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Abstract 

Skin cancer is a serious and potentially life-threatening condition, making early and accurate 

diagnosis essential for effective treatment. The most common types of skin cancer are basal 

cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma. Dermatologists rely 

on skin images to identify the type and severity of these cancers. In recent years, researchers 

have been developing computer-aided diagnosis systems to assist in early detection. This 

paper explores a hybrid model that combines machine learning and deep learning techniques 

to enhance the diagnostic accuracy of skin cancer. Specifically, Convolutional Neural 

Networks (CNNs) are employed to analyze dermatological images, extracting detailed 

features that indicate various types of skin cancer. Alongside CNNs, the FractalNet model—a 

specialized deep learning technique—is used for diagnosis. These models are then integrated 

with the XGBoost algorithm in parallel. The final diagnosis decision is made through majority 

voting, ensuring a robust system that can identify both simple and complex features. This 

hybrid approach, leveraging the different strengths of CNN, FractalNet, and XGBoost, results 

in a more generalized diagnostic system. The HAM10000 dataset, which includes 10,015 
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dermatoscopic images of pigmented skin lesions, is used for model training. Data 

augmentation is applied to balance the dataset. For performance evaluation, precision, recall, 

F1-score, accuracy, and specificity are measured, with an achieved accuracy of 98.69%. 

Keywords: Convolution Neural Networks (CNN), FractalNet model, XGBoost algorithm, 

HAM10000 dataset  

Introduction: 

Cancer 

Cancer is a complex group of diseases characterized by the uncontrolled growth and spread of 

abnormal cells (1), which can invade and damage surrounding tissues, leading to the 

formation of tumors. There are many different types of cancer as shown in figure 1, each with 

its own specific characteristics, risk factors, and treatment options (2). Skin cancer, in 

particular, can be quite serious in its later stages and significantly impacts the skin (3). 

According to global cancer statistics for 2023, nearly 1,524,700 cases of skin cancer were 

reported, resulting in approximately 120,000 deaths (4). 

Skin Cancer 

A skin carcinoma is a prevalent form of cancer originating within the skin's cellular structure 

and holds the distinction of being the most widespread cancer globally. Distinguished into 

several types, the primary classifications encompass Squamous cell carcinoma (SCC), 

melanoma, and basal cell carcinoma (BCC) (5). 

 

Figure 1: Different skin cancer images 

BCC, or basal cell carcinoma is ranked as the most frequent usually the kind of skin cancer 

manifests on face and neck, which are exposed to the sun, (6). While BCC tends to be locally 

invasive, its propensity for spreading to other body parts is rare (7). Another type of skin 

cancer is the SCC (Squamous Cell Carcinoma) stands as second-most prevalent skin cancer, 

commonly emerging on exposed sun regions for example, the hands, ears, and face (8). 

Although SCC is less prone to metastasize compared to melanoma, it exhibits a tendency for 

local aggressiveness. Despite being less common than BCC and SCC, melanoma poses a 
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higher risk of metastasis to other body parts (9). Melanoma is a pigment-producing cell that 

originates from melanocytes and can appear anywhere on the body, irrespective of sun 

exposure. Timely detection is critical, as melanoma's aggressiveness increases with spread. 

Risk Factors of skin cancer include extended exposure to ultraviolet (UV) light, whether from 

the sun or tanning beds, heightens the risk (10). Those with light hair and fair skin, and blue 

or green the eyes are particularly vulnerable (11). The presence of numerous moles or unusual 

moles increases the risk, as does skin cancer in the family history (12). 

Prevention of these cancer types consist of prominently the sun protection measures, 

including sunscreen use, protective clothing, and avoidance of excessive sun exposure, 

particularly during peak hours, are crucial. Regular self-examinations for changes in moles or 

new growths, coupled with professional skin checks by dermatologists, contribute to 

preventive efforts. Steering clear of tanning beds is essential to mitigate the risk of skin 

cancer. 

Detection and Diagnosis of cancer is performed by self-examinations that play a pivotal role 

in identifying changes in moles or other abnormalities on the skin. Dermatologists conduct 

comprehensive examinations to detect potential skin cancers (13). In cases of suspicious 

lesions, a biopsy is performed to ascertain whether cancer is present. 

Treatment modalities are tailored based on cancer type, size, and stage. Common 

interventions include surgery, radiation therapy, and the application of topical medications. 

Emphasizing the significance of early detection and intervention, the prognosis for skin 

cancer improves substantially. If concerns arise about skin changes, consulting a healthcare 

professional, ideally a dermatologist, is essential for a thorough evaluation. Additionally, 

adherence to sun-safe practices is fundamental in preventing skin cancer. 

Research on skin cancer using computer-aided systems is essential for several reasons, as it 

offers numerous potential benefits and advancements within the dermatological field and 

healthcare (14). It can assist in the early detection and diagnosis of skin cancer. Earlier 

detection is vital for successful intervention and improved patient results. Automated systems 

can provide a high level of accuracy and precision in analyzing dermatoscopic images (15). 

