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Abstract: 

This study presents a comparative analysis of Single Input Single Output (SISO) Feedforward 

Backpropagation Neural Network (FFBPNN) and conventional regression models for 

predicting year-based Chemical Engineering Plant Cost Index (CEPCI) data spanning 64 years 

from 1960 to 2023. The primary aim is to evaluate the predictive performance of both 

approaches using the coefficient of determination (R²) and mean squared error (MSE) as key 

performance indicators. In the regression modelling phase, a variety of functions, linear, 

polynomial (up to sixth order), logarithmic, exponential, logistic, and power models, were 

examined. The best regression performance was obtained for hexic polynomial (n=6), yielding 

an R² of 0.9760, indicating strong, but not optimal predictive accuracy. In contrast, the 

FFBPNN architecture demonstrated superior performance with a model tuned by varying the 

data split ratio, number of neurons in the hidden layer, and activation functions for hidden and 

output layers. The best configuration was found to be data split ratio of 0.90 (training) - 0.05 

(validation) - 0.05 (testing), 30 neurons in the hidden layer, tansig activation in the hidden 

layer, and purelin in the output layer. The training was carried out using the Levenberg-

Marquardt algorithm with gradient descent with momentum-based learning over 10 epochs. 

This configuration achieved an R² of 0.9997 and an MSE of 10.80, significantly outperforming 

the regression models. The findings confirm that FFBPNN provides a more robust and accurate 

framework for modelling complex, nonlinear trends in year-based CEPCI data, offering 

substantial advantages over traditional regression methods in both precision and 

generalizability. 

Keywords: Artificial neural networks, Nonlinear system modelling, Time series prediction, 

Model parameter optimization, Performance evaluation metrics 
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Introduction: 

Cost indices are essential tools in chemical engineering for estimating the cost of equipment, 

processes, or entire plants at different times. They provide a means to adjust historical cost data 

to present-day values by accounting for inflation, market dynamics, material costs, labour rates, 

and technological advancements [1,2]. Commonly used in feasibility studies, project 

evaluation, and cost estimation, these indices allow engineers to extrapolate or update costs 

without redoing full economic analyses [3]. In chemical engineering, cost indices are especially 

valuable for scaling equipment costs from past projects, adjusting capital investment estimates, 

and performing quick economic comparisons over time [4]. Several indices exist, such as the 

Marshall and Swift Index, Nelson-Farrar Refinery Index, and Chemical Engineering Plant Cost 

Index (CEPCI), each tailored for specific sectors or types of plants [5].  

The CEPCI is one of the most widely used cost indices in the chemical process industries. 

Published monthly by Chemical Engineering magazine [6]. It tracks the relative changes in 

plant construction costs over time, offering a composite measure based on factors such as 

equipment (process, piping, instrumentation), construction labour, engineering and 

supervision, buildings, and materials [7]. CEPCI is normalized to a reference year (commonly 

1957–1959 = 100), and it allows engineers to update capital costs from historical estimates to 

current values through the ratio, as given in Equation (1) [5]: 

𝑈𝑝𝑑𝑎𝑡𝑒𝑑 𝐶𝑜𝑠𝑡 = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐶𝑜𝑠𝑡 ×
𝐶𝐸𝑃𝐶𝐼 (𝑏𝑎𝑠𝑒 𝑦𝑒𝑎𝑟)

𝐶𝐸𝑃𝐶𝐼 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
     (1) 

CEPCI is particularly valuable because it is applicable across many types of chemical plants, 

regularly updated and accessible, and based on real-world economic and industrial data [8]. Its 

long historical record makes it suitable for trend analysis and predictive modelling, as 

demonstrated in studies involving machine learning and regression techniques. 

