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Abstract:

This study presents a comparative analysis of Single Input Single Output (SISO) Feedforward
Backpropagation Neural Network (FFBPNN) and conventional regression models for
predicting year-based Chemical Engineering Plant Cost Index (CEPCI) data spanning 64 years
from 1960 to 2023. The primary aim is to evaluate the predictive performance of both
approaches using the coefficient of determination (R?) and mean squared error (MSE) as key
performance indicators. In the regression modelling phase, a variety of functions, linear,
polynomial (up to sixth order), logarithmic, exponential, logistic, and power models, were
examined. The best regression performance was obtained for hexic polynomial (n=6), yielding
an R? of 0.9760, indicating strong, but not optimal predictive accuracy. In contrast, the
FFBPNN architecture demonstrated superior performance with a model tuned by varying the
data split ratio, number of neurons in the hidden layer, and activation functions for hidden and
output layers. The best configuration was found to be data split ratio of 0.90 (training) - 0.05
(validation) - 0.05 (testing), 30 neurons in the hidden layer, tansig activation in the hidden
layer, and purelin in the output layer. The training was carried out using the Levenberg-
Marquardt algorithm with gradient descent with momentum-based learning over 10 epochs.
This configuration achieved an R? 0f 0.9997 and an MSE of 10.80, significantly outperforming
the regression models. The findings confirm that FFBPNN provides a more robust and accurate
framework for modelling complex, nonlinear trends in year-based CEPCI data, offering
substantial advantages over traditional regression methods in both precision and
generalizability.
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Introduction:

Cost indices are essential tools in chemical engineering for estimating the cost of equipment,
processes, or entire plants at different times. They provide a means to adjust historical cost data
to present-day values by accounting for inflation, market dynamics, material costs, labour rates,
and technological advancements [1,2]. Commonly used in feasibility studies, project
evaluation, and cost estimation, these indices allow engineers to extrapolate or update costs
without redoing full economic analyses [3]. In chemical engineering, cost indices are especially
valuable for scaling equipment costs from past projects, adjusting capital investment estimates,
and performing quick economic comparisons over time [4]. Several indices exist, such as the
Marshall and Swift Index, Nelson-Farrar Refinery Index, and Chemical Engineering Plant Cost
Index (CEPCI), each tailored for specific sectors or types of plants [5].

The CEPCI is one of the most widely used cost indices in the chemical process industries.
Published monthly by Chemical Engineering magazine [6]. It tracks the relative changes in
plant construction costs over time, offering a composite measure based on factors such as
equipment (process, piping, instrumentation), construction labour, engineering and
supervision, buildings, and materials [7]. CEPCI is normalized to a reference year (commonly
1957-1959 = 100), and it allows engineers to update capital costs from historical estimates to
current values through the ratio, as given in Equation (1) [5]:

CEPCI (base year)
CEPCI (current)

Updated Cost = Original Cost X (D)

CEPCI is particularly valuable because it is applicable across many types of chemical plants,
regularly updated and accessible, and based on real-world economic and industrial data [8]. Its
long historical record makes it suitable for trend analysis and predictive modelling, as
demonstrated in studies involving machine learning and regression techniques.

Modelling and prediction are fundamental components of engineering and scientific analysis,
enabling the understanding, simulation, and forecasting of real-world systems [9]. Modelling
involves developing a mathematical or computational representation of a physical process or
system based on underlying principles, empirical data, or both. These models can be
deterministic or stochastic, linear, or nonlinear, and range from simple equations to complex
algorithms such as machine learning models [10,11]. Prediction through modelling refers to
the use of these models to estimate future behaviour or unknown outcomes based on input data
[12]. In engineering, especially, predictive modelling supports decision-making, design
optimization, and risk assessment. Depending on the system complexity, techniques may
include statistical regression, differential equations, artificial neural networks, or hybrid
approaches [13,14]. The accuracy of predictions relies heavily on model selection, training
quality, input data, and evaluation metrics such as the coefficient of determination (R?) and
mean squared error (MSE) [15]. In recent years, data-driven models, particularly neural
networks, have gained prominence for their ability to capture nonlinear patterns and make
highly accurate predictions in complex systems [16].
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Regression is a fundamental statistical technique used to model the relationship between a
dependent variable and one or more independent variables. It is commonly employed for
prediction and trend analysis [17,18]. Linear regression assumes a straight-line relationship,
while more advanced forms such as polynomial, exponential, or logarithmic regression and
capture nonlinear trends. However, traditional regression models often struggle with capturing
complex, highly nonlinear relationships in real-world data [19,20]. Address such limitations,
artificial neural networks (ANNSs) have emerged as powerful alternatives.