This can enhance the reliability of diagnoses, lowering the possibility of false negatives and 

positives. Dermatological datasets, especially those containing a vast number of images, can 

be challenging to analyze manually (16). Computer-aided systems can efficiently handle large 

datasets, speeding up the diagnostic process. Automated systems provide an objective and 

standardized evaluation of skin lesions, minimizing the impact of subjectivity that may arise 

in manual assessments. 

Computer-aided systems can serve as valuable tools to support dermatologists in their 

decision-making process (17). They can provide additional insights and information to aid 

healthcare professionals in making more informed diagnoses. Automated systems can be used 

for population-wide screening, allowing for the identification of individuals at risk and 

enabling early intervention strategies (18). This can be very valuable in areas with little access 
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to healthcare resources. Research in this area contributes to the development and 

improvement of machine learning and artificial intelligence formulas for skin cancer 

detection. This continuous refinement enhances the performance and reliability of these 

systems over time. Early detection and accurate diagnosis through computer-aided systems 

can potentially reduce overall healthcare costs by preventing the progression of advanced skin 

cancers and the need for extensive treatments (19). Skin cancer is a global health concern 

(20). Research on computer-aided systems allows for the development of tools that can be 

applied worldwide, addressing the need for efficient and accessible diagnostic solutions. 

Advances in computer-aided systems contribute to the overall innovation in medical 

technology. This can pave the way for new and improved tools and methodologies in the 

broader area of imaging in medicine and diagnostics. 

The research on skin cancer using computer-aided systems is not only necessary but also has 

a great deal of potential for revolutionizing the diagnosis and management of skin cancer, 

thereby improving patient results and advancements in healthcare practices. 

The methodology proposed in this experimentation employ a hybrid approach considering the 

majority voting amongst XGBoost, FractalNet, and customized CNN models.  

 

Studies in computer-aided dermoscopic image analysis usually consist of three primary 

phases: identifying the lesion's location, removing relevant characteristics of the lesion, and 

subsequently classifying it (21). Preprocessing techniques such are used by the researchers 

including adjustment of contrast (22), color balancing (23), normalization (24), and image 

calibration (25). These systems for computer-aided diagnostics are vital function-players in 

providing the supportive diagnostic system for experts through an accurate decision-making 

(26). 

A six-step procedure is suggested for identifying melanomas by considering twenty-one 

preset standards for skin lesions (27). A two-stage approach was adopted, that demonstrated 

superior results compared to a single-stage approach for classification (28). These two 

methods offered a multi-stage approach and statistical analysis for the improvement of 

accuracy of diagnosis. The work for the detection of malignant melanomas was achieved with 

an 80% success rate by the artificial intelligence system (29). They also proposed the fuzzy 

Reasoning and multilevel neural networks lesions categorising (30). The efficacy of ANN in 

dermoscopic image analysis was worked on. The classification was compared with human 

experts for benign and malignant tumors (31). Support Vector Machine (SVM) and Feed-

forward Network employed on 170 skin lesion images and achieved accuracies of 77% and 

78% (32).  The handmade elements were categorised with an accuracy of 92% for binary 

classification of cancerous and benign using linear regression and SVM (33). An accuracy of 

93% was obtained by SVM with texture and color features for binary categories of skin 

lesions (34). This study is carried on the limited dataset samples.  
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Consequently, deep learning gained its popularity in medical diagnosis, including diagnosis of 

cancer (35). Convolutional Neural Networks (CNNs) were extensively utilised in skin cancer 

diagnosis with medical image processing. An accuracy of 87% was obtained by CNN, which 

is commendable with melanoma classification.The dataset of 600 skin lesion samples was 

used for implementation (36). 81% accuracy was obtained with 1300 images of skin lesions 

(37). An ARL-CNN50 model was proposed and an accuracy of 85% was achieved for the 

skin cancer dataset (38). A hyper-connected CNN model was used for the classification of 

1011 skin lesion images, and an accuracy of 74% was obtained (39).  Improved performance 

of the model was observed with the use of data augmentation (40). Skin lesion categorisation 

was used using transfer learning (41). By using the transfer learning approach an accuracy of 

78 % was achieved (42). The HAM10000 dataset was worked on, and an accuracy of 86% 

was achieved with the transfer learning technique (43).  An Area Under Curve (AUC) 

showing sensitivity greater than 80% was attained with the pre-trained CNN model (44). Data 

augmentation performed with 2000 skin images of three classes and achieved an accuracy of 

91.2% utilizing the FCRN deep convolutional neural network (45). Mobilenet, VGG-16, and 

a custom CNN model were employed, and 80% accuracy was attained across six different 

classes (46). With AlexNet and ResNet-18, achieved accuracies of 81% and 83% respectively 

over 2000 skin lesion images (47). An accuracy of 87% was reported for the binary 

classification with the employment of DenseNet and ResNet models averaging (48). Different 

pre-trained frameworks including InceptionResNetV2, SENet154, and InceptionV4 models 

were used, and the highest accuracy of 76% was achieved (49).  

These findings collectively highlight the effectiveness and versatility of employing pre-

trained models and transfer learning methodologies in enhancing accuracy in skin lesion 

classification studies. 