Modelling and prediction are fundamental components of engineering and scientific analysis, 

enabling the understanding, simulation, and forecasting of real-world systems [9]. Modelling 

involves developing a mathematical or computational representation of a physical process or 

system based on underlying principles, empirical data, or both. These models can be 

deterministic or stochastic, linear, or nonlinear, and range from simple equations to complex 

algorithms such as machine learning models [10,11]. Prediction through modelling refers to 

the use of these models to estimate future behaviour or unknown outcomes based on input data 

[12]. In engineering, especially, predictive modelling supports decision-making, design 

optimization, and risk assessment. Depending on the system complexity, techniques may 

include statistical regression, differential equations, artificial neural networks, or hybrid 

approaches [13,14]. The accuracy of predictions relies heavily on model selection, training 

quality, input data, and evaluation metrics such as the coefficient of determination (R²) and 

mean squared error (MSE) [15]. In recent years, data-driven models, particularly neural 

networks, have gained prominence for their ability to capture nonlinear patterns and make 

highly accurate predictions in complex systems [16]. 
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Regression is a fundamental statistical technique used to model the relationship between a 

dependent variable and one or more independent variables. It is commonly employed for 

prediction and trend analysis [17,18]. Linear regression assumes a straight-line relationship, 

while more advanced forms such as polynomial, exponential, or logarithmic regression and 

capture nonlinear trends. However, traditional regression models often struggle with capturing 

complex, highly nonlinear relationships in real-world data [19,20]. Address such limitations, 

artificial neural networks (ANNs) have emerged as powerful alternatives.  

Inspired by the structure of the human brain, ANNs consist of interconnected layers of neurons 

(nodes) capable of learning patterns from data without explicitly being programmed with rules 

[21]. ANNs are particularly effective for modelling nonlinear and dynamic systems, making 

them suitable for predictive tasks across various domains. There are several types of ANN 

architectures, including feedforward neural networks (FNN), the simplest form where data 

moves in one direction from input to output, radial basis function networks (RBFN), used for 

function approximation and classification, recurrent neural networks (RNN), capable of 

handling sequential or time-dependent data due to feedback connections, convolutional neural 

networks (CNN), primarily used in image and spatial data processing, modular and hybrid 

networks, combinations designed for specialized tasks. Among these, the Feedforward 

Backpropagation Neural Network (FFBPNN) is one of the most widely used and well-

established architectures [22-24]. In FFBPNN, information flows in one direction from input 

to output while the backpropagation algorithm adjusts the weights during training to minimize 

prediction error. This architecture is particularly effective for function approximation, time 

series prediction, and pattern recognition, especially when dealing with historical or year-

indexed data [25,26]. 

FBPNNs have been widely applied across diverse engineering fields due to their ability to 

model complex, nonlinear relationships [27]. In the domain of hydrological modelling, 

Samantaray and Sahoo (2020) compared the performance of BPNN, FFBPNN, and CFBPNN 

algorithms in predicting rainfall-runoff behaviour in an arid watershed. Although BPNN 

slightly outperformed FFBPNN in terms of accuracy, the latter still showed strong prediction 

capabilities with an R value of 0.9925 in training and 0.9611 in testing phases, underscoring 

its potential for runoff prediction tasks [28]. Similarly, sediment transport modelling benefited 

from FFBPNN in the work by Rahul et al. (2021), where it outperformed Support Vector 

Machines (SVM) in predicting suspended sediment concentration (SSC) in the Ganga River. 

Here, FFBPNN demonstrated higher precision with a validation R=0.955 and Nash–Sutcliffe 

Efficiency (NSE) of 0.912, indicating its suitability for water resource management [29]. 

Expanding to combustion engineering, Lalmi et al. (2024) applied FFBPNN to predict swirling 

flow characteristics within a combustion chamber. The model effectively replicated spatial and 

velocity profiles of the vortex flow field and exhibited strong generalization ability, validating 

its application in energy systems involving complex fluid dynamics [30]. In the environmental 

domain, Hosseinzadeh et al. (2018) employed FFBPNN to model the efficiency of non-thermal 

plasma for removing BTEX pollutants from waste gases. Among the tested ANN variants and 
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Response Surface Methodology (RSM), FFBPNN yielded the highest accuracy, achieving an 

R2R2 of 0.9736 and thus confirming its superiority in multi-variable environmental modelling 

[31]. Likewise, Li et al. (2016) utilized FFBPNN to predict adsorption performance in Rotating 

Packed Beds (RPB). With optimal topology and high prediction accuracy, the model 

outperformed both alternative ANN structures and nonlinear regression models, emphasizing 

its usefulness in process optimization in chemical separation technologies [32]. 

