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Abstract 

With increased dependency on data-centric machine learning models, several critical 

concerns relating to sensitive information used to train these models arise. Federated 

Learning (FL) presents a paradigm that would enable the collaboration of training without 

necessarily having direct access to the raw data. Therefore, this broad review looks at the 

upcoming privacy-preserving machine learning field under FL. We carefully analyze the 

latest advances in FL techniques, such as cryptographic methods, encryption and secure 

computation, as well as privacy and model aggregation strategies. We break down the various 

architectures of FL, such as centralized, decentralized, and heterogeneous FL, highlighting 

their strengths and weaknesses in various real-world applications in finance, Internet of 

Things. In addition, we discuss how blockchain technology can be integrated into FL 

ecosystems to provide security, trust, and transparency. We also shed light on the 

vulnerabilities of FL systems to various attacks, along with mitigation strategies involving 

secure aggregation protocols and anomaly detection. The research is concluded by indicating 

crucial open research areas, like the design of robust, scalable, and efficient FL frameworks; 

overcoming issues of non-IID data, communication overhead, and system heterogeneity; 

exploring novel privacy-enhancing technologies to support post-quantum security 
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requirements; and introducing ethical considerations for fairness, bias, and accountability in 

FL deployments. This review is to provide a resource to researchers seeking an in-depth 

understanding current state-of-the-art in federated learning its pivotal role in enabling 

privacy-conscious machine learning applications as process innovation. 

Keywords: Federated Learning, Privacy-Preserving Machine Learning, Encryption, 

Differential Privacy, Blockchain, Data Security, Model Aggregation, Privacy Attacks, Open 

Research Directions. 

introduction 

A. The Imperative of Privacy in the Age of Data-Driven Machine Learning 

The dawn of the 21st century has borne witness to a data explosion heretofore unseen in scale 

and complexity and has given momentum to the fast-forwarding machine learning (ML) 

scenario across different verticals. This ranges from providing personalized recommendations 

in e-commerce applications to advanced medical diagnoses, wherein ML algorithms form an 

integral part of the new fabric of life. Although such a data revolution has brought on a 

critical challenge: the necessary tension between enormous datasets to power the training of 

strong ML models and the demand to protect personal data whose acquisition is being 

facilitated. Traditional methods of ML very often rely upon centralized data aggregation, 

where source raw data streams get compiled and stored centrally for model building. This 

paradigm raises serious privacy concerns, since sensitive information, including personal 

details, medical records, and financial transactions, will be at risk of data breaches, 

unauthorized access, and possible misuse. During recent years, publicized data breaches have 

highlighted central data storage and related risks, bringing the public and the regulatory 

authority into a sharp warpath, further strengthening data protection laws in each region, 

especially in Europe and California. Such regulations would put greater stress on 

organizations concerning data collection, processing, and storage while respecting the right of 

the individual over his personal data. As such, there arises the requirement of machine 

learning. Therefore, various new techniques for useful information from data have emerged 

in this scenario, preserving individual privacy at the same time. 

B. Federated Learning: A Decentralized Approach to Privacy Preservation 

Federated learning is an innovation that changes fundamentally the traditional mechanism of 

ML by enabling several parties to perform collaborative needing to centrally data. Designed 

to be a distributed alternative to aggregated centralized data collection, FL gives several 

parties like cellular devices, hospitals, or banking institutions, the option to collectively 

update a shared model in a global learning framework while having their sensitive 

information remain local to them. In a normal FL setting, private dataset and shares only the 

updates of the model (e.g., gradients or weights) periodically. The server aggregates enhance 

the global then distributed back to the participants for further refinement. By keeping raw 

data decentralized and only exchanging model updates, FL reduces the danger of data 
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breaches and unauthorized access because never leaves premises of data owners. 

Furthermore, FL adheres to the principles of data minimization and purpose limitation 

espoused by privacy regulations as only the amount of information that is required is retained 

under the control of the respective parties. improves privacy but also offers many other 

benefits including communication overhead that is reduced as only model updates are 

transmitted and not large datasets. 

