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Abstract 

Deep Reinforcement Learning (DRL) faces significant deployment challenges in safety-critical 
autonomous systems—such as self-driving vehicles and surgical robots—due to the inherent 
opacity of policy decisions, where unexplained failures obstruct diagnostics and accountability. 
This work introduces Causal Policy Optimization (CPO), a novel framework that 
fundamentally addresses this limitation by integrating Structural Causal Models (SCMs) with 
policy gradient optimization (e.g., PPO). CPO’s core innovation leverages do-calculus-based 
interventions to modify policy gradients, embedding causal invariances directly into the 
learning process. Extensive validation across CARLA driving simulations, Safety Gym robotic 
environments, and physical TurtleBot3 deployments demonstrates that CPO achieves 40-60% 
higher interpretability than traditional XAI methods (SHAP/LIME), quantified by the Causal 
Fidelity Score (CFS=0.89), while preserving ≥95% of the performance of conventional policies 
(cumulative return: 9.72 vs. 9.91 for PPO). Crucially, CPO reduces collision rates by 74.8% in 
edge-case scenarios and generates real-time, auditable causal explanations (e.g., "Emergency 
braking triggered by pedestrian trajectory (β=0.67)"). This breakthrough enables regulatory 
compliance and precise liability attribution, advancing trustworthy autonomy for high-stakes 
applications where human lives depend on transparent decision-making. 
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Introduction 

The ascendancy of deep reinforcement studying (DRL) in self-sustaining cyber-physical 
structures—spanning self-driving motors, collaborative robotics, and business automation— 
has induced exceptional operational competencies. Still, this advancement is grossly 
constrained by the interpretability gap related to high-dimensional policy networks. Algorithms 
based on proximal policy optimization (PPO) and actor-critic architectures are relatively robust 
in simulation, often showing impressive skill performance; however, they are not easy or safe 
to deploy in actual safety-critical situations. Recently, even unexplained disengagement of 
autonomous vehicles in edge cases (Cheng et al., 2024) and spontaneous, uncontrolled robot 
movements in obstructed physical areas highlight our central concern - our current deep 
reinforcement learning systems cannot provide clear explanations of their decisions. The latter 
is not only an issue of design complexity; it is that the policies they learn have unarticulated 
causal pathways from sensory inputs to actions - correlational relationships that do not entail 
causation. Post-hoc explainable AI (XAI) methods cannot resolve this challenge. As 
Carmichael (2024) notes, "most techniques produce explanations that do not align with any 
meaningful reasoning behind the decisions," particularly when using policy gradients due to 
time dependencies which complicate interpretation. 

The inadequacy of current XAI paradigms manifests acutely in dynamic self-maintaining 
structures. Techniques like SHAP values or interest mapping, while illuminating function 
significance, cannot distinguish whether a sensor input (e.G., pedestrian trajectory) brought on 
a movement (e.G., emergency braking) or simply correlated with contextual variables (e.G., 
visitors alerts). This indeterminacy impedes root-motive analysis in some unspecified time in 
the future of failures, as evidenced with the aid of way of Appuhamilage, (2021) in their have 
a look at of collision eventualities in which saliency maps misattributed causality to historical 
past pixels in desire to crucial sellers. More substantially, as Schölkopf et al. (2021) emphasize, 
"correlational factors lack counterfactual validity"—they cannot answer whether modifying 
specific causal drivers may alter results. Such capability is imperative for self-reliant systems 
running in open-worldwide environments, in which protection assurances require verifiable 
causal chains between states, moves, and results. 

To remedy this, we introduce Causal Policy Optimization (CPO), an integrative framework 
embedding structural causal models (SCMs) at once into coverage gradient optimization. CPO 
outperforms in asserting counterfactual reinforcement learning processes—which mostly focus 
on model-primarily based planning (Vaskov et al., 2024) or reward shaping (Deng et al., 
2023)—about the effect of do-calculus (Jin et al. 2023) to dynamically limit policy updates 
through counterfactual reasoning. In particular, it recasts the policy gradient as: 

 
 
 

𝑇 

∇𝜃𝐽(𝜃) = 𝔼𝜏∼𝜋
𝜃 

[∑ ∇𝜃 log𝜋𝜃(𝑎𝑡|𝑠𝑡) ⋅ (𝐴̂𝑡 + 𝜆 ⋅ ΦSCM(𝑠𝑡, 𝑎𝑡))] 
𝑡=0 

where ΦSCM quantifies the causal effect of action 𝑎𝑡 through SCM-derived interventions, 
thereby aligning policy improvements with identifiable cause-effect relationships. This 
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architectural advancement will lead stores inherently to analyze causally grounded guidelines 
whose position common feel can be audited through SCM interrogation. 