In the context of agricultural forecasting, Balaji and Vairavan (2015) implemented FFBPNN 

to predict rice production in Tamil Nadu. By evaluating multiple statistical error metrics, they 

concluded that the Absolute Relative Error (ARE) was the most effective indicator for 

minimizing prediction errors, thereby validating the reliability of FFBPNN in food security 

planning [33]. Finally, Wajahat et al. (2018) applied FFBPNN and LRNN to rainfall-runoff 

modelling in the Barak Basin. The FFBPNN, with a 3-9-1 architecture using a log-sigmoid 

transfer function, yielded superior performance metrics, reinforcing its utility in hydrological 

and disaster management systems [34]. 

The reviewed studies collectively highlight the versatile applications of regression analysis 

across various engineering domains. Begin with, Banerjee et al. (2025) applied multiple linear 

regression to analyse pressure drop in gas-solid fluidized beds, focusing on how variables like 

bed height and gas speed influence key response factors such as drag coefficient and power 

consumption. The regression model effectively clarified the relationship between multiple 

variables and helped isolate their individual effects [35]. Similarly, Sivamani et al. (2023) 

explored how regression modelling can predict mass density and specific volume in aqueous 

surfactant solutions (SLS and CTAB). By fitting different polynomial and exponential models, 

they found that the quintic model provided the best fit, with near-unity R² and negligible SSE, 

highlighting regression's capability in physicochemical data analysis [36]. 

In a related approach, Sivamani et al. (2020) used curve fitting regression to model and 

optimize Vickers hardness in laser cladding of Inconel 625. The regression-based model 

facilitated process parameter optimization using derivative and heuristic techniques, 

emphasizing regression’s role in manufacturing process optimization [37]. Moreover, 

Saravanaraj et al. (2022) demonstrated the applicability of empirical regression in economics 

by modelling the electricity consumer price index and inflation trends in Dhofar, Oman. A 

variety of models were evaluated, with the quintic model again yielding the highest accuracy 

based on the coefficient of determination (R²), signifying regression’s adaptability even in 

macroeconomic forecasting [38]. 

While FFBPNNs have proven effective in modelling nonlinear systems across various fields, 

and regression models remain popular for their simplicity and interpretability, few studies 

compare these methods specifically for long-term forecasting of the CEPCI. CEPCI data 

exhibits complex, nonlinear trends over decades, challenging conventional modelling. Existing 

research lacks a direct, thorough comparison of FFBPNNs and regression models on CEPCI 

prediction, limiting guidance on the most accurate and reliable approach. Addressing this gap 
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will improve cost estimation practices in chemical engineering economic analyses. Hence, this 

study is novel in providing a comprehensive comparative analysis between FFBPNNs and 

multiple regression models specifically for long-term prediction of the CEPCI over 64 years. 

Unlike prior research, which focuses on individual modelling techniques or other engineering 

data, this work rigorously optimizes and evaluates FFBPNN architectures alongside diverse 

regression functions to determine the superior method for capturing complex nonlinear trends 

in CEPCI. The findings offer new insights into enhancing cost estimation accuracy and 

robustness in chemical engineering economic forecasting. 

From the research gap and novelty statement, the present study aims to develop and evaluate 

predictive models using FFBPNN and conventional regression techniques for accurate 

forecasting of the CEPCI over a 64-year period. The objectives are as follows: (i) To compile 

year-based CEPCI data from 1960 to 2023 for modelling purposes; (ii) To construct and 

optimize various regression models (linear, polynomial, logarithmic, exponential, logistic, 

power) for CEPCI prediction; (iii) To design and fine-tune FFBPNN architectures by varying 

data split ratios, neuron numbers, and activation functions of hidden and output layers; (iv) To 

compare the predictive performance of regression models and FFBPNNs using R² and MSE 

metrics; and (v) To identify the most accurate and robust modelling approach for long-term 

CEPCI forecasting. 