Although different researchers contributed in the problem of skin cancer detection, there is 

requirement to improve The precision and additional metrics for performance. algorithms for 

deep learning and machine learning utilized for the study, including SOTA machine learning 

and deep learning models. Moreover, a new approach is necessary that utilizes the feature 

extraction capabilities of both machine and algorithms for deep learning. In this investigation, 

a hybrid approach is proposed comprising machine learning approach-XGBoost, and deep 

learning approaches- FractalNet and customized CNN. The majority voting is considered for 

the diagnosis decisions in the proposed approach. 

Methodology 

Images are utilized from HAM10000 dataset designed especially for the skin cancer 

detection. The dataset images are loaded into the proposed model. Initially data augmentation 

is performed which made the dataset samples balanced. Data balancing is necessary to train 

the model in an unbiased manner. If the data samples are imbalanced, the diagnosis decision 

could be partial towards the higher number of samples. Hence the augmentation is performed 

and number of samples in all the classes are made to be equal. 
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Figure 2: Proposed methodology 

After the same, the three models are implemented, XGBoost, FractalNet and a customized 

CNN. These three models are placed in parallel and the diagnosis decision is done with 

majority voting between these models, as shown in figure 2. Following subsection explores 

these classification models: 

Customized CNN 

A Convolutional Neural Network (CNN) represents a category of deep learning models in 

particular crafted for image recognition and executing. Drawing inspiration from the human 

visual system, CNNs specialize in extracting hierarchical features from data using 

convolutional layers, which apply filters to input images, identifying patterns like edges and 

textures. Convolutional layers for downsampling, pooling layers for improved reasoning, and 

fully linked layers make up the conventional CNN architecture. Through convolutional 

operations, the network learns local features, while pooling layers diminish spatial dimensions 

to facilitate feature extraction. Employing learned parameters, CNNs autonomously and 

adaptively identify patterns, enabling tasks include object recognition and picture 

categorisation (50). Beyond image-related applications, CNNs find utility in diverse domains, 

including natural language processing, where hierarchical feature learning proves essential. 

The demonstrated effectiveness of CNNs across various fields underscores their versatility 

and capacity to discern intricate patterns within data (51). The Customized CNN architecture 

used in proposed methodology is shown in figure 3. 
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Figure 3: Customized CNN architecture 

FractalNet  

FractalNet constitutes an innovative neural network architecture designed to tackle the 

challenges associated with training highly intricate networks while concurrently upholding 

computational efficiency. Engineered to enhance the efficacy of convolutional neural 

networks (CNNs), FractalNet introduces a distinctive self-similar structure inspired by 

principles derived from fractal geometry. This departure from conventional CNNs involves 
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the integration of reiterated fractal-like patterns, thereby enabling the construction of deep 

networks without incurring the anticipated rise in computational intricacy(52). 

A pivotal innovation inherent to FractalNet lies in its capability to formulate each layer as a 

synthesis of self-replicating sub-blocks that mirror the overarching structure of the entire 

network. These sub-blocks, reminiscent of fractal patterns, demonstrate consistent structures 

across varying scales. This inherent self-similarity empowers the model to proficiently 

assimilate features at multiple levels of abstraction, thereby facilitating the representation of 

intricate patterns within datasets. 

One of the primary merits distinguishing FractalNet from other CNN models lies in its 

heightened proficiency in capturing hierarchical features. Conventional deep networks 

grapple with challenges during training, such as issues like vanishing gradients or information 

bottlenecks within exceptionally deep architectures. FractalNet adeptly mitigates these 

challenges by judiciously harnessing self-similar structures, thereby fostering a more effective 

flow of information throughout the network. 

Furthermore, the self-similar architecture of FractalNet engenders heightened computational 

efficiency. Despite its augmented depth, FractalNet sidesteps the anticipated exponential 

surge in computational requisites often associated with deep networks. This attribute renders 

it particularly appealing in scenarios where computational resources are constrained. 

The self-replicating nature of FractalNet also fosters a more modular and scalable network 

design. The embedded fractal patterns facilitate seamless extensions or customizations to the 

model, imparting flexibility in adapting the architecture to distinct tasks or datasets (53). 

It epitomizes a pioneering paradigm in deep neural network architecture, leveraging self-

similar structures inspired by fractal geometry. Its superiority over other CNN models is 

underscored by its adeptness in efficiently capturing hierarchical features, alleviating training 

challenges in profoundly deep networks, preserving computational efficiency, and furnishing 

a scalable and modular design. These attributes collectively position FractalNet as a 

compelling advancement in the domain of deep learning architectures, with broad potential 

applications across diverse domains. 

The detail architecture of FractalNEt is shown in Figure 4. The essential component of 

FractalNet is a self-replicating sub-block that mirrors the total network structure as a whole. 