Our contributions generate excitement for the field along 3 high major dimensions: First, CPO 
is the first coverage gradient model that intrinsically reflects causal invariances along the route 
of optimization, instead of post-justification methods. Second, we install the Causal Fidelity 
Score (CFS), a novel metric based on causal graph edit distance that objectively quantifies 
explanation fidelity to ground-truth structural equations, addressing the evaluation gap 
highlighted in Schölkopf et al. (2021). Third, we validate CPO in high-fidelity self-contained 
settings that include CARLA urban driving benchmarks under adverse weather, and physical 
Turtlebot3 navigation in cluttered human-inhabited spaces, and filling the simulation reality 
gap so prevalent in current DRL research (Assaad et al., 2008). 

The balance of the paper sequentially addresses those contributions: Section 2 approaches 
related work; Section 3 sets the theoretical basis for CPO; Section 4 lays out experimental 
methods; Section 5 lays out empirical results; Section 6 discusses implications and challenges; 
Section 7 closes. 

Literature Review 

The foundation of contemporary self-sustaining structures increasingly relies on deep 
reinforcement learning (DRL), where coverage gradient methods, especially Proximal Policy 
Optimization (PPO) (Gu et al., 2021) and Trust Region Policy Optimization (TRPO) (Meng et 
al., 2021), have observed remarkable success in mastering complex tasks ranging from robot 
locomotion (Zhang & Han, 2024) to autonomous vehicle control (Kiran et al., 2021). These 
algorithms optimize parameterized policies via gradient ascent using Monte Carlo estimates to 
explore high dimensional state spaces. However, their "black-box" nature raises significant 
interpretability issues. For example, Lehmann (2024) experimentally discovered that coverage 
gradients exploit spurious correlations in reward signals, leading to policies that suffer 
catastrophic failures when deployed in distributionally shifted environments. This fragility 
becomes acute in safety-critical settings; for instance, Waymo's (2022) safety report illustrated 
18 unexplained disengagements by DRL-based controllers across problematic traffic 
situations, exposing the operational hazards of opaque decision-making (Rouff & Watkins, 
2022). 

Consequently, Explainable RL (XRL) approaches have emerged and can broadly be categorize 
as publish-hot and intrinsic methods. Post-hoc methods such as SHAP (Min et al. 2023) and 
LIME (Polat Erdeniz et al., 2022) retrospectively mapped coverage selections to observable 
features. While they are powerful for static classifiers, and Wang and Aouf (2024) 
demonstrated their limitations in DRL, essentially on the grounds that very long sequences of 
actions in dynamic systems can lead to explanation myopia— consider SHAP values assigned 
to a self-driving car's breaking action, which inherently ignored causal dependencies based on 
earlier acceleration decisions. Similarity, virtue based intrinsic methods (Cheng et al., 2025; 
Hu et al., 2024) visualize highlight states but do not provide a good cause-ceased link, in 
Dazeley et al's (2023) findings of drone navigating tasks, attention maps included clouds as 
relevancy over obstacles that can lead to the crashing of the drone. These limitations highlight 
a critical disconnect between contemporary XRL system what features drove decisions and 
traces back to reasons why the features were causally consequential. 

The interpretability crisis has sparked interest in causal inference frameworks. Structural 
Causal Models (SCMs) (Jin et al. 2023) formalize cause-impact relationships through directed 
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acyclic graphs (DAGs) and do-calculus operators, allowing for counterfactual reasoning (e.G., 
"Would the robot have collided if Object X was absent?"). Wu causality (Wu, 2023) also makes 
available statistical tests for temporal precedence, yet to be valid, these tests rely on the 
assumption that there are no latent confounders. This assumption often fails in partially 
observable autonomous environments (Zeng et al, 2024). Recent efforts to integrate causality 
into RL have yielded promising but fragmented advances. Model-based approaches dominate: 
Vaskov et al. (2024) used SCMs to simulate counterfactual trajectories for safe planning, while 
Deng et al. (2023) applied causal discovery to reward function design. These methods, 
however, treat causality as an external validator rather than an optimization constraint, leaving 
policy gradients untouched. Hu et al. (2022) made strides by embedding causal graphs into Q- 
learning, but their value-function-centric approach is incompatible with policy gradient 
paradigms that underpin modern autonomous systems. Hu et al.’s (2023) causal policy 
gradients constitute the nearest antecedent, but their work simply adjusts benefit estimates the 
usage of causal bounds—falling brief of structural integration with gradient updates and 
offering no mechanism for real-time rationalization era. 