Methods: 

Collection of CEPCI data: 

The CEPCI data used in this study were sourced from the monthly publications of Chemical 

Engineering magazine, which has been consistently releasing updated cost indices since the 

mid-20th century. This comprehensive dataset, spanning from 1960 to 2023, reflects industry-

standard cost factors including equipment, labour, materials, and construction, making it a 

dependable and widely accepted reference for cost estimation and economic analysis in the 

chemical process industries [39]. 

Regression analysis: 

The CEPCI data was verified to ensure consistency and readiness for analysis. Regression 

analysis was conducted in Microsoft Excel. Various regression models, including linear, 

polynomial (quadratic, cubic, quartic, quintic and hexic), logarithmic, exponential, power, and 

logistic functions, as given in Equations (2)-(11), were selected and fitted to the historical data. 

Each model’s performance was evaluated using the coefficient of determination (R²) and mean 

squared error (MSE) to assess goodness of fit and prediction accuracy [38]. The models were 

compared to identify the best-performing regression function, which was then validated and 

used for CEPCI prediction. 

Linear model: 𝑦 = 𝛼0 + 𝛼1𝑥         (2) 

Quadratic model: 𝑦 = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥2       (3) 
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Cubic model: 𝑦 = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥2 + 𝛼3𝑥3       (4) 

Quartic model: 𝑦 = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥2 + 𝛼3𝑥3 + 𝛼4𝑥4     (5) 

Quintic model: 𝑦 = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥2 + 𝛼3𝑥3 + 𝛼4𝑥4 + 𝛼5𝑥5    (6) 

Hexic model: 𝑦 = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥2 + 𝛼3𝑥3 + 𝛼4𝑥4 + 𝛼5𝑥5 + 𝛼6𝑥6   (7) 

Logarithmic model: 𝑦 = 𝑎1. ln(𝑥) + 𝑏1       (8) 

Exponential model: 𝑦 = 𝑎2𝑒𝑏2𝑥        (9) 

Power model: 𝑦 = 𝑎3𝑥𝑏3        

 (10) 

Logistic model: 𝑦 =
𝑎4

𝑒−𝑏4(𝑥−𝑥0)       

 (11) 

where y is the CEPCI, x is year, 0 is intercept, 1 is linear coefficient, 2 is quadratic 

coefficient. 3 is cubic coefficient, 4 is quartic coefficient, 5 is quintic coefficient, 6 is hexic 

coefficient, a1 is slope, b1 is intercept, a2 is value of y at x=0, b2 is inclining rate, a3 is scale 

factor, b3 is exponent, a4 is maximum value of y, b4 is steepness, and x0 is inflection point. 

FFBPNN modelling: 

MATLAB served as the primary platform for conducting the analysis in this study. The 

FFBPNN modelling procedure for CEPCI prediction began with organizing the dataset into 

input (year) and output (CEPCI index) variables. The working principle of FFBPNN involves 

two main phases: forward propagation and backpropagation. During forward propagation, the 

input passes through the network layer by layer, where each neuron applies a weighted sum 

followed by an activation function to produce an output. The network output is compared with 

the target CEPCI value, and the error is calculated [40]. In the backpropagation phase, this 

error is propagated backward through the network using gradient descent to update the weights 

and biases, minimizing the overall prediction error. This iterative learning continues until the 

network reaches a satisfactory level of performance. The trained FFBPNN model is then tested 

on unseen data to validate its generalization capability, demonstrating superior predictive 

accuracy for modelling complex, nonlinear CEPCI trends [9]. 

The data was normalized to improve training efficiency and then split into three subsets: 

training (50-90%), validation (5-25%), and testing (5-25%). The FFBPNN architecture was 

designed with a single input neuron (year), a hidden layer with varying neurons (5-35), and a 

single output neuron (predicted CEPCI value). The activation functions used for the hidden 

and the output layers are tansig, logsig, purelin and poslin at various combinations. The 

network was trained and learned using the Levenberg-Marquardt (LM) and gradient descent 

with momentum (GDM) algorithms, known for its fast convergence and high accuracy, over 

ten epochs.  
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Performance metrics: 

The coefficient of determination (R²) and mean squared error (MSE) are two key performance 

metrics used to evaluate the accuracy of predictive models [41]. R² indicates the proportion of 

variance in the dependent variable that is predictable from the independent variable(s). It ranges 

from 0 to 1, where a value closer to one signifies a better fit, meaning the model explains most 

of the variability in the data. It is calculated using Equation (12). 