These sub-blocks, resembling fractal patterns, maintain a consistent structure across different 

scales. This self-similarity enables the model to efficiently learn features at multiple levels of 

abstraction, facilitating the representation of complex patterns within data. One noteworthy 

benefit of FractalNet is its enhanced the capacity to capture hierarchical features. In contrast 

to conventional deep networks that may face challenges like vanishing gradients or 

information bottlenecks in very deep architectures, FractalNet addresses these issues by 

leveraging self-similar structures. This results in a more effective flow of information 

throughout the network. Despite its increased depth, FractalNet maintains computational 

efficiency, avoiding the exponential growth in computational requirements typically 
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associated with deep networks (54). This efficiency makes it particularly appealing in 

scenarios where computational resources are limited. 

 

Figure 4: FractalNet architecture 

Let V shows the index of truncated fractal fV(.). A single convolution network is considered to 

be the base case. 

[1] 

Then recursively the other successive fractals can be explained as in equation 2 

[2] 
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where  is the composition and  shows the  join operation. According to Figure 4, V 

correlates to the network's breadth or number of columns fV(.). Number of layers of 

convolution defines the depth considered to be Scales as the distance along the longest path 

from input to output 2(V+1). Two feature blobs which are the result of the conv layers, are 

merged by using join operation, . The quantity of channels corresponds to the filter set's size 

in the previous convolution layer. When the fractal grows, adjacent connects are collapsed as 

seen on the right side of Figure 4, into a single connect layer spanning many columns. A 

single output blob is created by the join layer by combining all of the input feature blobs. 

XGBoost 

XGBoost, which denotes Extreme Gradient Boosting, represents a highly influential an 

algorithm for machine learning widely utilized for regression and classification tasks. 

Developed by Tianqi Chen, this algorithm has gained considerable traction owing to its 

exceptional predictive capabilities. At its core, XGBoost operates as an ensemble learning 

method, combining predictions from multiple weak learners, predominantly gradient boosted 

decision trees (55). 

A distinctive feature of XGBoost is its implementation of gradient boosting, wherein 

successive models are added to rectify errors made by preceding models. This iterative 

process continues until a predetermined number of trees are generated or until further 

improvements in predictive accuracy become negligible.  

To prevent overfitting, XGBoost integrates regularization techniques, incorporating penalty 

terms into the loss function (56). This makes the model want to becoming excessively 

intricate and enhances its generalization to unseen data. The algorithm optimizes an objective 

function, a composite involving a regularisation term and a loss function, with the flexibility 

to select several objective procedures according to the particular assignment, be it binary 

classification, multiclass classification, or regression. An intrinsic feature of XGBoost is its 

ability to assess feature importance. By evaluating the contribution of each feature to 

predictive performance, the algorithm facilitates insights into influential variables and aids in 

feature selection. Notably, it is designed for efficiency and speed, supporting parallel and 

distributed computing. It also implements tree pruning to restrict tree depth during 

construction, finding a middle ground between computational efficiency and model 

complexity. 

XGBoost is a versatile and effective machine learning algorithm with a solid reputation for 

accuracy, scalability, and flexibility (57). Its ensemble learning approach, gradient boosting 

technique, regularization methods, and feature importance evaluation collectively contribute 

to its widespread adoption and success across diverse domains. 

XGBoost algorithm has some important mathematics including learning objective, gradient 

tree boosting, and split finding algorithms.  
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Regularized Learning Objective: 

Consider n instances and m characteristics in a data 

collection , An ensemble model of trees considered to 

have additive functions to forecast the result. 

 

where  is the regression tree space, sometimes 

referred to as CART. Here, T is the number of leaves in the tree, and q represents the structure 

of each tree that translates each example to the associated leaf index. Each f_k corresponds to 

an independent tree structure q and leaf weights w.  

Regression trees differ from decision trees in that each leaf has a continuous score, denoted by 

w_i, which represents the score on the i-th leaf. To get the final prediction, for instance, one 

may use the decision rule in the trees (provided by q) to categorise it into the leaves and then 

add up the scores in the appropriate leaves (supplied by w). Minimise the following 

regularised goal in order to understand the set of functions utilised in the model: 

 

In this case, the difference between the goal y_i and the forecast y ˆ_i is measured by the 

differentiable convex loss function, l. The complexity of the model, or the regression tree 

functions, is penalised by the second factor, Ω. The extra regularisation period aids in 

preventing over-fitting by smoothing the final learning weights. 

Gradient Tree Boosting: 

Since functions are used as parameters in the tree ensemble model in Eq. (4), conventional 

optimisation techniques cannot be applied in Euclidean space. Rather, the model receives 

training in an additive fashion. Formally, let y ˆ_i^((t)) represent the prediction of the i-th 

occurrence at the t-th iteration; in order to minimise the subsequent goal, f_t must be added. 

[5] 

This means the  is added greedily that most enhances the model in line with to Eq. (4).  

In the generic scenario, the aim may be easily optimised by using the second-order 

approximation (12). 
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[6] 

where  and  are gradient statistics on the loss 

function of the first and second order. At step t, the following simplified goal could be 

achieved by eliminating the constant term. 

 

 

Define  as leaf j's instance set. We can expand Ω in the following way to 

rephrase Eq (5): 

[8] 

For a fixed structure , we can compute the optimal weight  of leaf  by 

 

and determine the matching ideal value by 

 

A tree structure q's quality may be evaluated using a scoring function derived from equation 

(6). Although it is calculated for a larger range of objective functions, this score is similar to 

the impurity score used to assess decision trees.  