The discipline thus confronts a conspicuous void: no framework exists that endogenously 
integrates SCMs into coverage gradient optimization to simultaneously beautify overall 
performance and generate auditable causal explanations. As Deng et al. (2023) concluded of 
their survey, "Current causal RL strategies either sacrifice coverage performance for 
interpretability or forfeit causal rigor for scalability." This gap impedes deployment in domain 
names like medical robotics (Morales et al., 2021) and business autonomy (Varadarajan et al., 
2022), where regulatory compliance needs both excessive overall performance and causal 
traceability. Our work bridges this via introducing causal invariances without delay into policy 
gradient updates—an innovation enabling real-time interpretability without compromising 
operational efficacy. 

Methodology 

Our Causal Policy Optimization (CPO) framework synthesizes structural causality with policy 
gradient optimization through a recursively coupled architecture, wherein a Causal 
Intervention Module dynamically constrains coverage updates while producing real-time, 
auditable factors. This bidirectional integration—stimulated by using Jin et al.’s causal 
hierarchy (Jin et al. 2023) but novel in its gradient-stage implementation—resolves the causal 
misalignment pervasive in conventional deep reinforcement gaining knowledge of (DRL), 
wherein rules make the most spurious correlations (Lehmann, 2024). As illustrated 
computationally, raw sensor streams (LiDAR, RGB, IMU) from autonomous systems feed into 
a feature extractor, whose outputs condition both the policy network and a differentiable 
Structural Causal Model (SCM) engine. Crucially, gradient signals from the policy loss are 
intercepted by the SCM module, which computes counterfactual action effects via do- 
operators, then reprojects causally rectified gradients back into policy optimization. This closed 
loop ensures actions satisfy invariant cause-effect relationships even in non-stationary 
environments. 

Algorithmic Formalization 

CPO’s core innovation resides in augmenting advantage estimates with causal effect 
quantifiers. Consider a policy 𝜋𝜃 parameterized by 𝜃. The standard policy gradient theorem 
yields: 
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𝑇 

∇𝜃𝐽(𝜃) = 𝔼𝜏∼𝜋𝜃 
[∑ ∇𝜃 log𝜋𝜃(𝑎𝑡|𝑠𝑡)𝐴(𝑠𝑡, 𝑎𝑡)] 
𝑡=0 

where 𝐴(𝑠𝑡, 𝑎𝑡) denotes the generalized advantage estimator (Abbott et al., 2022). CPO 
introduces a *causal advantage_ 𝐴ĉausal that integrates SCM-derived interventions: 

 

𝐴̂causal(𝑠𝑡, 𝑎𝑡) = 𝐴(𝑠𝑡, 𝑎𝑡) + 𝜆 ⋅ (𝔼𝑠′∼𝑃 
 
do(𝑎𝑡) 

[𝑅(𝑠′)] − 𝔼𝑠′∼𝑃(𝑎 )[𝑅(𝑠′)]) 
⏟ 

ΦSCM(𝑠𝑡,𝑎𝑡) 

Here, ΦSCM quantifies the causal effect of action 𝑎𝑡 by contrasting interventional (𝑃do(𝑎𝑡)) and 
observational (𝑃(𝑎𝑡)) state transitions (Jin et al. 2023). The gradient update thus becomes: 

𝑇 

∇𝜃𝐽CPO(𝜃) = 𝔼𝜏 [∑ ∇𝜃 log𝜋𝜃(𝑎𝑡|𝑠𝑡) ⋅ 𝐴ĉausal(𝑠𝑡, 𝑎𝑡)] 

𝑡=0 

The causal coefficient 𝜆 balances reward maximization against causal fidelity, optimized via 
constrained Bayesian methods (Assaad and Shakah, 2024): 

𝜆∗ = argmin[ℒreward(𝜆) + 𝛾 ⋅ ℒcausal(𝜆)], 𝛾 > 0 
𝜆 

This formulation compels policies to favor causally valid actions, mitigating the "reward 
hacking" prevalent in DRL (Chen et al., 2024). 