C. Challenges and Applications of Federated Learning in Sensitive Domains 

FLhas a lot of promise but poses to its wide-scale adoption. One of the main challenges is the 

inherent data heterogeneity across participants. In contrast to traditional of independently, FL 

frequently encounters non-IID data due to variations in user behavior, demographics, or 

device characteristics. The non-IID nature can result in slow convergence of the model, 

instability, and performance degradation. Also, the devices that participate are highly 

heterogeneous from a powerful server to a mobile device with scarce resources, causing 

processing delays, model fairness, and communication bottlenecks. Security against model 

poisoning, inference attacks, and backdoor attacks continues to be an open problem.  

Despite these, FL's nature of privacy-preserving makes it specifically well-suited to sensitive 

domains, such as healthcare, where FL is being used in bringing advancements in disease 

diagnosis, treatment response prediction, drug discovery, among others, keeping abreast of 

HIPAA-type privacy regulations. FL helps in the financial sector with fraud detection, credit 

scoring, and anti-money laundering by letting institutions train models collectively without 

exposing sensitive customer information. It also shows promise in IoT for privacy-preserving 

analytics and personalized services on edge devices. It also supports the natural language 

process, as presented in Google's Gboard in using FL that improves next word prediction 

without transmitting users' data to the cloud. These examples speak to the robust use of FL 

while actively working out the challenges faced in its practical realization. 

FOUNDATIONAL CONCEPTS AND LANDSCAPE OF FEDERATED LEARNING 

 section delves of FL, exploring various architectures, comparing it with traditional ML 

approaches. We will also examine the communication protocols and optimization algorithms 

that underpin FL systems. 

A. Defining Federated Learning and its Variants 

FL is one of the novel departures from traditional centralized paradigms in ML, initially 

conceptualized by McMahan et al. [15]. In this setting, a global model is trained 

cooperatively by several parties without exchanging raw data. Such an approach has become 

essential nowadays, as people are facing the problem of privacy, and with stricter regulations, 

like GDPR [4], this seems to be one of the ways forward.  

Three main types are reported in the available literature regarding the categorization of FL. 

These are classified into three, namely: feature space but differ in sample spaces, HFL applies 
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[2][13]. An example of HFL in practice would be that many hospitals have data on patients 

that share the same attributes, for example, age, blood pressure, and medical history, but 

correspond to different patients altogether. 

In VFL Imagine a bank and an e-commerce platform. Each has data but the features are very 

different, for instance, records of financial transactions versus online purchasing history. 

Federated Transfer Learning (FTL) addresses situations where the sample space and also the 

feature space are significantly different between participants. FTL can tap into the strengths 

of transfer learning to achieve limited data by harnessing the knowledge learned from a 

source domain that has ample data [21]. Yin et al. [12] and Saha et al. [8] have made great 

contributions to summarizing these FL variants, showing the strengths and weaknesses as 

well as their applicability to various real-world scenarios, in addition to some research 

challenges discussed. 

B. Architectures in Federated Learning: Centralized vs. Decentralized 

The most significant impact of the architectural design of an FL system upon its efficiency, 

scalability, and overall robustness is obtained. The most commonly used architecture is 

Centralized FL, where coordination of the whole training process takes place by the central 

server as reported in [6].  received  and then updates the global model [16]. Centralized FL 

has simplicity and ease of implementation as advantages. However, it has a problem wherein 

the system gets comp also potentially suffers from communication bottlenecks, in case there 

are large participants. Yurdem et al. [6] discussed various FL strategies, tools, and its various 

applications in his paper. 

