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Abstract 

Smart city infrastructures rely on extensive networks of Internet of Things (IoT) devices, which 

introduce new security challenges as sophisticated cyber threats target these connected systems. 

This paper proposes a cloud-enabled cybersecurity framework that combines edge-based 

anomaly detection with multifactor authentication to protect IoT-driven smart cities. In the 

proposed approach, resource-constrained edge devices (Raspberry Pi nodes) perform local data 

collection and preliminary analysis, while the heavy computation of attack detection is 

offloaded to the Amazon Web Services (AWS) cloud for scalability. A machine learning model 

(Artificial Neural Network) analyzes IoT sensor and device usage patterns in real time to 

identify anomalies indicative of attacks such as Distributed Denial of Service (DDoS). Also, a 

robust user authentication mechanism is integrated, employing biometric verification (e.g., 

facial recognition) coupled with one-time password (OTP) validation via the “Twilio” API. 

This two-factor authentication ensures that only authorized users can access or control critical 

IoT resources. The system’s performance was evaluated through a prototype smart home/city 

environment. The results demonstrate improved attack detection accuracy and low false alarm 

rates, while the multifactor authentication achieved high reliability with minimal latency. By 

leveraging an AWS cloud backend and “Twilio”-based OTP delivery, the framework enhances 

the overall security posture of smart cities.  

1. INTRODUCTION 

The rapid proliferation of IoT technologies in modern smart cities offers enhanced 

connectivity and data-driven services for citizens, but it also expands the potential attack surface 

for cyber threats. A smart city integrates numerous IoT devices into critical infrastructure – 

including environmental sensors, energy grids, surveillance cameras, and intelligent 

transportation systems – to improve urban living conditions. Ensuring the security and privacy 

of these interconnected devices and the data they exchange is paramount. 
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Without robust safeguards, malicious actors could exploit IoT vulnerabilities to disrupt 

services or illicitly obtain sensitive information [1] – [3]. For instance, attackers might target 

edge devices (such as smart home hubs or city sensors) to capture semi-critical information or 

to launch pivot attacks into the wider. Prior studies have noted that misuse of IoT services, 

especially via compromised edge nodes, can lead to breaches of data confidentiality and system 

integrity. These concerns highlight the need for advanced cybersecurity measures tailored to 

smart city environments [4]. 

One promising avenue for securing IoT-rich systems is the use of cloud computing in 

conjunction with edge computing. Cloud platforms provide virtually unlimited processing 

power and storage, which are essential for analyzing the massive volumes of data generated by 

smart city devices in real time[5], [6]. For example, a cloud-based security system can aggregate 

data from distributed IoT nodes and apply machine learning algorithms to detect anomalies or 

cyber intrusions. By offloading heavy computational tasks to the cloud, resource-limited IoT 

devices are not overburdened, and more sophisticated detection algorithms (such as deep 

learning models) can be employed to improve [7]. At the same time, edge computing devices 

(like Raspberry Pi units) situated near data sources reduce communication latency and allow 

preliminary filtering of data, thereby enhancing responsiveness and reducing the data 

transmission load to the. This combination of edge and cloud – sometimes referred to as a fog 

computing architecture – is well-suited for smart city deployments, as it balances real-time 

responsiveness with centralized intelligence [8], [9]. 

Despite improvements in anomaly detection, securing a smart city also requires guaranteeing 

that only legitimate commands and users are allowed to interact with IoT systems. Attackers 

not only exploit software vulnerabilities but may also attempt to impersonate authorized users 

or devices. Traditional single-factor authentication (e.g., password-based login) is often 

insufficient, especially if credentials are leaked or guessed. Consequently, multifactor 

authentication has become a recommended practice for critical systems. In the context of IoT-

enabled smart cities, multifactor authentication can involve something the user is (biometric 

identifiers), has (a trusted device or OTP sent to their device), or knows (a password or PIN). 