 

 
Experimental Environments 

We deployed CPO across three escalating-complexity tiers, each with annotated SCM ground 
truth: 

Table 1: Environment Specifications and Causal Complexity 
 

 
Tier 

 
Platform 

 
SCM Variables 

Adversarial 
Conditions 

Causal 
Validation 
Mechanism 

 
Simulation 

(Low) 

Safety Gym 
(Ji et al., 

2023) 

18 discrete(e.g., 
collision_risk = 
gripper_force × 

proximity) 

Actuator 
noise, moving 

obstacles 

Synthetic SCMs 
with 

randomized 
confounders 

 
 

Simulation 
(High) 

 
CARLA 
0.9.14 + 
Causal 

Extension 

 
52 continuous(e.g., 
pedestrian_intent = 

0.7×vehicle_velocity + 
0.3×crosswalk_status) 

Dynamic 
occlusion, 

sensor 
dropout, 

adversarial 
weather 

 
Programmable 

SCM API 
(Vaskov et al., 

2024) 

Physical 
(Real) 

TurtleBot3 
Waffle Pi + 

8 hybrid(e.g., 
human_gesture → 

Real clutter, 
lighting 
variance 

Expert- 
annotated video 
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Tier 

 
Platform 

 
SCM Variables 

Adversarial 
Conditions 

Causal 
Validation 
Mechanism 

 Azure 
Kinect 

navigation_velocity: 
β=0.82±0.05) 

 logs (Morales et 
al., 2021) 

Tiered validation strategy. Safety Gym tests basic causal integration; CARLA evaluates 
robustness under perceptual noise; TurtleBot3 confirms real-world viability. SCMs were 
encoded as differentiable PyTorch modules, enabling automatic gradient propagation. 

Metrics and Baselines 

We quantified performance and interpretability using: 

Performance Metrics 

 Discounted Cumulative Return: ∑𝑇 𝛾𝑡 𝑟𝑡 

 Task Success Rate: Binary outcome over 100 trials 
 Collision Frequency: Critical safety violations 

Interpretability Metrics 

 Causal Fidelity Score (CFS): 

CFS = 1 − 
∥ 𝐄policy − 𝐄SCM ∥𝐹 

∥ 𝐄SCM ∥𝐹 

where 𝐄 denotes adjacency matrices of causal graphs extracted from policies vs. ground 
truth (Assaad et al., 2025). 

 Inference Latency: Mean decision time (ms) 
 
 

Table 2: Baseline Methods and Their Limitations 
 

Baseline Key Mechanism Deficiencies Relative to CPO 

PPO (Gu et al., 2021) Vanilla policy 
gradient 

Causal agnosticism; explanations 
unavailable 

PPO + SHAP (Min et 
al. 2023) 

Post-hoc Shapley 
values 

Explanations non-causal; latency >300ms 

DAC (Hu et al., 2022) Causal Q-learning Incompatible with policy gradients; no real- 
time explanations 

Baseline selection rationale. DAC represents state-of-the-art causal RL but operates at the 
value-function level, rendering it unsuitable for policy-centric autonomous systems. 

 
 

 
Table 3: Safety-Centric Evaluation Protocol 

 

Metric CARLA (Sim) TurtleBot3 (Real) Threshold 

Collision Rate (%) 3.2 ± 0.9 7.1 ± 1.4 ≤10% 
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Metric CARLA (Sim) TurtleBot3 (Real) Threshold 

CFS 0.89 ± 0.03 0.76 ± 0.05 ≥0.75 

Latency (ms) 110 ± 12 140 ± 18 ≤200 

Safety benchmarks. CPO achieved sub-threshold collision rates while maintaining real-time 
operation, satisfying ISO 21448 SOTIF standards for autonomous systems (Sun et al. 2023). 

Implementation Details 

 Network Architecture: 3-layer GRU (256 units) + SCM emulator (4-layer MLP) 
 Training: 1M steps, Adam optimizer (lr=3e-4), batch size=512 
 SCM Integration: Causal effects ΦSCM computed via automatic differentiation 

through SCM parameters 

 Hardware: NVIDIA A100 (simulation), Jetson AGX Xavier (real-world) 

 
Results & Analysis 

Quantitative Performance Across Environments 

CPO consistently demonstrated superior interpretability-performance Pareto efficiency 
compared to all baselines. As synthesized in Table 4, our framework achieved near-optimal 
task performance while establishing unprecedented causal transparency—validating the core 
thesis that gradient-level causal integration enhances both safety and auditability. 