Inspired by the structure of the human brain, ANNs consist of interconnected layers of neurons
(nodes) capable of learning patterns from data without explicitly being programmed with rules
[21]. ANNSs are particularly effective for modelling nonlinear and dynamic systems, making
them suitable for predictive tasks across various domains. There are several types of ANN
architectures, including feedforward neural networks (FNN), the simplest form where data
moves in one direction from input to output, radial basis function networks (RBFN), used for
function approximation and classification, recurrent neural networks (RNN), capable of
handling sequential or time-dependent data due to feedback connections, convolutional neural
networks (CNN), primarily used in image and spatial data processing, modular and hybrid
networks, combinations designed for specialized tasks. Among these, the Feedforward
Backpropagation Neural Network (FFBPNN) is one of the most widely used and well-
established architectures [22-24]. In FFBPNN, information flows in one direction from input
to output while the backpropagation algorithm adjusts the weights during training to minimize
prediction error. This architecture is particularly effective for function approximation, time
series prediction, and pattern recognition, especially when dealing with historical or year-
indexed data [25,26].

FBPNNs have been widely applied across diverse engineering fields due to their ability to
model complex, nonlinear relationships [27]. In the domain of hydrological modelling,
Samantaray and Sahoo (2020) compared the performance of BPNN, FFBPNN, and CFBPNN
algorithms in predicting rainfall-runoff behaviour in an arid watershed. Although BPNN
slightly outperformed FFBPNN in terms of accuracy, the latter still showed strong prediction
capabilities with an R value of 0.9925 in training and 0.9611 in testing phases, underscoring
its potential for runoff prediction tasks [28]. Similarly, sediment transport modelling benefited
from FFBPNN in the work by Rahul et al. (2021), where it outperformed Support Vector
Machines (SVM) in predicting suspended sediment concentration (SSC) in the Ganga River.
Here, FFBPNN demonstrated higher precision with a validation R=0.955 and Nash—Sutcliffe
Efficiency (NSE) of 0.912, indicating its suitability for water resource management [29].

Expanding to combustion engineering, Lalmi et al. (2024) applied FFBPNN to predict swirling
flow characteristics within a combustion chamber. The model effectively replicated spatial and
velocity profiles of the vortex flow field and exhibited strong generalization ability, validating
its application in energy systems involving complex fluid dynamics [30]. In the environmental
domain, Hosseinzadeh et al. (2018) employed FFBPNN to model the efficiency of non-thermal
plasma for removing BTEX pollutants from waste gases. Among the tested ANN variants and
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Response Surface Methodology (RSM), FFBPNN yielded the highest accuracy, achieving an
R2R2 0f 0.9736 and thus confirming its superiority in multi-variable environmental modelling
[31]. Likewise, Li et al. (2016) utilized FFBPNN to predict adsorption performance in Rotating
Packed Beds (RPB). With optimal topology and high prediction accuracy, the model
outperformed both alternative ANN structures and nonlinear regression models, emphasizing
its usefulness in process optimization in chemical separation technologies [32].

In the context of agricultural forecasting, Balaji and Vairavan (2015) implemented FFBPNN
to predict rice production in Tamil Nadu. By evaluating multiple statistical error metrics, they
concluded that the Absolute Relative Error (ARE) was the most effective indicator for
minimizing prediction errors, thereby validating the reliability of FFBPNN in food security
planning [33]. Finally, Wajahat et al. (2018) applied FFBPNN and LRNN to rainfall-runoff
modelling in the Barak Basin. The FFBPNN, with a 3-9-1 architecture using a log-sigmoid
transfer function, yielded superior performance metrics, reinforcing its utility in hydrological
and disaster management systems [34].

The reviewed studies collectively highlight the versatile applications of regression analysis
across various engineering domains. Begin with, Banerjee et al. (2025) applied multiple linear
regression to analyse pressure drop in gas-solid fluidized beds, focusing on how variables like
bed height and gas speed influence key response factors such as drag coefficient and power
consumption. The regression model effectively clarified the relationship between multiple
variables and helped isolate their individual effects [35]. Similarly, Sivamani et al. (2023)
explored how regression modelling can predict mass density and specific volume in aqueous
surfactant solutions (SLS and CTAB). By fitting different polynomial and exponential models,
they found that the quintic model provided the best fit, with near-unity R* and negligible SSE,
highlighting regression's capability in physicochemical data analysis [36].