%𝑅2 = (1 −
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

) × 100       

 (12) 

where yi is observed value,  ŷi is predicted value, ȳ is mean of observed values, and n is number 

of data points. 

MSE measures the average of the squares of the prediction errors, i.e., the average squared 

difference between predicted and actual values. Lower MSE values indicate higher accuracy 

and better model performance. It is calculated using Equation (13). 

𝑀𝑆𝐸 =  
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

𝑛
         

 (13) 

 

Results And Discussion: 

CEPCI data: 

 

Figure 1. CEPCI data from 1960 to 2023 

Figure 1 illustrates the trend of the CEPCI from 1960 to 2023. A gradual increase is observed 

from 1960 to the late 1970s, followed by a more rapid rise during the early 1980s. From the 

mid-1980s through the early 2000s, the CEPCI exhibits a relatively stable or moderately 

increasing trend. A significant escalation is evident after 2005, with noticeable fluctuations 

around the 2008 financial crisis. From 2010 onward, the index continues to rise, with sharp 

increases post-2020 likely reflecting economic recovery efforts and inflationary pressures 

following the COVID-19 pandemic. Overall, the trend indicates long-term growth with 

intermittent volatility. 
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Regression modelling: 

Table 1. Models developed for relationship between the CEPCI and year 

Model R2 MSE 

Linear model: 𝑦 = −19222 + 9.8324𝑥 95.41 1565.46 

Quadratic model: 𝑦 = 154858 − 165.01𝑥 + 0.0439𝑥2 95.93 1388.17 

Cubic model: 𝑦 = −20000000 + 257666𝑥 − 12.978𝑥2 + 0.0022𝑥3 96.26 1275.66 

Quartic model: 𝑦 = 4000000000 − 7000000𝑥 + 5379.7𝑥2 −
1.8031𝑥3 + 0.0002𝑥4 

97.21 951.78 

Quintic model: 𝑦 = 100000000000 − 300000000𝑥 + 249933𝑥2 −
124.61𝑥3 + 0.0311𝑥4 − 0.000003𝑥5 

97.25 938.14 

Hexic model: 𝑦 = 30000000000000 − 100000000000𝑥 +
100000000𝑥2 − 85175𝑥3 + 32.063𝑥4 − 0.0064𝑥5 +
0.0000005𝑥6 

97.60 818.81 

Logarithmic model: 𝑦 = 19574 ln(𝑥) − 148337 95.35 1585.91 

Exponential model: 𝑦 = 4 × 𝑒0.0322𝑥 93.07 2363.24 

Power model: 𝑦 = 4 × 10−210𝑥64.24 93.23 2308.69 

Logistic model: 𝑦 =
499.3058

𝑒−0.005474(𝑥−𝑥0) 92.18 2666.67 

 

Table 1 summarizes the performance of various regression models, linear, polynomial (from 

quadratic to hexic), and nonlinear (logarithmic, exponential, power, and logistic), applied to 

model the CEPCI data over time. Each model’s equation is provided along with the coefficient 

of determination (R²) and mean squared error (MSE), which collectively indicate the model’s 

fit and prediction accuracy. 

Among all models, the hexic (sixth-degree polynomial) model demonstrated the best 

performance, with the highest R² value of 97.60% and the lowest MSE of 818.81, indicating a 

superior ability to capture the complex trends in the data. The quintic and quartic models 

followed closely with R² values of 97.25 and 97.21%, and MSE values of 938.14 and 951.78, 

respectively. These results support the effectiveness of higher-order polynomials in modelling 

the intricate behaviour of the CEPCI data. The cubic, quadratic, and linear models showed 

slightly lower R² values of 96.26, 95.93, and 95.41%, respectively, with corresponding MSEs 

increasing to 1275.66, 1388.17, and 1565.46. While these models still reflect strong 

correlations, their lower performance suggests a reduced ability to represent more nuanced or 

nonlinear variations, particularly in periods of rapid change. 