Integrating such authentication methods adds an additional layer of defense against 

unauthorized access, complementing anomaly-based intrusion detection [10], [11]. For instance, 

even if an attacker manages to fool the anomaly detection system or gain network access, they 

would still be unable to execute commands on IoT devices without passing the second 

authentication step (such as biometric verification and OTP confirmation). Modern 

communication services like “Twilio” enable seamless delivery of OTP codes via SMS or other 

channels, making them an attractive solution for implementing the possession factor in 

multifactor authentication. 

In this paper, we present a comprehensive cybersecurity approach for IoT-driven smart cities 

that combines cloud-based anomaly detection with multifactor user authentication. The 

proposed system leverages Amazon Web Services (AWS) as the cloud backend for data 

processing and machine learning analytics, and employs Raspberry Pi devices at the edge for 
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local data collection and preliminary analysis. A machine learning model (deep neural network) 

is trained to recognize patterns of normal behavior and detect deviations caused by cyberattacks 

(such as DDoS or other intrusion attempts). Alongside this, a two-factor authentication scheme 

is implemented: an image-based biometric check (face recognition using a camera-enabled IoT 

device) and a one-time password verification delivered via “Twilio” to the user’s mobile device. 

By requiring both the biometric factor and the correct OTP, the system ensures robust 

authentication of users accessing smart city services or administrative interfaces. This multi-

layered security framework addresses both device-level threats (through anomaly detection) 

and user-level threats (through authentication), thereby significantly improving the overall 

security posture of the smart city. 

The remainder of this paper is organized as follows. Section 2 reviews related work on IoT 

security in smart cities, including intrusion detection systems and authentication mechanisms. 

Section 3 details the proposed methodology, describing the system architecture and components 

such as the Raspberry Pi edge processing, AWS cloud analytics, and the “Twilio”-enabled OTP 

authentication process. Section 4 describes the experimental setup used to evaluate the system, 

including the prototype implementation and simulated attack scenarios. Section 5 presents the 

results of our experiments, including quantitative performance metrics (accuracy, precision, 

latency, etc.) and a summary table of outcomes. Section 6 provides a discussion of the findings, 

implications for smart city deployments, and potential improvements. Finally, Section 7 

concludes the paper and outlines directions for future work in cloud-assisted IoT security and 

authentication for smart cities.  

2. RELATED WORK 

The integration of Internet of Things (IoT) devices into smart city ecosystems has 

revolutionized urban functionality but simultaneously introduced critical cybersecurity 

challenges. As these networks expand, ensuring robust authentication, secure data exchange, 

and real-time anomaly detection becomes essential. Recent research has focused on enhancing 

intrusion detection systems (IDS), authentication mechanisms, and multi-factor frameworks 

that can adapt to the heterogeneous and large-scale nature of smart city IoT infrastructures. 

Intrusion detection remains a primary concern in IoT-based environments due to the dynamic 

and distributed nature of device interactions. To address this, various studies have explored 

machine learning (ML) and deep learning (DL) techniques for detecting anomalies. One 

approach evaluated the impact of noise on ML-based intrusion detection algorithms and 

emphasized the need for pre-processing to maintain performance under uncertain data 

conditions [12]. Another study proposed an AI-enabled IDS for cognitive cyber-physical 

systems, showcasing how ensemble learning techniques can significantly enhance detection 

accuracy across industrial IoT layers [13]. Additionally, deep learning ensembles, such as 

combinations of CNNs and RNNs, have proven effective in identifying cyber-attacks with high 

precision [14]. 
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Authentication, particularly in smart cities, poses another layer of complexity. A review of 

existing techniques highlighted the limitations of conventional password-based methods and 

encouraged the adoption of lightweight and scalable authentication solutions tailored to IoT 

devices [15]. Blockchain integration has also emerged as a promising approach to decentralize 

authentication, offering transparency and resistance to tampering in multi-device networks [16]. 

Furthermore, advanced mobile cloud security solutions that incorporate smart card-based multi-

factor authentication have shown enhanced resistance to credential theft and unauthorized 

access [17]. 