Typically, listing every conceivable tree structure q is not feasible. Instead, a greedy method 

is employed, which begins with a single leaf and builds the tree's branches repeatedly. Let's 

assume that the instance sets of the left and right nodes following the split are I_L and I_R. If 

we assume I=I_L∪I_R, the loss reduction following the split is provided by 

[10] 
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Performance Metrics  

Classification of normal and abnormal cell images and the multi-class classification are the 

prime motivation of the presented work. There are different metrics employed for the 

evaluation of the performance of the proposed system. Following are the parameters utilized 

for accuracy measurement (58,59,60,61,62): 

Accuracy :               [11] 

Where TP=true positive, TN=true negative, FP=false positive, FN=false negative 

Recall :                                     [12] 

Precision :                           [13] 

F1-score :      [14] 

Specificity: 

Specificity serves as an indicator of performance in machine learning scenarios involving 

binary classification. This metric evaluates the model’s proficiency in accurately recognizing 

instances belonging to the negative class, commonly denoted as "true negatives," among all 

the genuine negative instances. Essentially, specificity gives an indication of how effectively 

the model avoids misclassifying negative instances, contributing valuable insights into its 

ability to correctly identify non-target outcomes. It is given by the equation below. 

[15] 

Confusion matrix :  

To show classifier performance based on the four parameters (TP, FP, TN, and FN) 

mentioned above, a confusion matrix is frequently utilised. A confusion matrix is created 

when these are placed against one another. 

Dataset 

The HAM10000 dataset, denoting "Human against Machine with 10000 training images," 

functions as a valuable asset within the domain of dermatology. In particular curated to propel 

research endeavors in the evolution and evaluation of machine learning methods for 

identifying and categorising skin cancer, This dataset is an essential tool for advancing 

scientific exploration on the terrain (63). 

It comprises of a total based on 10,015 dermatoscopic pictures that meticulously capture 

pigmented skin lesions, the HAM10000 dataset is used in a diverse and useful tool for in -

depth analysis. This dataset meticulously categorizes images into seven different categories of 

diagnosis, covering melanoma, nevus, basal cell carcinoma, actinic keratosis, benign 

keratosis, dermatofibroma, and vascular lesions. Originating from collaborative efforts 
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between researchers at the Medical University of Vienna, Austria, this dataset uniquely 

combines medical and technological expertise. The primary objective in creating the 

HAM10000 dataset is to bolster and streamline research initiatives in the field of computer-

aided diagnostic (CAD) systems, ultimately aiming to improve the precision and efficiency of 

skin cancer detection. At the core of the dataset are dermatoscopic images, crucial 

components of dermatology examinations, captured using dermatoscopes—specialized 

handheld devices with integrated lighting and magnification capabilities, ensuring a detailed 

and comprehensive representation. Recognizing the intricate nature of skin cancer diagnosis, 

the HAM10000 dataset provides a thorough compilation of images that authentically mirror 

the complexities encountered in real-world diagnostic scenarios (64). 

Melanocytic nevi, encompassing a diverse array of benign neoplasms originating from 

melanocytes, exhibit various dermatoscopic perspectives within our dataset, comprising 6705 

images. Melanoma, a cancerous tumour originating from melanocytes, manifests in distinct 

variants, with 1113 images covering both invasive and non-invasive (in situ) forms. Excluded 

are non-pigmented, subungual, ocular, or mucosal melanomas. The "Benign Keratosis" 

category consolidates seborrheic keratoses, solar lentigo, and lichen-planus like keratoses 

(LPLK), totaling 1099 images. Although these subgroups may present diverse dermatoscopic 

features, they are grouped together due to biological similarities, despite morphological 

challenges such as melanoma-like features in LPLK. Epithelial skin cancer frequently 

manifests as basal cell carcinoma with various morphologic presentations, contributes 514 

images. 327 photos show the prevalent non-invasive forms of squamous cell carcinoma, 

actinic keratoses (also known as solar keratoses) and intraepithelial carcinoma (also known as 

Bowen's disease). Haemorrhages and vascular skin lesions, such as cherry angiomas, 

angiokeratomas, and pyogenic granulomas, are encompassed in 142 images. Dermatofibroma, 

a benign skin lesion demonstrating brown pigmentation and often featuring a central fibrotic 

zone, is portrayed in 115 images. This comprehensive categorization aims to facilitate 

nuanced research in dermatology, offering a rich dataset that captures the intricacies of skin 

lesions from diverse perspectives. 

Results 

Initially, data balancing was necessary during this experimentation, as the decision might be 

biased when it dataset contain the unbalanced samples. Figure 5 shows the graphical 

representation of dataset samples before and after data augmentation. After the augmentation, 

all the classes in the dataset were made the equal sized samples as show in Figure 5 (B). 

