63+1.1 0.45

Aggregated metrics across CARLA (urban driving), Safety Gym (robotic manipulation), and
TurtleBot3 (physical navigation) environments. CPO maintained 98.1% of PPO’s performance
while increasing causal fidelity by 178% and reducing collisions by 74.8%. Stability was
quantified as standard deviation of returns under environmental perturbations (lower=better).
All differences vs. baselines significant at p<0.001 (ANOVA with Tukey HSD).

The marginal deficit in cumulative return (-1.9% vs. PPO) reflects CPO’s causal
conservatism—rejecting high-reward but causally invalid actions. For example, in CARLA
overtaking scenarios, CPO avoided aggressive maneuvers during LiDAR occlusion events that
PPO exploited for short-term rewards but caused 22.3% more collisions. This aligns with Kiran
et al.’s (2021) observation that "DRL policies optimize correlated rewards at the expense of
causal integrity."
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Qualitative Insights from Critical Scenarios
Case Study 1: Sudden Obstacle Avoidance Under Sensor Degradation

During CARLA fog scenarios (visibility <15m), CPO generated auditable causal traces
explaining avoidance maneuvers:

"Emergency braking (intensity=0.82) triggered by pedestrian trajectory (f=0.67),
road friction ($=0.28), and contextual fog density (p=0.05). Counterfactual: If
pedestrian_y velocity=0, braking probability decreases from 92% to 11%
(confidence interval: 89-95%)."

Heat map of causal attribution: Emergency braking scenario

Adversarial heaw_mincamen_lens_flare

B Pedestrians (a major causal factor)
I Road surface (secondary causal factor)
Fog (non-causal association)

Figure 1: Causal Attribution Heatmap

Real-time causal attribution during fog-induced occlusion. CPO correctly localized the
pedestrian (ground-truth position: [x=124, y=87]) despite 70% LiDAR dropout, while SHAP
erroneously attributed 61% influence to cloud artifacts (false positive).

Case Study 2: Robotic Recovery from Actuator Failure

In Safety Gym, when gripper torque dropped 40% due to simulated hydraulic failure, CPO’s
SCM module detected anomalous force readings and triggered policy adaptation:

Received: August 07, 2025 353



International Journal of Applied Mathematics
Volume 38 No. 4s, 2025
ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

"Object grasp failure attributed to torque deficit (0=0.78). Compensatory strategy:
Increase contact duration by 300ms ($=0.92)."

Failure Mode and Sensitivity Analysis

CPO’s performance degraded predictably with SCM inaccuracies, confirming that causal
efficacy depends on model correctness. Table 5 quantifies this relationship across error types:

Table 5: Impact of SCM Specification Errors

Error Cumulative Failure Rate
Error Type Magnitude Return CFS Increase
None (Optimal) 0% 9.72 £0.31 0.89 Baseline
()
Mis-specified Edge 30% edges 8.95+049 | 0.71 206%
ncorrect
Omitted Confounder | 1 latent variable 8.12 +£0.58 0.63 318%
I“c"“'ethOl;I‘:]““"’“al Linear — Binary | 7.23+0.68 | 0.52 569%

Sensitivity to SCM imperfections. "Mis-specified Edge": Incorrect causal relationships (e.g.,
pedestrian_speed not affecting braking). "Omitted Confounder": Unmodeled variables (e.g.,
road incline). "Incorrect Functional Form": Mismatched SCM equations. Performance
degradation followed Jin et al.’s (2023) identifiability theory—errors violating backdoor
criterion caused exponential failure increases.

i CFS and Performance Degradation under SCM Errors
T

o.2 o .

0.5 S~

Causal Fidelity Seore (CFS)
o
7

o 1o 20 30 a0 £
SCM Error Rate (%)

Critical Threshold (30%)

Figure 2: CFS-Return Degradation Curve

The CFS-performance co-degradation under SCM errors. Critical inflection occurred at 30%
error—consistent with identifiability bounds in partially observable systems (Zeng et al.,
2024).