Decentralized FL architectures have been proposed as a potential alternative to handle the 

drawbacks associated with centralized systems [22]. instead, the participating entities  one 

another peer-to-peer to cooperatively train the global model [19]. Shakeer and Babu [19] 

explain how to use FL onthe  for data privacy. This approach makes the system and can 

potentially reduce communication overhead by distributing the aggregation workload among 

multiple participants. However, it introduces complexities related to coordination, 

synchronization, and establishing trust among the participating entities. Besides purely 

centralized and decentralized architectures, hybrid and hierarchical FL architectures have also 

been explored. This attempts to harmoniously integrate advantages provided by the respective 

centralized and decentralized approaches for both efficiency and scaling as well as resilience 

in them and find an optimum of the efficiency balance [3][6]. Thereby, a talk about privacy-

preserved AI used by Potter et al. appeared for FL [3][6]. 

C. Communication Protocols and Optimization Algorithms 

The effectiveness of FL thus depends on communication protocols and optimization 

algorithms. Currently, the most commonly used optimization algorithm. The working of 

FedAvg is defined such that all participants update their models through multiple SGD (i.e, 

Stochastic Gradient Descent) passes on the local data and then share their updated Although 
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FedAvg has been quite effective in several scenarios, it is known to be sensitive to the 

problem of non-IID data and system heterogeneity. To deal with these challenges, variants of 

FedAvg, like FedProx [15], have been proposed. In FedProx, help reduce the detrimental 

effects of data heterogeneity on model convergence and stability [6][7]. Wang et al. [7] 

proposed a technique for partial low-quality data in their research toward privacy 

preservation. 

In FL, communication efficiency is a serious concern, devices [11][14]. Several techniques 

have been developed to minimize communication overhead. These include model 

compression, sparsification, and quantization [3][24], which aim at reducing the size have to 

be communicated between participants and the central server. Techniques such as those 

reviewed in Ogundokun et al. [14] reduce communication payload by fewer parameters or 

fewer bits of accuracy in the weights of the models. Sparsity methods aim at transmitting 

only the highest model updates; quantization focuses on reducing bits to represent any model 

parameter in a given manner. In addition, asynchronous communication protocols have been 

studied to reduce the effect of stragglers (slow or unresponsive devices) and increase the 

efficiency of training [5, 25]. Choi et al. [25] proposed a method called FedNIC (i.e, 

Federated Network for Identity and Credentials) to enhance privacy in FL. 

D. Comparison with Traditional Machine Learning Approaches 

FL methods, especially. In traditional ML, data is usually aggregated and centralized in one 

location, which is a huge source of privacy risks and vulnerabilities [20]. Xu et al. [20] 

discussed various methods and challenges in privacy-preserving ML. In clear contrast, FL not 

the actual data [10][12][17]. Dhade and Shirke [10] reviewed the use of FL in the healthcare 

sector, whereas Naz et al. [12] reviewed the utilization of FL for COVID-19 detection. well 

with the principles of data minimization and purpose limitation, which are increasingly 

highlighted by privacy regulations worldwide [4]. Truong et al. [4] discussed privacy 

preservation in FL from the GDPR perspective. 

More importantly, FL is capable of taking advantage of the vast computational powers 

available at an extensive number of edge devices. This, therefore, provides an opportunity to 

scale model training far larger than otherwise while also diminishing the computation 

intensity of central servers [1][18]. The distributed computation paradigm becomes 

significantly useful within the IoTs and edge computing scenario [22]. Briggs et al. [22] have 

recently surveyed privacy-preserving federated learning for the IoTs. Nonetheless, FL does 

introduce a different set of challenges not inherent to traditional machine learning, including 

managing the non-IID complexities in data distributions among participants, managing 

heterogeneity of the system in terms of variations in capabilities and network conditions of 

the devices, and dealing with communication bottlenecks [7][9][23]. Guembe et al. [23] have 

surveyed various privacy issues, attacks and open problems in FL. Schwarz [1] and Schwarz 

and Taqa [18] have discussed various privacy-preserving ML techniques for exploring FL in 

their research. Hu et al. [9]. 
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PRIVACY-ENHANCING TECHNIQUES IN FEDERATED LEARNING 

Various privacy-enhancing techniques employed in FL  model training process. The authors 

will delve into cryptographic approaches, differential privacy, trusted execution 

environments, and model obfuscation methods. 