In terms of attack response, real-time detection and system scalability are vital. Multi-factor 

authentication (MFA) frameworks have been widely studied for their applicability in securing 

advanced IoT applications. However, practical challenges such as latency, resource constraints, 

and user accessibility remain [18]. Data-driven approaches to cybersecurity emphasize 

leveraging contextual awareness and continuous monitoring to adapt to emerging threats, which 

is particularly important in smart cities where data volume is massive and heterogeneous [19]. 

From a broader perspective, comprehensive studies on smart city security have proposed 

interaction frameworks that integrate privacy, usability, and risk assessment dimensions [20]. 

Similarly, innovative intrusion detection strategies combining threshold-based and behavior-

based methods have demonstrated practical effectiveness in layered security architectures [21]. 

Despite these advancements, several gaps persist. Current IDS frameworks often suffer from 

limited generalization across diverse datasets or attack scenarios. They are frequently trained 

on static datasets, limiting their adaptability to evolving threat vectors [22]. Authentication 

methods, while improving, face implementation constraints due to device limitations, lack of 

standardization, and vulnerability to social engineering or spoofing attacks. Additionally, many 

existing models rely heavily on cloud infrastructures, which could introduce latency and 

privacy risks in sensitive environment [23]. 

These limitations point to the need for a hybrid security framework that integrates edge-level 

anomaly detection with cloud-assisted analytics and multi-factor authentication, including 

biometric and OTP layers. Such a system would offer not only accuracy and scalability but also 

real-time responsiveness and user assurance. 

3. METHODOLOGY 

The proposed solution is a cloud-enabled, multifactor security framework for IoT devices in 

smart cities. The design follows a layered architecture that integrates edge computing for local 

data processing, cloud computing for global analysis, and multifactor authentication for user 

verification. Figure 1 outlines the overall architecture, which consists of the following key 

components: (1) IoT devices and sensors deployed throughout the smart city, (2) Raspberry Pi 

units acting as edge nodes that interface with these devices, (3) an AWS cloud backend that 

aggregates data from the edge and runs machine learning-based anomaly detection, and (4) a 

user authentication module combining biometric identification and OTP verification via 
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“Twilio”. In this section, we describe each component and its role in the security framework, 

along with the interactions between components. 

3.1 Edge Node Processing with Raspberry Pi 

In the distributed architecture of the proposed system, Raspberry Pi devices serve as 

intelligent edge nodes. These are low-cost, credit-card-sized computing platforms equipped 

with necessary interfaces (GPIO, camera module, network connectivity) to connect with IoT 

sensors and actuators [25]. Each Raspberry Pi is deployed near a cluster of IoT devices (for 

example, within a smart home or at a traffic intersection) and is responsible for collecting, 

processing, and forwarding data from those devices. By performing initial data processing at 

the edge, the system reduces the volume of raw data that must be transmitted to the cloud and 

decreases response times for local events. 

In our implementation, a Raspberry Pi 4 Model B (4GB RAM) was used as the edge device. 

It was connected to a prototype smart camera and several environmental sensors to emulate a 

smart city scenario. The Pi continuously monitors the operational metrics of these devices. One 

particularly important metric is the power consumption pattern of the IoT devices. Sudden or 

sustained spikes in power usage can indicate abnormal behavior such as a DDoS attack (where 

a device is overwhelmed with processing tasks or network traffic). The Raspberry Pi is 

programmed to measure and log power utilization readings (in our prototype, the Pi measured 

its own CPU utilization and the current draw of the attached camera as a proxy for power usage). 

It also monitors network traffic volume and frequency of requests to the IoT devices. These 

measurements serve as features for attack detection. 