Among the nonlinear models, the logarithmic model achieved the highest R² value of 95.35%, 

outperforming the power 93.23%, exponential .93.07%, and logistic 92.18% models. This 

indicates that the CEPCI data follows a growth pattern that slows over time, rather than 
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exhibiting unchecked exponential or power-law growth. Despite their lower R² values and 

higher MSEs, these nonlinear models may still offer advantages in terms of interpretability or 

theoretical alignment with specific physical or economic growth behaviours. 

In conclusion, while simpler models provide a good approximation, higher-degree polynomial 

models, particularly the hexic model, most effectively capture the underlying patterns in the 

CEPCI data. However, selecting an appropriate model should also involve consideration of 

overfitting risks, model interpretability, and predictive reliability, especially when 

extrapolating beyond the observed data range. 

ANN modelling: 

Effect of neurons in a hidden layer on performance of model: 

 

Figure 2. Effect of neurons in a hidden layer on model performance metrics (Training 

function: Levenberg-Marquardt algorithm, learning function: gradient descent with 

momentum, ten epochs, activation functions for hidden and output layers: tansig-

purelin, and data split ratio (training-testing-validation):90-5-5) 

Figure 2 illustrates the performance of a FFBPNN in terms of MSE and coefficient of 

determination (R2) for different numbers of neurons in the hidden layer (ranging from 5 to 35). 

As the number of neurons increases, there is a clear improvement in model performance. 

Initially, with five neurons, the model shows a higher MSE of 205.67 and a lower R2 of 99.41%, 

indicating a poor fit. As neurons increase to 10 and 15, MSE decreases (to 135.4 and 93.97, 

respectively), and R2 rises slightly (to 99.61 and 99.73%), showing modest improvements. 

Significant gains are seen between 15 and 25 neurons, where MSE drops sharply from 93.97 

to 36.94, while R2 increases to 99.89%, suggesting that the model is capturing the underlying 

data pattern more accurately. The optimal performance is observed around 30 neurons, where 

MSE reaches its minimum (10.8) and R2 is at 99.97%, indicating near-perfect prediction 

capability. Beyond 30 neurons, at 35, MSE slightly increases to 28.24, though R2 remains 

remarkably high at 99.92%, suggesting diminishing returns and the potential onset of 

overfitting. 
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In summary, increasing neurons improves accuracy up to a point, with 30 neurons providing 

the best trade-off between minimizing error and maximizing predictive strength. 

Effect of data split ratio on performance of model: 

 

Figure 3. Effect of data split ratio (training-testing-validation) on model performance 

metrics (Training function: Levenberg-Marquardt algorithm, learning function: 

gradient descent with momentum, ten epochs, activation functions for hidden and 

output layers: tansig-purelin, and neurons in a hidden layer: 30) 

Figure 3 illustrates the impact of different data split ratios (for training, testing, and validation) 

on the MSE and R2 in a FFBPNN model. As the training data proportion increases from 50% 

to 90%, the MSE gradually increases from 98.71 to 99.61, while R2 shows a slight decline from 

around 426 (in scaled units) at the 0.5–0.25–0.25 split to about 99.61 at the 0.9–0.05–0.05 split. 

The highest R2 appears at the 0.5–0.25–0.25 and 0.6–0.2–0.2 splits, indicating strong 

generalization when more data is reserved for testing and validation. However, as the training 

data increases beyond 70%, the model may slightly overfit, as reflected in the plateauing of R2 

and marginal MSE differences. The differences among MSE values across the splits are minor, 

indicating stable performance across various data distributions.  