Stability Under Distributional Shift

CPO exhibited remarkable invariance to environmental non-stationarities. When tested on
CARLA’s "WeatherShift" benchmark—where training occurred in clear conditions but testing
introduced monsoons—CPO maintained 89.7% of its performance (vs. 52.3% for PPO).
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Policy Robustness under Environmental Perturbations
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Figure 3: Performance Variance Across Adversarial Tiers

Policy robustness under escalating perturbations. CPO (blue) maintained stable returns due to
causal invariances (e.g., "collision risk depends on relative velocity, not visibility"), while PPO
(red) overfitted to perceptual correlations. Error bands=95% CI over 100 trials.

Quantitatively, CPO reduced return variance by 40.4% versus PPO (6=0.31 vs. 0.52) and
36.7% versus DAC. This stability proved critical in physical tests, where TurtleBot3 achieved
83% success in cluttered environments under lighting variations that reduced PPO’s
performance to 47%.

Causal-Throughput Tradeoff Optimization

The causal coefficient A (Eq. 4) modulated a controllable fidelity-throughput tradeoff. As
Figure 4 shows, increasing A enhanced CFS but incurred computational costs:

- Pareto Frontier: Causal Fidelity vs. Latency Tradeoff

0.8 1

0.6

0.4 '____._____.,_---l"

F---Y--——=-}-

H
(=]
(=]
Decisi

5w
0.2

0.0 0.2 0.4 0.6 0.8 10 12 14
A (Causal Coefficient)

Causal Fidelity Score (CFS)

=0.9

Optimal A

Figure 4: A Optimization Pareto Frontier
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The CFS-latency tradeoff governed by A. At A=0.9, CPO achieved 89% CFS with 122ms
latency—within real-time constraints for autonomous driving (Sun et al. 2023). Values A>1.2
caused diminishing returns.

Statistical and Operational Significance
All claims were validated rigorously:

e Statistical: p<0.001 for all key metrics (t-tests; ANOVA for multi-group); Cohen’s
d>1.2 for CFS/collision rates

e Operational: CPO satisfied ISO 21448 SOTIF standards (collision rate <5% in edge
cases) and real-time constraints (<200ms latency)

e Economic: 63% reduction in collision-related costs versus PPO in simulated fleet
deployments

Discussion

The empirical success of CPO—demonstrating near-state-of-the-art task performance while
achieving unprecedented causal interpretability—stems from its foundational innovation:
embedding causal invariances directly into policy gradient updates. Conventional deep
reinforcement learning (DRL) agents, as evidenced by PPO’s higher collision rates (Table 1),
optimize correlated reward signals that often misrepresent true causal dynamics (Lehmann,
2024). CPO circumvents this by constraining policy updates to align with SCM-derived
counterfactuals, forcing the agent to learn causally grounded relationships (e.g., "pedestrian
trajectory causes braking" rather than "fog correlates with braking"). This causal regularization
acts as an inductive bias, enhancing generalization to novel environmental conditions—
explaining CPO’s 40.4% lower performance variance under distributional shifts (Figure 3).
The marginal reward deficit (1.9% vs. PPO) reflects not inefficiency, but avoidance of causally
invalid shortcuts, corroborating Deng et al.’s (2023) finding that "causal constraints trade
transient rewards for robustness."

CPO’s interpretative superiority arises from its intrinsic explainability architecture. Unlike
post-hoc methods (e.g., PPO+SHAP) that approximate feature importance post-decision,
CPO’s SCM module generates explanations during policy computation by design. This allows
it to expose true causal mediators—such as the causal effect of gripper torque on object
manipulation success—while filtering out correlated noise (e.g., background lighting changes).
Consequently, CPO achieved a 0.89 Causal Fidelity Score (CFS) versus 0.61 for SHAP (Table
1), resolving the "faithfulness crisis" in XAI where explanations contradict model logic
(Carmichael, 2024).

Limitations and Boundary Conditions

CPO’s efficacy is contingent on the accuracy of its SCM specifications. As quantified in Table
2, errors exceeding 30% (e.g., omitting confounders like road incline) degraded performance
by up to 25.6% and CFS by 41.6%. This aligns with Jin et al.’s (2023) identifiability theory—
erroneous SCMs violate the backdoor criterion, biasing causal estimates. Practically, this
mandates high-quality domain knowledge or data-driven causal discovery for SCM
initialization.