Before transmitting data to the cloud, the Raspberry Pi performs preprocessing and local 

anomaly filtering. Light-weight anomaly detection algorithms run on the Pi to provide 

immediate responses to obvious threats. For instance, if the number of requests to a smart 

camera exceeds a threshold or if power usage goes beyond normal ranges by a large margin, 

the Pi can flag this as a potential attack and enact quick protective measures (such as rate 

limiting or temporarily isolating the affected device). This local detection is based on simple 

threshold rules and does not consume significant computational power, making it suitable for 

the Pi’s constraints. The threshold values are learned from historical baseline data collected 

during normal operation. By acting on clear-cut anomalies locally, the edge node mitigates 

threats in real-time, without waiting for cloud analysis. 

After preprocessing, the Raspberry Pi encrypts and transmits the aggregated data to the cloud 

for deeper analysis [24]. Communication between edge nodes and the cloud is secured using 

TLS/SSL to prevent eavesdropping or tampering in transit [26]. Each data packet includes time-

stamped features such as average CPU load, memory usage, network packet count, and power 

consumption over a short interval, along with any local alert flags raised. The use of Raspberry 

Pi as an edge node thus enhances security by (a) reducing reaction time to incidents and (b) 

lowering the data bandwidth needed for cloud communication (since only processed summary 

data and anomalies are sent). Additionally, the physical deployment of multiple Pi nodes across 
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the smart city provides a redundant and scalable network of sentinels; even if one node is 

disabled or compromised, others can continue monitoring their respective segments of the IoT 

network. 

3.2 Copyright Cloud-Based Analytics on AWS 

 The heavy-lifting for anomaly detection is handled in the cloud backend, which we 

implemented using Amazon Web Services (AWS). The rationale for leveraging the cloud is its 

superior computing power, storage capacity, and ability to integrate advanced analytics services 

necessary for processing smart city data at scale. AWS was chosen due to its robust IoT support 

and security features; for instance, AWS IoT Core can securely ingest data from edge devices, 

and AWS Lambda or EC2 instances can be used to run custom code for analysis. In our 

framework, the cloud fulfills several critical roles: 

Central Data Aggregation: All data streams from the distributed Raspberry Pi nodes are sent 

to a central cloud endpoint. In AWS, an IoT Gateway was configured to receive MQTT 

messages from the Pi devices. From there, the data is fed into an AWS Kinesis data stream and 

stored in a scalable data lake (AWS S3) for offline analysis and model training. A relational 

database (AWS RDS) is used to store metadata, such as device registries, user profiles, and 

authentication logs. 

Machine Learning–Driven Anomaly Detection: The cloud hosts the machine learning model 

responsible for sophisticated intrusion detection. We developed a deep Artificial Neural 

Network (ANN) model to classify incoming data patterns as either normal or attack. The ANN 

is a feed-forward neural network with multiple hidden layers that was trained on labeled 

datasets of IoT device behavior [27] [29]. The training data included normal operation logs as 

well as simulated attack scenarios (e.g., DDoS attack patterns characterized by high request 

rates and elevated resource usage). By training in the cloud, we could leverage AWS GPU 

instances to expedite the learning process and handle the large feature set. The final ANN 

architecture had an input layer corresponding to the number of features (such as average CPU 

load, network packets per second, power consumption, etc.), two hidden layers with ReLU 

activation (with 64 and 32 neurons respectively), and an output layer with a sigmoid activation 

producing a binary classification (attack or normal). The model achieved a high training 

accuracy, and hyper-parameters were tuned using cloud-based automation (AWS SageMaker) 

to prevent overfitting. Figure 2 shows a schematic of the ANN structure and how it integrates 

into the system. 

Real-time Analysis and Alerting: When new data arrives from an edge node, the cloud 

invokes the anomaly detection model to evaluate it. AWS Lambda functions are triggered to 

run the prediction using the latest ANN model. If the model outputs a high probability of an 

attack condition, an alert is generated. The cloud then can take coordinated response actions, 

such as notifying all relevant edge nodes, logging the event for administrators, and pushing 

notifications to city security operators. The use of AWS ensures that these alerts and actions 

can scale with the number of devices – whether there are dozens or thousands of edge nodes, 
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the cloud can elastically adjust to the workload. In our prototype, for example, when a simulated 

DDoS attack was launched on the Raspberry Pi camera, the spike in requests and power usage 

was detected by the ANN in the cloud with a certain confidence [30]. The system responded by 

automatically sending a command to that Raspberry Pi to isolate the affected camera device 

from the network (through a script that modifies firewall rules), thereby averting a potential 

outage of the node. 