Table 4: Cross-Environment Performance Benchmarking 
 

 
Method 

Cumulative 
Return (↑) 

Causal 
Fidelity 
Score (↑) 

Decision 
Latency (ms) 

(↓) 

Collision 
Rate (%) (↓) 

Stability (σ 
Return) (↓) 

CPO 
(Ours) 

9.72 ± 0.31 0.89 ± 0.05 122 ± 11 3.2 ± 0.9 0.31 

PPO 9.91 ± 0.18 0.32 ± 0.08 98 ± 9 12.7 ± 1.6 0.52 

PPO + 
SHAP 

9.48 ± 0.42 0.61 ± 0.07 318 ± 24 8.9 ± 1.2 0.49 

DAC 8.23 ± 0.57 0.77 ± 0.06 185 ± 16 6.3 ± 1.1 0.45 

Aggregated metrics across CARLA (urban driving), Safety Gym (robotic manipulation), and 
TurtleBot3 (physical navigation) environments. CPO maintained 98.1% of PPO’s performance 
while increasing causal fidelity by 178% and reducing collisions by 74.8%. Stability was 
quantified as standard deviation of returns under environmental perturbations (lower=better). 
All differences vs. baselines significant at p<0.001 (ANOVA with Tukey HSD). 

The marginal deficit in cumulative return (-1.9% vs. PPO) reflects CPO’s causal 
conservatism—rejecting high-reward but causally invalid actions. For example, in CARLA 
overtaking scenarios, CPO avoided aggressive maneuvers during LiDAR occlusion events that 
PPO exploited for short-term rewards but caused 22.3% more collisions. This aligns with Kiran 
et al.’s (2021) observation that "DRL policies optimize correlated rewards at the expense of 
causal integrity." 
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Qualitative Insights from Critical Scenarios 

Case Study 1: Sudden Obstacle Avoidance Under Sensor Degradation 

During CARLA fog scenarios (visibility <15m), CPO generated auditable causal traces 
explaining avoidance maneuvers: 

"Emergency braking (intensity=0.82) triggered by pedestrian trajectory (β=0.67), 
road friction (β=0.28), and contextual fog density (β=0.05). Counterfactual: If 
pedestrian_y_velocity=0, braking probability decreases from 92% to 11% 
(confidence interval: 89-95%)." 

 

 
Figure 1: Causal Attribution Heatmap 

Real-time causal attribution during fog-induced occlusion. CPO correctly localized the 
pedestrian (ground-truth position: [x=124, y=87]) despite 70% LiDAR dropout, while SHAP 
erroneously attributed 61% influence to cloud artifacts (false positive). 

 
 

Case Study 2: Robotic Recovery from Actuator Failure 

In Safety Gym, when gripper torque dropped 40% due to simulated hydraulic failure, CPO’s 
SCM module detected anomalous force readings and triggered policy adaptation: 
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"Object grasp failure attributed to torque deficit (Φ=0.78). Compensatory strategy: 
Increase contact duration by 300ms (β=0.92)." 

Failure Mode and Sensitivity Analysis 

CPO’s performance degraded predictably with SCM inaccuracies, confirming that causal 
efficacy depends on model correctness. Table 5 quantifies this relationship across error types: 

Table 5: Impact of SCM Specification Errors 
 

Error Type 
Error 

Magnitude 
Cumulative 

Return 
CFS 

Failure Rate 
Increase 

None (Optimal) 0% 9.72 ± 0.31 0.89 Baseline 

Mis-specified Edge 
30% edges 
incorrect 

8.95 ± 0.49 0.71 206% 

Omitted Confounder 1 latent variable 8.12 ± 0.58 0.63 318% 

Incorrect Functional 
Form 

Linear → Binary 7.23 ± 0.68 0.52 569% 

Sensitivity to SCM imperfections. "Mis-specified Edge": Incorrect causal relationships (e.g., 
pedestrian_speed not affecting braking). "Omitted Confounder": Unmodeled variables (e.g., 
road incline). "Incorrect Functional Form": Mismatched SCM equations. Performance 
degradation followed Jin et al.’s (2023) identifiability theory—errors violating backdoor 
criterion caused exponential failure increases. 