A. Cryptographic Approaches for Secure Aggregation 

The techniques of cryptography play a crucial role in allowing secure aggregation of model 

updates in FL, so that individual contributions are kept confidential, while the server can 

accurately compute the global model. One of the most prominent techniques is Homomorphic 

Encryption [25],  carried out on encrypted data. In the FL model, the homomorphic 

encryption scheme can be utilized by the participant to encrypt his local Then the server will 

compute the operation of averaging on the and only decrypt the final aggregated result. This 

way, the updates for the individual models in plaintext form remain unknown to the server. 

However, HE supports a high privacy guarantee and can create high computational overhead, 

especially for deep models and datasets of large dimensions. Various flavours of HE schemes 

like Paillier [25] have been explored so far to balance efficiency with security concerns over 

FL. 

Another strong cryptographic technique is SMPC,, which enables two or on their private 

inputs without disclosing the inputs themselves [2]. FL can make use of this SMPC 

mechanism that securely aggregates local model updates coming from multiple participants. 

This involves a protocol where the participants do a sequence of interactive computations that 

exchange encrypted shares of their updates in a manner that allows the server to obtain the 

aggregated model without learning individual contributions. Secret Sharing [9] is often 

applied as building blocks within SMPC protocols in such a way that the participant's update 

will be split into multiple shares, but  update. SMPC offers strong privacy guarantees but can 

be communication-intensive, especially when dealing with a large number of participants. 

Recent research has focused on developing more efficient SMPC protocols tailored for FL [9, 

23]. 

B. Differential Privacy for Noise-Based Perturbation 

Differential Privacy mathematically rigorous  for DP can be applied in FL in two ways: 

locally, where each participant adds noise to his model updates before sharing them, and 

globally, where the server adds noise to the aggregated model. The advantage of the local DP 

is stronger privacy guarantees. In this scheme, the noise is added at the source so that even 

the server cannot find any precise information about individual contributions. However, this 

can reduce model accuracy much more than in global DP since noise is added earlier in the 

training process. 

Global DP enables higher accuracy of the model since it adds noise directly to the aggregated 

model, though it offers weaker privacy guarantees because the server observes the 
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unperturbed individual updates. The choice between local and global DP is determined by the 

level of the desired trade-off between the two: privacy or model utility. Different mechanisms 

for adding noise have been explored, among them being Gaussian and Laplacian mechanisms 

[13]. privacy parameter, often called ε (epsilon), with lower values of ε associated with 

stronger privacy guarantees but perhaps with lower model accuracy. Recent work has 

targeted adaptive DP mechanisms, which dynamically adapt their noise level based on either 

data sensitivity or at which stage of training [2][8]. 

C. Trusted Execution Environments (TEEs) for Secure Computation 

Trusted Execution Environments hardware-based approach to enhancing privacy and security 

in FL [22]. TEEs are secure enclaves within a processor that isolate code and data from the 

rest of the system, protecting them from unauthorized access and tampering, even from the 

operating system or hypervisor. TEEs can be used in FL for performing computations on 

sensitive data such as The encrypted data or model updates of participants are sent to the 

TEE. It decrypts the received encrypted data within the secure enclave, performs the 

computations needed, encrypts the result, and then sends it back. 

TEEs do provide secure access guarantees that operate on physical forms of separation from 

software forms, but these still have the associated drawbacks of software-based 

implementations. TEEs are susceptible to side-channel attacks where some attacks infer from 

such characteristics as side-channel leakage over consumption of energy, and timing side-

channels [23]. Generally, most devices in IoTs and resource-scarce are often not configured 

to have required specific hardware TEEs run with. Despite these drawbacks, TEEs have 

drawn much attention within the FL research community and recent efforts have focused on 

building stronger and more efficient TEE-based solutions for privacy-preserving FL [3][22]. 

D. Model Obfuscation and Transformation Techniques 

Model obfuscation and transformation techniques protect the privacy of training data by 

either modifying the model architecture or the training process itself. The model pruning 

technique reduces less important parts or sensitive parts of the model before sharing [24]. 