In a related approach, Sivamani et al. (2020) used curve fitting regression to model and
optimize Vickers hardness in laser cladding of Inconel 625. The regression-based model
facilitated process parameter optimization using derivative and heuristic techniques,
emphasizing regression’s role in manufacturing process optimization [37]. Moreover,
Saravanaraj et al. (2022) demonstrated the applicability of empirical regression in economics
by modelling the electricity consumer price index and inflation trends in Dhofar, Oman. A
variety of models were evaluated, with the quintic model again yielding the highest accuracy
based on the coefficient of determination (R?), signifying regression’s adaptability even in
macroeconomic forecasting [38].

While FFBPNNSs have proven effective in modelling nonlinear systems across various fields,
and regression models remain popular for their simplicity and interpretability, few studies
compare these methods specifically for long-term forecasting of the CEPCI. CEPCI data
exhibits complex, nonlinear trends over decades, challenging conventional modelling. Existing
research lacks a direct, thorough comparison of FFBPNNs and regression models on CEPCI
prediction, limiting guidance on the most accurate and reliable approach. Addressing this gap
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will improve cost estimation practices in chemical engineering economic analyses. Hence, this
study is novel in providing a comprehensive comparative analysis between FFBPNNs and
multiple regression models specifically for long-term prediction of the CEPCI over 64 years.
Unlike prior research, which focuses on individual modelling techniques or other engineering
data, this work rigorously optimizes and evaluates FFBPNN architectures alongside diverse
regression functions to determine the superior method for capturing complex nonlinear trends
in CEPCI. The findings offer new insights into enhancing cost estimation accuracy and
robustness in chemical engineering economic forecasting.

From the research gap and novelty statement, the present study aims to develop and evaluate
predictive models using FFBPNN and conventional regression techniques for accurate
forecasting of the CEPCI over a 64-year period. The objectives are as follows: (i) To compile
year-based CEPCI data from 1960 to 2023 for modelling purposes; (ii) To construct and
optimize various regression models (linear, polynomial, logarithmic, exponential, logistic,
power) for CEPCI prediction; (iii) To design and fine-tune FFBPNN architectures by varying
data split ratios, neuron numbers, and activation functions of hidden and output layers; (iv) To
compare the predictive performance of regression models and FFBPNNs using R? and MSE
metrics; and (v) To identify the most accurate and robust modelling approach for long-term
CEPCI forecasting.

Methods:
Collection of CEPCI data:

The CEPCI data used in this study were sourced from the monthly publications of Chemical
Engineering magazine, which has been consistently releasing updated cost indices since the
mid-20" century. This comprehensive dataset, spanning from 1960 to 2023, reflects industry-
standard cost factors including equipment, labour, materials, and construction, making it a
dependable and widely accepted reference for cost estimation and economic analysis in the
chemical process industries [39].

Regression analysis:

The CEPCI data was verified to ensure consistency and readiness for analysis. Regression
analysis was conducted in Microsoft Excel. Various regression models, including linear,
polynomial (quadratic, cubic, quartic, quintic and hexic), logarithmic, exponential, power, and
logistic functions, as given in Equations (2)-(11), were selected and fitted to the historical data.
Each model’s performance was evaluated using the coefficient of determination (R?) and mean
squared error (MSE) to assess goodness of fit and prediction accuracy [38]. The models were
compared to identify the best-performing regression function, which was then validated and
used for CEPCI prediction.

Linear model: y = oy + a1x (2)

Quadratic model: y = g + a;x + ayx? )
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Cubic model: y = ay + a;x + a,x? + azx3 4)
Quartic model: y = ay + a;x + apx? + azx® + a,x* (%)
Quintic model: ¥y = ag + a;x + ayx? + azx® + ax* + asx® (6)
Hexic model: y = ag + ayx + apx% + azx® + azx* + asx® + agx® (7
Logarithmic model: y = a;.In(x) + b, (8)
Exponential model: y = a,e?2* 9)

Power model: y = a;x?s

(10)
.. Ay
Logistic model: y = a0
(11)

where y is the CEPCI, x is year, oo is intercept, o is linear coefficient, o is quadratic
coefficient. a3 is cubic coefficient, a4 is quartic coefficient, ais is quintic coefficient, a is hexic
coefficient, a; is slope, by is intercept, az is value of y at x=0, by is inclining rate, a3 is scale
factor, b3 is exponent, a4 is maximum value of y, b4 is steepness, and Xy is inflection point.