 

 
Figure 2: CFS-Return Degradation Curve 

The CFS-performance co-degradation under SCM errors. Critical inflection occurred at 30% 
error—consistent with identifiability bounds in partially observable systems (Zeng et al., 
2024). 

Stability Under Distributional Shift 

CPO exhibited remarkable invariance to environmental non-stationarities. When tested on 
CARLA’s "WeatherShift" benchmark—where training occurred in clear conditions but testing 
introduced monsoons—CPO maintained 89.7% of its performance (vs. 52.3% for PPO). 
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Figure 3: Performance Variance Across Adversarial Tiers 

Policy robustness under escalating perturbations. CPO (blue) maintained stable returns due to 
causal invariances (e.g., "collision risk depends on relative velocity, not visibility"), while PPO 
(red) overfitted to perceptual correlations. Error bands=95% CI over 100 trials. 

Quantitatively, CPO reduced return variance by 40.4% versus PPO (σ=0.31 vs. 0.52) and 
36.7% versus DAC. This stability proved critical in physical tests, where TurtleBot3 achieved 
83% success in cluttered environments under lighting variations that reduced PPO’s 
performance to 47%. 

Causal-Throughput Tradeoff Optimization 

The causal coefficient λ (Eq. 4) modulated a controllable fidelity-throughput tradeoff. As 
Figure 4 shows, increasing λ enhanced CFS but incurred computational costs: 

 
 
 

Figure 4: λ Optimization Pareto Frontier 
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The CFS-latency tradeoff governed by λ. At λ=0.9, CPO achieved 89% CFS with 122ms 
latency—within real-time constraints for autonomous driving (Sun et al. 2023). Values λ>1.2 
caused diminishing returns. 

Statistical and Operational Significance 

All claims were validated rigorously: 

 Statistical: p<0.001 for all key metrics (t-tests; ANOVA for multi-group); Cohen’s 
d>1.2 for CFS/collision rates 

 Operational: CPO satisfied ISO 21448 SOTIF standards (collision rate <5% in edge 
cases) and real-time constraints (<200ms latency) 

 Economic: 63% reduction in collision-related costs versus PPO in simulated fleet 
deployments 

Discussion 

The empirical success of CPO—demonstrating near-state-of-the-art task performance while 
achieving unprecedented causal interpretability—stems from its foundational innovation: 
embedding causal invariances directly into policy gradient updates. Conventional deep 
reinforcement learning (DRL) agents, as evidenced by PPO’s higher collision rates (Table 1), 
optimize correlated reward signals that often misrepresent true causal dynamics (Lehmann, 
2024). CPO circumvents this by constraining policy updates to align with SCM-derived 
counterfactuals, forcing the agent to learn causally grounded relationships (e.g., "pedestrian 
trajectory causes braking" rather than "fog correlates with braking"). This causal regularization 
acts as an inductive bias, enhancing generalization to novel environmental conditions— 
explaining CPO’s 40.4% lower performance variance under distributional shifts (Figure 3). 
The marginal reward deficit (1.9% vs. PPO) reflects not inefficiency, but avoidance of causally 
invalid shortcuts, corroborating Deng et al.’s (2023) finding that "causal constraints trade 
transient rewards for robustness." 

CPO’s interpretative superiority arises from its intrinsic explainability architecture. Unlike 
post-hoc methods (e.g., PPO+SHAP) that approximate feature importance post-decision, 
CPO’s SCM module generates explanations during policy computation by design. This allows 
it to expose true causal mediators—such as the causal effect of gripper torque on object 
manipulation success—while filtering out correlated noise (e.g., background lighting changes). 
Consequently, CPO achieved a 0.89 Causal Fidelity Score (CFS) versus 0.61 for SHAP (Table 
1), resolving the "faithfulness crisis" in XAI where explanations contradict model logic 
(Carmichael, 2024). 

Limitations and Boundary Conditions 

CPO’s efficacy is contingent on the accuracy of its SCM specifications. As quantified in Table 
2, errors exceeding 30% (e.g., omitting confounders like road incline) degraded performance 
by up to 25.6% and CFS by 41.6%. This aligns with Jin et al.’s (2023) identifiability theory— 
erroneous SCMs violate the backdoor criterion, biasing causal estimates. Practically, this 
mandates high-quality domain knowledge or data-driven causal discovery for SCM 
initialization. 

Computationally, CPO introduced a 20.2% training overhead due to SCM-based counterfactual 
simulations. While inference latency remained real-time-compatible (122ms), scaling to 
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massively parallel systems (e.g., warehouse robotics swarms) may require SCM distillation 
techniques (Du et al., 2025). 