This is to decrease the risk of model inversion attacks, from the model parameters. Another is 

model quantization, which is the reduction in the precision of the parameters of the model, 

making it harder to retrieve sensitive information [3]. 

Besides changing the model itself, transformations can be applied to training data. methods of 

data augmentation such as noisy addition or some random transformation over the input data 

which may enhance privacy by making information about individual points harder to recover. 

Such approaches can be combined with other techniques that are available for enhancing 

privacy, such as DP or approaches based on cryptographic primitives, towards stronger 

privacy. However, it is important to take care of the effects of these transformations on model 

accuracy and not inadvertently introduce biases or tasks. The area of research in this domain 



International Journal of Applied Mathematics 

Volume 38 No. 3s, 2025  

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version) 

 

326 
Received: July 24, 2025 

continues to be developing more advanced and effective model obfuscation and 

transformation techniques  

capable of improving privacy without degrading model utility much [1][18], as seen in Table 

1 and Figure 1. Table1 is showing Performance of Different Privacy-Enhancing Techniques 

in Federated Learning 

Technique Accuracy Drop (%) Computation 

Overhead 

Communication 

Overhead 

Homomorphic Encryption (HE) 0-2 High Low 

Secure Multi-Party Computation 

(SMPC) 

0-1 Very High High 

Local Differential Privacy (LDP) 5-15 Low Low 

Global Differential Privacy (GDP) 2-5 Low Low 

Trusted Execution Environments 

(TEEs) 

0-1 Moderate Low 

Model Pruning 2-8 Low Low 

Model Quantization 1-5 Low Low 

Data Augmentation with Noise Variable Low N/A 

Table 1: Performance of Different Privacy-Enhancing Techniques in Federated Learning 

 

Fig 1.Performance of Different Privacy-Enhancing Techniques in Federated Learning 

Performance of Different Privacy-Enhancing Techniques

Accuracy Drop (%)
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EMERGING TRENDS AND APPLICATIONS OF FEDERATED LEARNING 

This section explores the emerging trends and cutting-edge applications of FLacross various 

domains. The authors focus on two key areas: the integration of blockchain for enhanced 

security and trust, and the transformative potential of FL in sensitive sectors like healthcare 

and finance. 

A. Blockchain-Based Federated Learning for Enhanced Security and Trust 

Integration of blockchain technology with FL has emerged as a very promising trend in 

bridging the security and trust problems in a decentralized learning system [19][21]. Indeed, 

blockchain technology, on its own, possesses intrinsic properties such as immutability, 

transparency, and decentralization, which can boost the integrity and auditability of the FL 

process. In a FL-based blockchain framework, model updates and other pertinent data, 

including participant identities and timestamps of model update events, are stored in the 

distributed ledger. This results in an immutable record of model training, preventing 

malicious actors from manipulating the model or disclaiming their involvement. Furthermore, 

blockchain allows for the secure and transparent aggregation of model updates by smart 

contracts that are self-executing agreements that automatically enforce the rules of the 

aggregation process [19]. 

Furthermore, blockchain can enable decentralized reputation systems for the participants in 

the FL network [21]. The blockchain can maintain the record of the participants' 

contributions in the training process and thereby will be able to evaluate and record the 

behavior of the participants in a transparent, auditable manner. This will allow good behavior 

to be promoted and problematic or non-contributive participants to be identified. Although 

the integration of blockchain with FL affords many benefits, it raises scalability issues and 

computational overhead when maintaining the blockchain. Current work in research is aimed 

at developing FL blockchain-based frameworks that are more scalable and efficient to deal 

with the challenges [19, 21]. 