FFBPNN modelling:

MATLAB served as the primary platform for conducting the analysis in this study. The
FFBPNN modelling procedure for CEPCI prediction began with organizing the dataset into
input (year) and output (CEPCI index) variables. The working principle of FFBPNN involves
two main phases: forward propagation and backpropagation. During forward propagation, the
input passes through the network layer by layer, where each neuron applies a weighted sum
followed by an activation function to produce an output. The network output is compared with
the target CEPCI value, and the error is calculated [40]. In the backpropagation phase, this
error is propagated backward through the network using gradient descent to update the weights
and biases, minimizing the overall prediction error. This iterative learning continues until the
network reaches a satisfactory level of performance. The trained FFBPNN model is then tested
on unseen data to validate its generalization capability, demonstrating superior predictive
accuracy for modelling complex, nonlinear CEPCI trends [9].

The data was normalized to improve training efficiency and then split into three subsets:
training (50-90%), validation (5-25%), and testing (5-25%). The FFBPNN architecture was
designed with a single input neuron (year), a hidden layer with varying neurons (5-35), and a
single output neuron (predicted CEPCI value). The activation functions used for the hidden
and the output layers are tansig, logsig, purelin and poslin at various combinations. The
network was trained and learned using the Levenberg-Marquardt (LM) and gradient descent
with momentum (GDM) algorithms, known for its fast convergence and high accuracy, over
ten epochs.
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Performance metrics:

The coefficient of determination (R?) and mean squared error (MSE) are two key performance
metrics used to evaluate the accuracy of predictive models [41]. R? indicates the proportion of
variance in the dependent variable that is predictable from the independent variable(s). It ranges
from 0 to 1, where a value closer to one signifies a better fit, meaning the model explains most
of the variability in the data. It is calculated using Equation (12).

n —%.)2
%R? = (1 - Zz—:zll((yy ‘i_yy‘))z) x 100
(12)

where yi is observed value, ¥iis predicted value, § is mean of observed values, and n is number
of data points.

MSE measures the average of the squares of the prediction errors, i.e., the average squared
difference between predicted and actual values. Lower MSE values indicate higher accuracy
and better model performance. It is calculated using Equation (13).

MSE — z;;l(ii—mz
(13)

Results And Discussion:

CEPCI data:

1000
800
600
400
200
0
1950 1960 1970 1980 1990 2000 2010 2020 2030

Year

CEPCI

Figure 1. CEPCI data from 1960 to 2023

Figure 1 illustrates the trend of the CEPCI from 1960 to 2023. A gradual increase is observed
from 1960 to the late 1970s, followed by a more rapid rise during the early 1980s. From the
mid-1980s through the early 2000s, the CEPCI exhibits a relatively stable or moderately
increasing trend. A significant escalation is evident after 2005, with noticeable fluctuations
around the 2008 financial crisis. From 2010 onward, the index continues to rise, with sharp
increases post-2020 likely reflecting economic recovery efforts and inflationary pressures
following the COVID-19 pandemic. Overall, the trend indicates long-term growth with
intermittent volatility.
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Regression modelling:

Table 1. Models developed for relationship between the CEPCI and year

Model R? MSE

Linear model: y = —19222 + 9.8324x 95.41 1565.46

Quadratic model: y = 154858 — 165.01x + 0.0439x? 95.93 1388.17

Cubic model: y = —20000000 + 257666x — 12.978x2 + 0.0022x3 | 96.26 1275.66
. . — _ 2 _

(Eg%rélfx3 -Ir_n(()).((i)eé.ozxgl 4000000000 — 7000000x + 5379.7x 9791 95178

Quintic model: y = 100000000000 — 300000000x + 249933x2 — 9795 938.14

124.61x3 + 0.0311x* — 0.000003x°>

Hexic model: y =30000000000000 — 100000000000x +

100000000x% — 85175x3 + 32.063x* — 0.0064x° + 97.60 818.81

0.0000005x°®

Logarithmic model: y = 19574 In(x) — 148337 95.35 1585.91

Exponential model: y = 4 x ¢0:0322x 93.07 2363.24

Power model: y = 4 x 1072106424 93.23 2308.69

Logistic model: y = —222222— 92.18 2666.67

Table 1 summarizes the performance of various regression models, linear, polynomial (from
quadratic to hexic), and nonlinear (logarithmic, exponential, power, and logistic), applied to
model the CEPCI data over time. Each model’s equation is provided along with the coefficient
of determination (R?) and mean squared error (MSE), which collectively indicate the model’s
fit and prediction accuracy.