Practical Recommendations 

CPO is ideally suited for safety-critical autonomous systems where interpretability is non- 
negotiable: 

 Medical Robotics: Surgical robots requiring causal audit trails for error analysis (e.g., 
"Did tissue rigidity cause excessive force?"). 

 Autonomous Transport: Vehicles operating under regulatory frameworks mandating 
causal accountability (e.g., EU AI Act, 2024). 

 Industrial Autonomy: Fault diagnosis in manufacturing robots handling hazardous 
materials. 

Conversely, CPO is less appropriate for ultra-low-latency domains (<50ms decisions) like 
high-frequency trading, where its causal overhead (∼22ms) may outweigh interpretability 
benefits. In such contexts, hybrid approaches—using CPO for offline policy auditing and PPO 
for deployment—offer a compromise. 

Ethical Implications 

CPO transforms the ethics of autonomous systems through causal accountability. By 
generating auditable SCM traces (e.g., "Collision caused by sensor failure (β=0.93), not 
algorithm error"), it enables precise liability attribution: 

 Manufacturers can exonerate themselves by proving failures stemmed from 
unmodeled external factors (e.g., extreme weather). 

 Regulators gain forensic tools to audit black-box systems, enforcing Article 14 of the 
EU AI Act’s "transparency mandate." 

 End-users receive intelligible explanations for system failures (e.g., "Braking 
overridden due to ice detection"). 

This shifts ethical paradigms from opaque "black-box liability" to evidence-based causal 
attribution, potentially reducing litigations by clarifying responsibility chains (Kacianka and 
Pretschner, 2021). 

Conclusion 

This research has established Causal Policy Optimization (CPO) as a foundational framework 
for integrating causal inference with deep reinforcement learning, enabling autonomous 
systems to achieve high performance and intrinsic interpretability without tradeoffs. By 
embedding Structural Causal Models (SCMs) directly into policy gradient updates—through 
novel causal advantage functions and real-time intervention calculus—CPO reconciles the 
historical dichotomy between operational efficacy and decision transparency. Thorough 
validation in CARLA driving simulations, Safety Gym robot tasks, and physical TurtleBot3 
deployments shows that CPO retains 98.1% of conventional PPO’s cumulative return, while 
increasing causal fidelity by 178% and reducing collision frequencies by 74.8%. This 
advancement is not just advancing by algorithms, but fundamentally transformed realizing true 
autonomy in which regulations develop robustly during environmental perturbations (via 
40.4%  of  this  study’s  performance  variance)  based  on  analyzing  causal  invariant 
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relationships—but not correlated fog patterns, the act of braking due to pedestrian kinematics 
instead. 

There are two commands from this work. First, SCMs have useful inductive biases for DRL, 
converting rules from correlative pattern-matchers to a causal engine which resists 
distributional shifts—in a property empirically established below destructive conditions. 
Second, CPO's success is dependent on nearly correct causal assumptions, Evaluation 1, 
displayed in Table 2, showed errors in SCMs above 30% resulted in non-linear degradation of 
average performance. This reinforces the thesis stated by Jin et al. (2023), "causal identifiability 
comes before optimization", leading to a pressing need for future work on automatic causal 
discovery to remove reliance on a specific expert SCM. 

Forthcoming work will pursue three key directions: 

1. Automated Causal Representation Learning: Integrating differentiable causal 
structure discovery (e.g., NOTEARS-based methods) with CPO to infer SCMs from 
observational data, reducing manual specification burdens. 

2. Multi-Agent CPO: Extending the framework to collaborative and competitive settings 
(e.g., autonomous fleets), where emergent behaviors demand counterfactual reasoning 
about other agents’ intents. 

3. Resource-Aware Causal Compression: Developing lightweight SCM 
approximations using knowledge distillation (Du et al., 2025) to deploy CPO on edge 
devices with <50ms latency. 

Ultimately, CPO moves past conventional explainable RL by ensuring causal auditability to be 
a core property of policy optimization, no longer an external feature. This reduces independent 
systems from still opaque black boxes into accountable repositories whose choices can be 
scrutinized, understood, and relied upon. As regulations, like the EU AI Act (2024) mandate 
causal transparency for safety-critical AI, CPO provides the technical foundation for a whole 
new generation of ethically deployable autonomy. 
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