Computationally, CPO introduced a 20.2% training overhead due to SCM-based counterfactual
simulations. While inference latency remained real-time-compatible (122ms), scaling to
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massively parallel systems (e.g., warechouse robotics swarms) may require SCM distillation
techniques (Du et al., 2025).

Practical Recommendations

CPO is ideally suited for safety-critical autonomous systems where interpretability is non-
negotiable:

e Medical Robetics: Surgical robots requiring causal audit trails for error analysis (e.g.,
"Did tissue rigidity cause excessive force?").

e Autonomous Transport: Vehicles operating under regulatory frameworks mandating
causal accountability (e.g., EU Al Act, 2024).

e Industrial Autonomy: Fault diagnosis in manufacturing robots handling hazardous
materials.

Conversely, CPO is less appropriate for ultra-low-latency domains (<50ms decisions) like
high-frequency trading, where its causal overhead (~22ms) may outweigh interpretability
benefits. In such contexts, hybrid approaches—using CPO for offline policy auditing and PPO
for deployment—offer a compromise.

Ethical Implications

CPO transforms the ethics of autonomous systems through causal accountability. By
generating auditable SCM traces (e.g., "Collision caused by sensor failure (f=0.93), not
algorithm error"), it enables precise liability attribution:

e Manufacturers can exonerate themselves by proving failures stemmed from
unmodeled external factors (e.g., extreme weather).

e Regulators gain forensic tools to audit black-box systems, enforcing Article 14 of the
EU AI Act’s "transparency mandate."

e End-users receive intelligible explanations for system failures (e.g., "Braking
overridden due to ice detection").

This shifts ethical paradigms from opaque "black-box liability" to evidence-based causal
attribution, potentially reducing litigations by clarifying responsibility chains (Kacianka and
Pretschner, 2021).

Conclusion

This research has established Causal Policy Optimization (CPO) as a foundational framework
for integrating causal inference with deep reinforcement learning, enabling autonomous
systems to achieve high performance and intrinsic interpretability without tradeoffs. By
embedding Structural Causal Models (SCMs) directly into policy gradient updates—through
novel causal advantage functions and real-time intervention calculus—CPO reconciles the
historical dichotomy between operational efficacy and decision transparency. Thorough
validation in CARLA driving simulations, Safety Gym robot tasks, and physical TurtleBot3
deployments shows that CPO retains 98.1% of conventional PPO’s cumulative return, while
increasing causal fidelity by 178% and reducing collision frequencies by 74.8%. This
advancement is not just advancing by algorithms, but fundamentally transformed realizing true
autonomy in which regulations develop robustly during environmental perturbations (via
40.4% of this study’s performance variance) based on analyzing causal invariant
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relationships—but not correlated fog patterns, the act of braking due to pedestrian kinematics
instead.

There are two commands from this work. First, SCMs have useful inductive biases for DRL,
converting rules from correlative pattern-matchers to a causal engine which resists
distributional shifts—in a property empirically established below destructive conditions.
Second, CPO's success is dependent on nearly correct causal assumptions, Evaluation 1,
displayed in Table 2, showed errors in SCMs above 30% resulted in non-linear degradation of
average performance. This reinforces the thesis stated by Jin et al. (2023), "causal identifiability
comes before optimization", leading to a pressing need for future work on automatic causal
discovery to remove reliance on a specific expert SCM.

Forthcoming work will pursue three key directions:

1. Automated Causal Representation Learning: Integrating differentiable causal
structure discovery (e.g., NOTEARS-based methods) with CPO to infer SCMs from
observational data, reducing manual specification burdens.

2. Multi-Agent CPO: Extending the framework to collaborative and competitive settings
(e.g., autonomous fleets), where emergent behaviors demand counterfactual reasoning
about other agents’ intents.

3. Resource-Aware Causal Compression: Developing lightweight SCM
approximations using knowledge distillation (Du et al., 2025) to deploy CPO on edge
devices with <50ms latency.

Ultimately, CPO moves past conventional explainable RL by ensuring causal auditability to be
a core property of policy optimization, no longer an external feature. This reduces independent
systems from still opaque black boxes into accountable repositories whose choices can be
scrutinized, understood, and relied upon. As regulations, like the EU Al Act (2024) mandate
causal transparency for safety-critical AI, CPO provides the technical foundation for a whole
new generation of ethically deployable autonomy.
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