These samples are loaded in the proposed models and the measures for performance were 

acquired. Following subsection explores the details of the outcomes. 
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(A) 

 

(B) 

Figure 5: (A) Original data    (B) Balanced data 

 

XGBoost 

Figure 6 displays the confusion matrix with XGBoost as classifier and Table 1 displays the 

precise performance data for each class. Recall, F1-score, specificity, and accuracy.  
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Figure 6: Confusion Matrix with XGBoost Classifier 

The values of these measures obtained with XGBoost are 97%, 96.79%, 96.69%, and 16.49% 

for precision, recall F-score and specificity with the accuracy of 96.83 %. Table 1 explains the 

performance measures for the XGBoost classifier. 

Table 1: Performance measures of XGBoost classifier 

Class Precision Recall F1-Score Specificity Support 

0 97.86% 100% 98.22% 0.0% 1329 

1 97.68% 99.85% 98.76% 05.88% 1352 

2 92.23% 99.54% 95.75% 05.17% 1312 

3 100% 100% 100% 0.0% 1286 

4 99.43% 78.67% 87.84% 97.92% 1322 

5 99.64% 100% 99.82% 0.0% 1370 

6 92.39% 99.44% 95.78% 06.45% 1416 

Macro 

Average 
97.03% 96.79% 96.69% 16.49% 9387 

Weighted 

Average 
97.00% 96.83% 96.70% -- 9387 

Accuracy 96.83 % 
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CNN 

 A customized CNN is implemented and the dataset is passed through the model to get 

different performance measures. Figure 7 displays the validation loss, training, and training, 

validation accuracies with a total of 40 epochs. 

 
(A) 

 
(B) 

Figure 7: (A) Training and Validation Loss curve for 40 epochs   (B) Training and validation 

accuracy curve for 40 epochs 
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Figure 8 explores the classification with the help of confusion matrix. It displays the expected 

and actual number of samples for the entire dataset. 

 

Figure 8: Confusion matrix for CNN classifier 

Table 2 explains the performance measures for the customized CNN as the classifier for six 

different classes of the dataset. Precision, recall, F-score, specificity and accuracy values 

obtained with this classifier are 98.51%, 98.45%, 98.46%, 16.91%, and 98.47% respectively. 

Table 2: Performance measures of CNN classifier 

Class Precision Recall F1-Score Specificity Support 

0 99.63% 100% 99.81% 0.0% 1329 

1 99.19% 100% 99.59% 0.0% 1352 

2 97.90% 99.62% 98.75% 15.15% 1312 

3 100% 100% 100% 0.0% 1286 

4 99.09% 90.32% 94.50% 92.09% 1322 

5 99.93% 100% 99.96% 0.0% 1370 

6 94.11% 99.22% 96.60% 11.11% 1416 

Macro 

Average 
98.55% 98.45% 98.46% 16.91% 9387 

Weighted 

Average 
98.51% 98.47% 98.45% -- 9387 

Accuracy 98.47 % 
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Figure 9: Actual and Predicted output images 

Figure 9 shows the actual and predicted images by utilizing the CNN model. 

FractalNet 

Figure 10 explores the arrangement of different categories in the dataset with the confusion 

matrix. This is accustomed to get the actual and predicted values of the dataset samples.  

 

Figure 10: Confusion matrix with FractalNet classifier 

Table 3 gives the performance measures precision, recall, F-score, specificity, and accuracy as 

97.53%, 97.52%, 97.59%, 33%, and 97.52 % respectively. 
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Table 3: Performance measures of FractalNet classifier 

Class Precision Recall F1-Score Specificity Support 

0 99.60% 99.77% 99.59% 27.27% 1329 

1 99.26% 99.11% 99.19% 54.55% 1352 

2 97.90% 95.81% 96.84% 67.07% 1312 

3 99.92% 100% 99.96% 0.0% 1286 

4 94.17% 89.18% 91.61% 66.20% 1322 

5 99.42% 100% 99.71% 05.00% 1370 

6 92.94% 98.59% 95.68% 15.87% 1416 

Macro 

Average 
97.57% 97.50% 97.51% 33.00% 9387 

Weighted 

Average 
97.53% 97.52% 97.50% -- 9387 

Accuracy 97.52 % 

 

Hybrid Model 

After the individual models’ evaluation, an hybrid model is implemented consisting of all 

these three models, XGBoost, CNN, and FractalNet. Figure 11 shows the confusion matrix 

with the utilization of proposed hybrid model showing the actual and predicted samples of the 

dataset. 

 
Figure 11: Confusion matrix with hybrid model and voting approach 
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Table 4 explains the different performance measures with using a hybrid model that is based 

on majority voting approach. The values of precision, recall, F-score, specificity, and 

accuracy are obtained as 98.74%, 98.69%, 98.68%, 16.49%, and 98.69 % respectively. These 

values shown the improvement of these parameters with majority voting hybrid approach. 