Secure Data Storage and Privacy: Because our approach involves analyzing potentially 

sensitive data (including personal device usage patterns and biometric information), data 

security and privacy compliance are crucial. AWS provides encryption at rest (e.g., using KMS 

for S3 objects and RDS data) and in transit, as well as fine-grained access control policies. In 

the implementation, all personal or identifying data (such as biometric templates or phone 

numbers for OTP) are encrypted in the database. We also enforce data retention policies (old 

data is regularly purged or anonymized) to minimize privacy risks. By leveraging the cloud for 

storage and computation, the framework benefits from enterprise-grade security practices, 

which are essential for maintaining citizen trust in smart city applications. 

3.3 Multifactor User Authentication (Biometric + OTP via “Twilio”) 

In addition to detecting device-level anomalies, the proposed framework includes a 

multifactor authentication mechanism to verify the identity of users who attempt to access IoT 

devices or control systems. This mechanism is vital for preventing unauthorized control even 

if an adversary manages to pass network-level defenses. Our multifactor approach combines: 

(1) Biometric verification using face recognition, and (2) One-Time Password (OTP) 

verification via “Twilio”. 

For the biometric factor, an image-based authentication was implemented. The Raspberry Pi 

edge nodes that oversee sensitive access points (e.g., a smart door lock or a control panel in a 

smart building) are equipped with a camera. When a user initiates a request that requires 

privileged access (such as unlocking a secure door or accessing surveillance camera feeds), the 

system triggers the camera to capture the user’s face. A lightweight face recognition algorithm 

runs either on the Raspberry Pi or in the cloud (depending on resource availability and latency 

requirements) to verify the user’s identity. In our prototype, we used the OpenCV library with 

a pre-trained deep learning model for face embeddings (Face Net) on the Raspberry Pi to extract 

a feature vector from the captured image, then sent this vector to the cloud where it was 

compared against enrolled user templates in the database. The decision of facial identity match 

is based on a similarity threshold. If the distance between the input face embedding and the 

stored template for the claimed user is below a threshold θ, the face is accepted as a match; 

otherwise, it is rejected as an impostor. Formally, the face match decision can be represented 

as a threshold function: 

𝑑(𝑓𝑖𝑛𝑝𝑢𝑡, 𝑓𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒) < 𝜃 ⇒ 𝐴𝑐𝑐𝑒𝑝𝑡(𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑 𝑢𝑠𝑒𝑟) 

𝑑(𝑓𝑖𝑛𝑝𝑢𝑡, 𝑓𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒) ≥ 𝜃 ⇒ 𝑅𝑒𝑗𝑒𝑐𝑡𝑡(𝑈𝑛𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑 𝑢𝑠𝑒𝑟) 
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Where, d is “Euclidean distance metric” between the feature representation of the input face 

and the enrolled template. 

If biometric verification is successful (i.e., the system matches the captured face with a 

registered user), the authentication process advances to the OTP verification stage. The cloud 

backend generates a secure 6-digit OTP and dispatches it via “Twilio” 's SMS API to the user’s 

registered mobile number. The user is required to enter the received OTP into the system 

interface within a specified time window (typically 60 seconds). The backend verifies the 

submitted code; authentication is granted only if the OTP matches and is submitted within the 

valid period. 