B. Applications in Healthcare, Finance, and Other Sensitive Domains 

FL is transforming applications in sensitive domains where data privacy is key, particularly in 

healthcare and finance. For healthcare, FL allows for cooperative joint research and 

development of diagnostic and predictive models at multiple institutions without sharing 

sensitive patient data as in the cases [10, 11, 12]. For example, FL can be applied for training 

disease diagnosis models, prediction of the response to treatments, and personalization of 

medical treatments by accessing diverse patient populations in a HIPAA-compliant manner 

[10]. Koutsoubis et al. [11] suggested a method of privacy preserving FL in the medical 

imaging application. This approach not only accelerates medical research but also improves 

the generalizability and robustness of models by exposing them to a wider range of data. 
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FL is revolutionizing fraud detection and risk assessment efforts in the financial sector [6]. 

FL, therefore, increases the accuracy of fraud detection and speeds up detection by allowing 

the models to train cooperatively using banks' or other financial organizations' transactional 

data without ever having to release any sensitive information that concerns the customer. 

Furthermore, FL can facilitate secure and privacy-preserving credit scoring and loan 

application evaluations by allowing institutions to jointly train models without sharing their 

proprietary data. FL is emerging in applications beyond healthcare and finance into IoT, 

which ensures privacy-preserving analytics and personalized services on the edge [19, 22], 

and towards natural language processing, which also can facilitate further development of its 

language models from the data received while preserving the anonymity of the respective 

users. These examples illustrate the powerful potential of FL to make it possible for private 

machine learning across diverse applications as can be seen from Table 2 and Figure 2. 

Model Metric Federated Learning 

(FL) 

Centralized Learning 

(CL) 

Pneumonia Detection 

(Chest X-rays) 

AUC 0.928 0.935 

Diabetic Retinopathy 

Detection 

Accuracy 0.841 0.835 

COVID-19 Detection (CT 

Scans) 

Sensitivity 0.86 0.88 

COVID-19 Detection (CT 

Scans) 

Specificity 0.91 0.93 

Table 2: Performance Comparison of Federated Learning vs. Centralized Learning in 

Healthcare 

 

Fig 2.Performance Comparison of Federated Learning vs. Centralized Learning in Healthcare 

Performance Comparison of Federated Learning vs. 
Centralized Learning in Healthcare

Centralized Learning (CL) Federated Learning (FL)



International Journal of Applied Mathematics 

Volume 38 No. 3s, 2025  

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version) 

 

329 
Received: July 24, 2025 

Conclusion 

A. Summary of Key Findings and Insights 

This paper provides a comprehensive review of FLas an emerging paradigm for privacy-

preserving machine learning. The authors explored foundational concepts of FL, including 

architecture, communication protocols, and optimization algorithms, to distinguish between 

horizontal, vertical, and federated transfer learning. The critical role of privacy-enhancing 

techniques, including cryptographic approaches, differential privacy, trusted execution 

environments, and model obfuscation, has been discussed in detail, with strengths and 

limitations emphasized. In addition, the authors have studied the threat landscape of FL, 

major privacy attacks such as data poisoning, membership inference, model inversion, and 

backdoor attacks, and the corresponding defense mechanisms. It has been portrayed as a 

promising trend to enhance security, trust, and transparency through the integration of 

blockchain technology with FL. Finally, we have shown how FL can revolutionize sensitive 

domains like health care and finance by enabling collaborative model training without 

damaging the privacy of data. 

B. The Future of Federated Learning in the Privacy-Preserving AI Landscape 

FL is one of the leaders in the privacy-preserving AI landscape and provides a very powerful 

approach for training ML models without the need to have sensitive data. With data privacy 

concerns and regulations continuing to grow, FL is likely to play an increasingly important 

role in enabling responsible and ethical AI development. The future of FL will foresee 

considerable progress in all aspects, starting with the development of far more sophisticated, 

efficient techniques for privacy protection. The scaling of FL frameworks must lead to its 

ability to better work with much wider and broader applicability, taking a step beyond those 

of some similar applications that come under specific contexts. Advances that bridge 

fundamental principles to practical designs can further unlock the tremendous latent capacity. 

FL is going to revolutionize machine learning in the way we approach it when the field 

matures because it clears the way for a future where potentially powerful AI models can be 

collaboratively trained without breaching the fundamental right to privacy. 
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