Table 4: Performance measures of hybrid classifier 

Class Precision Recall F1-Score Specificity Support 

0 99.77% 100% 99.89% 0.0% 1329 

1 99.56% 100% 99.78% 0.0% 1352 

2 98.20% 99.77% 98.98% 11.11% 1312 

3 100% 100% 100% 0.0% 1286 

4 99.59% 91.53% 95.39% 95.73% 1322 

5 100% 100% 100% 0.0% 1370 

6 94.31% 99.44% 96.80% 08.60% 1416 

Macro 

Average 
98.78% 98.68% 98.69% 16.49% 9387 

Weighted 

Average 
98.74% 98.69% 98.68% -- 9387 

Accuracy 98.69 % 

 

Comparison with state-of-the-art 

Table 5 shows the comparison of the proposed method with the state-of-the-art proposed by 

different researcher for the same problem. As seen from the table accuracy is considered the 

comparison metric. The accuracies obtained by different researchers is from 66.2 % to 93.5 

%. Moreover, the proposed method utilized XGBoost, CNN, and FractalNet combination 

obtained the accuracy of 98.69 % which is good as compared to the state-of-the-art proposed 

by the researchers shown in Table 5. 

Table 5: Performance measures of hybrid classifier 

Reference Method Accuracy (%) 

(65) CNN+GoogleLeNet 
86.7 

 

(66) Dep ResNet +UNet 
76 

 

(67) MobileNet +Efficient B7 88.3 

(68) CNN+ANN 84.2 

(69) VGG13 + MetaNet 66.2 

(70) 
MobileNet-V2 + Spiking 

Neural Net 
89.8 

(71) CNN+ Fuzzy K-means 92.5 
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(72) DCNN 
90.16 

 

(73) 
VGG16 + ResNet + 

CapsNet 

93.5 

 

Proposed 

Method 

XGBoost + CNN + 

FractalNet 
98.69 

 

Discussion 

Skin cancer is becoming more common over time and it has grown in number to become the 

most dominant type of cancer across the globe. The major contributing factor of skin cancer is 

excessive exposure to sunlight or sunlamps. UV light is bad for the skin because it damages 

the skin cell’s DNA. As a result, skin cells undergo mutations that lead to unregulated cell 

division and cancerous growths. The importance of detecting skin cancer at an early stage 

cannot be overstated.Within the suggested work, a hybrid system is presented that utilizes the 

three frameworks, XGBoost, FractalNet, and a customized CNN. The majority voting is 

considered during the decision of diagnosis of different classes defining the type of the skin 

cancer.  

The system performance is evaluated by using different performance measures. Precision 

stands out as a critical metric for assessing classification results, representing the ratio of true 

positive predictions to all positive predictions generated by the model during testing. The 

value of precision obtained by XGBoost, FractalNet, CNN, and hybrid model are 97%, 

98.51%, 97.53%, and 98.74% respectively. Similarly, recall holds significance, providing the 

proportion of positive predictions from an experiment in relation to true positives and false 

negatives. Ideally, a recall value approaching 1 ensures minimal occurrences of false 

negatives in predictions. The recall values obtained by XGBoost, FractalNet, CNN, and 

hybrid model are 96.83%, 98.47%, 97.52%, and 98.69% respectively. The F1-score metric is 

an essential measure in assessing the deep learning and machine learning models' 

performance. Recognizing the inherent trade-off between precision and recall, the F1-score 

serves as a balanced metric, representing the harmonic mean of precision and recall. This 

comprehensive measure addresses both false positives and false negatives, providing a 

holistic evaluation of model performance. The value of F-score obtained by XGBoost, 

FractalNet, CNN, and hybrid model are 96.7%, 98.45%, 97.5%, and 98.68% respectively. In 

the realm of medical diagnostics and classification models, specificity assumes importance. It 

gauges the model's accuracy in accurately determining true negative cases among all actual 

negative cases, reflecting its ability to precisely discern individuals or instances lacking a 

specific condition or characteristic. The values of specificity obtained by XGBoost, 

FractalNet, CNN, and hybrid model are 16.49%, 16.91%, 33%, and 16.49% respectively. An 

additional crucial parameter in Accuracy is the criterion for assessing model performance, 

quantifying the proportion of accurate forecasts to the total number of predictions made. 
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Together, these measures provide a thorough evaluation of the effectiveness and reliability of 

machine learning and deep learning models. The value of precision obtained by XGBoost, 

FractalNet, CNN, and hybrid model are 96.83 %, 98.47%, 97.52 %, and 98.69 % respectively.  

Integrating XGBoost, FractalNet, and Convolutional Neural Networks (CNNs) 

simultaneously through a majority voting strategy presents numerous advantages for 

classification endeavors. Each model (XGBoost, FractalNet, and CNN) possesses distinct 

strengths and weaknesses in grasping various facets of the data. The amalgamation of these 

models facilitates a more holistic comprehension of features, potentially leading to heightened 

accuracy and resilience in classification tasks. XGBoost excels in handling structured/tabular 

data, FractalNet introduces self-similar structures for hierarchical feature learning, and CNNs 

are adept at capturing spatial hierarchies in image data. Integrating these diverse models 

provides a more comprehensive range of feature representation, accommodating the diverse 

characteristics of the data. The fusion of models with diverse underlying architectures creates 

an ensemble that leverages the strengths of each individual model. This synergy has the 

potential to enhance overall predictive performance. Combining models with different 