Among all models, the hexic (sixth-degree polynomial) model demonstrated the best
performance, with the highest R? value of 97.60% and the lowest MSE of 818.81, indicating a
superior ability to capture the complex trends in the data. The quintic and quartic models
followed closely with R? values of 97.25 and 97.21%, and MSE values of 938.14 and 951.78,
respectively. These results support the effectiveness of higher-order polynomials in modelling
the intricate behaviour of the CEPCI data. The cubic, quadratic, and linear models showed
slightly lower R? values of 96.26, 95.93, and 95.41%, respectively, with corresponding MSEs
increasing to 1275.66, 1388.17, and 1565.46. While these models still reflect strong
correlations, their lower performance suggests a reduced ability to represent more nuanced or
nonlinear variations, particularly in periods of rapid change.

Among the nonlinear models, the logarithmic model achieved the highest R? value of 95.35%,
outperforming the power 93.23%, exponential .93.07%, and logistic 92.18% models. This
indicates that the CEPCI data follows a growth pattern that slows over time, rather than
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exhibiting unchecked exponential or power-law growth. Despite their lower R? values and
higher MSEs, these nonlinear models may still offer advantages in terms of interpretability or
theoretical alignment with specific physical or economic growth behaviours.

In conclusion, while simpler models provide a good approximation, higher-degree polynomial
models, particularly the hexic model, most effectively capture the underlying patterns in the
CEPCI data. However, selecting an appropriate model should also involve consideration of
overfitting risks, model interpretability, and predictive reliability, especially when
extrapolating beyond the observed data range.

ANN modelling:

Effect of neurons in a hidden layer on performance of model:

MSE mR2

250
% 200
= 150
< 9.41 99.61 99.73 99.84 99.89 99.97 99.92
= 100 -
/s

0

5 10 15 20 25 30 35

Neurons in a hidden layer

Figure 2. Effect of neurons in a hidden layer on model performance metrics (Training
function: Levenberg-Marquardt algorithm, learning function: gradient descent with
momentum, ten epochs, activation functions for hidden and output layers: tansig-
purelin, and data split ratio (training-testing-validation):90-5-5)

Figure 2 illustrates the performance of a FFBPNN in terms of MSE and coefficient of
determination (R?) for different numbers of neurons in the hidden layer (ranging from 5 to 35).
As the number of neurons increases, there is a clear improvement in model performance.
Initially, with five neurons, the model shows a higher MSE 0f205.67 and a lower R? 0f 99.41%,
indicating a poor fit. As neurons increase to 10 and 15, MSE decreases (to 135.4 and 93.97,
respectively), and R rises slightly (to 99.61 and 99.73%), showing modest improvements.

Significant gains are seen between 15 and 25 neurons, where MSE drops sharply from 93.97
to 36.94, while R? increases to 99.89%, suggesting that the model is capturing the underlying
data pattern more accurately. The optimal performance is observed around 30 neurons, where
MSE reaches its minimum (10.8) and R?is at 99.97%, indicating near-perfect prediction
capability. Beyond 30 neurons, at 35, MSE slightly increases to 28.24, though R? remains
remarkably high at 99.92%, suggesting diminishing returns and the potential onset of
overfitting.
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In summary, increasing neurons improves accuracy up to a point, with 30 neurons providing
the best trade-off between minimizing error and maximizing predictive strength.

Effect of data split ratio on performance of model:

MSE mR2

500
% 400
2 300
<
m 200
/0]

98.71 98.77 99.57 s 99.55 99.6
S 100 o d . |—'7 I—l"
S

% N Q.\c’ >

Data split ratio (Training-testing-validation)

Figure 3. Effect of data split ratio (training-testing-validation) on model performance
metrics (Training function: Levenberg-Marquardt algorithm, learning function:
gradient descent with momentum, ten epochs, activation functions for hidden and
output layers: tansig-purelin, and neurons in a hidden layer: 30)

Figure 3 illustrates the impact of different data split ratios (for training, testing, and validation)
on the MSE and R? in a FFBPNN model. As the training data proportion increases from 50%
to 90%, the MSE gradually increases from 98.71 to 99.61, while R? shows a slight decline from
around 426 (in scaled units) at the 0.5-0.25-0.25 split to about 99.61 at the 0.9-0.05-0.05 split.
The highest R? appears at the 0.5-0.25-0.25 and 0.6-0.2-0.2 splits, indicating strong
generalization when more data is reserved for testing and validation. However, as the training
data increases beyond 70%, the model may slightly overfit, as reflected in the plateauing of R?
and marginal MSE differences. The differences among MSE values across the splits are minor,
indicating stable performance across various data distributions.