In summary, the chart clearly shows that allocating 90% of data for training, with 5% each for 

testing and validation, results in the most optimal performance of the FFBPNN model. This 

split achieves the lowest Mean Squared Error (MSE) and the highest coefficient of 

determination (R2), indicating excellent model accuracy and generalization. This suggests that 

a larger training set enables the neural network to learn the underlying patterns more 

effectively, while still preserving sufficient testing and validation data to ensure robust 

performance evaluation. 

Effect of activation functions for hidden and output layers on performance of model: 
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Table 2. Effect of activation functions of hidden and output layers on performance of 

model (Training function: Levenberg-Marquardt algorithm, learning function: gradient 

descent with momentum, ten epochs, data split ratio (training-testing-validation):90-5-5 

and neurons in a hidden layer: 30) 

Activation function of layer 
R2 MSE 

Hidden Output 

tansig tansig 99.90 35.51 

logsig tansig 99.91 31.66 

purelin tansig 93.86 2122.70 

poslin tansig 98.67 458.47 

tansig purelin 99.97 10.80 

logsig purelin 99.82 61.94 

purelin purelin 94.74 1817.35 

poslin purelin 97.57 860.78 

tansig logsig -9.33 37803.22 

logsig logsig -6.75 36911.07 

purelin logsig -9.36 37813.43 

poslin logsig -9.67 37923.71 

tansig poslin -8.51 37521.90 

logsig poslin -6.87 36952.37 

purelin poslin -9.05 37706.52 

poslin poslin -8.87 37644.98 

 

The activation function in the output layer plays a pivotal role in determining the range and 

nature of the model’s predicted output, which directly affects performance metrics like R2 and 

MSE. Unlike the hidden layer, which primarily introduces nonlinearity and facilitates complex 

feature extraction, the output layer governs how the final output is mapped, whether it remains 

bounded, unbounded, linear, or nonlinear. In the Table 2, activation functions such as purelin 

(linear) in the output layer—when paired with suitable hidden layer functions like tansig 

enabled accurate modeling of continuous target values, as reflected in the highest R2 (99.97%) 

and lowest MSE (10.80). This suggests that for regression-type problems, linear output 

activation (purelin) is often the most appropriate choice, as it does not restrict the output range 

and allows the network to predict any real number. 
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Conversely, the use of nonlinear activations like logsig, and poslin, in the output layer led to 

significant performance degradation, with some combinations yielding negative R2 values and 

extremely high MSEs. These nonlinear functions tend to saturate the output to specific ranges 

([0,1] for logsig, or [-1,1] for tansig), which may hinder the model’s ability to approximate 

target values outside those ranges. This mismatch between the activation function’s output 

domain and the data’s scale result in poor prediction accuracy. Therefore, choosing an 

appropriate output layer activation function that aligns with the data distribution and problem 

type, especially for regression, is crucial for optimal model performance. The empirical 

findings reaffirm that purelin is best suited for continuous output regression tasks, while 

nonlinear functions in the output layer may severely limit the network's predictive power in 

such contexts. 

Conclusion: 

The comparative analysis between regression and FFBPNN modeling for CEPCI data 

prediction reveals significant insights. The regression analysis demonstrated that higher-order 

polynomial models, particularly the hexic (6th degree) model with an R2 of 97.60%, offer 

superior fitting accuracy over simpler linear or nonlinear models. This suggests that increasing 

model complexity can effectively capture nuanced trends in the data. However, the risk of 

overfitting and reduced generalization must be carefully considered. In contrast, the FFBPNN 

model achieved even greater predictive performance, with an optimal configuration reaching 

R2 of 99.97 and a remarkably low MSE of 10.8. The neural network's flexibility, especially 

when tuned with appropriate training algorithms, learning functions, data split ratios, and 

activation functions (notably tansig in the hidden layer and purelin in the output), enabled it to 

model highly nonlinear patterns more effectively than regression models. Unlike polynomial 

regression, FFBPNN balances high accuracy with better generalization, making it a more 

robust choice for dynamic and complex datasets like CEPCI. Thus, while polynomial 

regression, especially up to the hexic model, offers a strong analytical approach, FFBPNN 

proves to be the most effective modeling technique, capable of capturing both the structure and 

variability of CEPCI data with exceptional precision. 
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