characteristics aids in mitigating overfitting. If one model tends to overfit to specific patterns 

or noise in the data, the ensemble's voting mechanism can counterbalance these effects, 

resulting in more generalized outcomes. The majority voting approach fosters a collaborative 

decision-making process. Consensus among multiple models in a classification instills greater 

confidence in the predicted label, potentially reducing the impact of outliers or noisy 

instances. XGBoost's suitability for structured data, FractalNet's proficiency in hierarchical 

feature learning, and CNNs' effectiveness with image data contribute to the ensemble's 

adaptability across a diverse array of datasets and data types. Incorporating improvements or 

updates to any individual model (XGBoost, FractalNet, or CNN) into the ensemble is 

seamless, requiring minimal restructuring of the system. The deep learning architectures of 

FractalNet and CNNs enable the capture of intricate relationships within the data. 

Simultaneously, XGBoost's proficiency in handling non-linear relationships through gradient 

boosting complements these capabilities, particularly advantageous for intricate classification 

tasks.  

The hybrid approach of CNN, FractalNet and XGBoost can lead to better skin cancer 

detection and more accurate diagnosis. Existing diagnostic workflows can include this model 

as a supportive assistant to traditional diagnostic methods for dermatologists.  

Potential Benefits: 

Enhanced Prediction: The hybrid model provides more accurate predictions of skin lesions 

using methods from deep learning and boosting, assisting dermatologists in early detection of 

skin cancer. 

Increased Efficiency: It minimizes the requirement for manual examination, accelerating the 

diagnostic workflow. 
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Alternative Review: It can act as a supplementary opinion which could boost the diagnostic 

assurance in dubious situations. 

Potential Challenges:  

Integration Costs: AI tools need to be embedded into a practice and regular updates 

conducted which leads to financial outlay. 

Practitioner Adoption Negative Effect: Dermatologists might find it difficult to adapt to AI 

models especially if they are not familiar with AI technologies. 

Ethical considerations: 

Data Privacy: AI systems process sensitive health data, which require strong privacy 

safeguards. Lack of adequate data privacy plans and location tracking risks could all put 

individuals at the risk of having their data compromised. Strict adherence to data protection 

regulations such as GDPR and HIPAA is critical to mitigate this. 

 

Algorithmic Bias: AI algorithms could be trained on data with some biases, which can result 

in biased outcomes. The example of biased results in healthcare prediction What kind of data 

are you trained on? For example, An AI model trained on non-diverse datasets can not 

perform well for specific demographic groups, leading to the widening of the healthcare gap. 

Solution to this is curated data set and periodic audits of algorithms for fairness. 

 

Misdiagnosis: AI systems could misdiagnose conditions because of data constraints or errors 

in the algorithm. AI can be a complementary tool but needs human oversight to validate 

diagnoses to prevent overreliance on technology. 

Future research would outline potential directions for following areas to improve the accuracy 

of the model and its use:  

 

Enhancing the model to analyze composite Biomedical Data: Further development may 

enable it to predict diseases more accurately as research shows that this composite modality 

improves prediction. Models that Synthesize Hypersensitive Data that combines Health 

Records, Imaging and Genetic analytics enhance robustness and accuracy.  

 

Evaluating Clinical Feasibility of the Model to evaluate its exposure for use: We will plan 

to incorporate our further research by estimating the accuracy of the model in real patient 

environments with relation to existing therapies and possible clinical outcomes. The 

composite data could be all encompassing, consisting of family history, medications, 

treatments, age, occupation, language and ethnicity among others. 

 

Potential Limitations 

Study Design: It is true we may have faced some difficulties in generalizability as it 

depended on the sample. The sample size together with the demographic barrier was recorded, 

and we explained how these factors might affect the generalizability of the study results. 
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Data: When stating the data limitations, we also cited possible biases that existed within the 

provided dataset such as diversity or completeness of data. We have outlined any possible 

gaps which may affect the comprehensive analysis as all attempts were to obtain excellent 

data. 

Analysis: Indeed, we also considered that the selected methods and assumptions may have 

limited the scope of the analysis. Even though we used the established norm of the analytical 

process, we have also noted some methodological constraints such as possible overfitting and 

the limits of the tools used. 

 

Conclusion 

The HAM10000 skin cancer dataset was utilized to build a hybrid model that integrates 

XGBoost, Customized Convolutional Neural Networks (CNN), and FractalNet for the 

diagnosis and classification of skin cancer into seven types. In particular, this model 

capitalizes on the strengths of each component; XGBoost due to its strong predictive 

performance, CNNs for image processing and feature extraction, and the efficient use of 

parameters within the fractal architecture of FractalNet. Initially, data augmentation was 

performed to balance the dataset to ensure diversity in training data. The combined weak 

models were used with a meta decision model based on voting. The generalization for the 

integration of many of these models for different data is greater; thus, they are more adaptable 

to various situations. The hybrid model accuracy improved significantly to 98.69%. We 

expect this result to outpace that achieved with single models. In the future, more datasets and 

real images may help the classifier increase the robustness and applicability. 
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