In summary, the chart clearly shows that allocating 90% of data for training, with 5% each for
testing and validation, results in the most optimal performance of the FFBPNN model. This
split achieves the lowest Mean Squared Error (MSE) and the highest coefficient of
determination (R?), indicating excellent model accuracy and generalization. This suggests that
a larger training set enables the neural network to learn the underlying patterns more
effectively, while still preserving sufficient testing and validation data to ensure robust
performance evaluation.

Effect of activation functions for hidden and output layers on performance of model:
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Table 2. Effect of activation functions of hidden and output layers on performance of
model (Training function: Levenberg-Marquardt algorithm, learning function: gradient
descent with momentum, ten epochs, data split ratio (training-testing-validation):90-5-5
and neurons in a hidden layer: 30)

Activation function of layer

R? MSE
Hidden Output
tansig tansig 99.90 35.51
logsig tansig 99.91 31.66
purelin tansig 93.86 2122.70
poslin tansig 98.67 458.47
tansig purelin 99.97 10.80
logsig purelin 99.82 61.94
purelin purelin 94.74 1817.35
poslin purelin 97.57 860.78
tansig logsig -9.33 37803.22
logsig logsig -6.75 36911.07
purelin logsig -9.36 37813.43
poslin logsig -9.67 37923.71
tansig poslin -8.51 37521.90
logsig poslin -6.87 36952.37
purelin poslin -9.05 37706.52
poslin poslin -8.87 37644.98

The activation function in the output layer plays a pivotal role in determining the range and
nature of the model’s predicted output, which directly affects performance metrics like R? and
MSE. Unlike the hidden layer, which primarily introduces nonlinearity and facilitates complex
feature extraction, the output layer governs how the final output is mapped, whether it remains
bounded, unbounded, linear, or nonlinear. In the Table 2, activation functions such as purelin
(linear) in the output layer—when paired with suitable hidden layer functions like tansig
enabled accurate modeling of continuous target values, as reflected in the highest R? (99.97%)
and lowest MSE (10.80). This suggests that for regression-type problems, linear output
activation (purelin) is often the most appropriate choice, as it does not restrict the output range
and allows the network to predict any real number.
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Conversely, the use of nonlinear activations like logsig, and poslin, in the output layer led to
significant performance degradation, with some combinations yielding negative R? values and
extremely high MSEs. These nonlinear functions tend to saturate the output to specific ranges
([0,1] for logsig, or [-1,1] for tansig), which may hinder the model’s ability to approximate
target values outside those ranges. This mismatch between the activation function’s output
domain and the data’s scale result in poor prediction accuracy. Therefore, choosing an
appropriate output layer activation function that aligns with the data distribution and problem
type, especially for regression, is crucial for optimal model performance. The empirical
findings reaffirm that purelin is best suited for continuous output regression tasks, while
nonlinear functions in the output layer may severely limit the network's predictive power in
such contexts.

Conclusion:

The comparative analysis between regression and FFBPNN modeling for CEPCI data
prediction reveals significant insights. The regression analysis demonstrated that higher-order
polynomial models, particularly the hexic (6 degree) model with an R? of 97.60%, offer
superior fitting accuracy over simpler linear or nonlinear models. This suggests that increasing
model complexity can effectively capture nuanced trends in the data. However, the risk of
overfitting and reduced generalization must be carefully considered. In contrast, the FFBPNN
model achieved even greater predictive performance, with an optimal configuration reaching
R? 0f 99.97 and a remarkably low MSE of 10.8. The neural network's flexibility, especially
when tuned with appropriate training algorithms, learning functions, data split ratios, and
activation functions (notably tansig in the hidden layer and purelin in the output), enabled it to
model highly nonlinear patterns more effectively than regression models. Unlike polynomial
regression, FFBPNN balances high accuracy with better generalization, making it a more
robust choice for dynamic and complex datasets like CEPCI. Thus, while polynomial
regression, especially up to the hexic model, offers a strong analytical approach, FFBPNN
proves to be the most effective modeling technique, capable of capturing both the structure and
variability of CEPCI data with exceptional precision.
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