This two-factor mechanism significantly enhances security. An adversary would need to 

bypass both biometric verification and OTP delivery. Let PBP_BPB be the probability of false 

biometric acceptance and POP_OPO be the probability of successfully guessing or intercepting 

the OTP. Then, the probability of unauthorized access is: 

𝑃𝑢𝑛𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒𝑑 = 𝑃𝐵 × 𝑃𝑂 

For an unauthorized user the overall probability of successful authentication is the product of 

individual success probabilities of both factors: 

𝑃𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒𝑑 = 𝑃𝑏𝑖𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑠𝑢𝑐𝑐𝑒𝑠𝑠
× 𝑃𝑂𝑇𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠

 

These multiplicative probabilities express the robustness of the combined biometric and 

OTP-based authentication system. 

4. PROPOSED WORKFLOW SEQUENCE DIAGRAM 

The sequence diagram in figure-1 illustrates the complete workflow of a multi-layered 

authentication system for secure gate access using IoT and cloud-based services. It integrates 

components such as a Raspberry Pi (acting as a local server), MongoDB, “AWS Recognition”, 

and “Twilio”. 

The process begins with the client attempting to connect to the Raspberry Pi by fetching its 

IP and port from MongoDB. Once connected, the user registers by entering credentials, a 

security question, a phone number, and a facial image. The image is uploaded to Amazon S3, 

triggering a Lambda function that processes it using “AWS Recognition” to generate facial 

encodings. These encodings are securely stored in DynamoDB. 

During login, the user enters their credentials. The system validates these via MongoDB and 

prompts the security question. If successful, it triggers “Twilio” to send an OTP to the user’s 

phone. The user inputs the OTP, which is then verified. 

After OTP validation, a new face image is captured and uploaded to S3. Another Lambda 

function compares this image with the stored encoding using Recognition. If the face matches, 

the system requests gate control links from the Raspberry Pi. These links are shown in the GUI 

and sent to the user’s mobile via “Twilio” for remote gate operation.
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Figure 1. Sequence diagram: system workflow 
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Each step is fortified with verification layers—credentials, security question, OTP, and 

biometric face recognition—making the system highly secure. The use of cloud services 

ensures scalability, while “Twilio” integration enhances accessibility and user convenience. 

This layered model provides robust protection for physical infrastructure in IoT-driven smart 

environments. 

5. EXPERIMENTAL SETUP 

To evaluate the proposed IoT security framework, a prototype environment was created 

combining hardware deployment and simulated attack scenarios. 

• Hardware Configuration: A Raspberry Pi 4 (4GB RAM) acted as the edge device, 

connected to sensors and a Pi Camera Module for biometric capture. It monitored CPU 

load, memory usage, power consumption, and network traffic. The Pi also hosted a web-

based control interface to simulate smart city operations. 

• Cloud Backend: AWS EC2 hosted the anomaly detection model, with AWS IoT Core 

receiving MQTT messages from edge nodes. AWS RDS stored user credentials and face 

embedding. OTP delivery was handled via the “Twilio” API, integrated with cloud logic 

for authentication workflows. 

• Data Collection: Baseline data was recorded during normal device operation. Attack 

data was generated through scripted DDoS-like HTTP floods and abnormal sensor 

behavior. These labeled datasets were used to train a deep artificial neural network 

(ANN) for anomaly detection. 

• Model Training: The ANN was trained using 70% of the data, validated on 15%, and 

tested on the remaining 15%. Data normalization and class balancing techniques 

(SMOTE) were applied [28]. Hyperparameters were optimized using AWS SageMaker. 

• Authentication Testing: Ten users were enrolled with face images and mobile numbers. 

Face recognition and OTP verification were tested under normal, impostor, and 

network-stressed conditions. Metrics such as False Acceptance Rate (FAR), False 

Rejection Rate (FRR), OTP success rate, and overall authentication latency were 

recorded. 

This setup validated both the anomaly detection accuracy and authentication robustness in a 

realistic smart city simulation. 

5.1 Evaluation of OTP-Based Multifactor Authentication Performance 

5.1.1 OTP Success Rate 

The OTP Success Rate (OSR) reflects the percentage of correctly entered OTPs within the 

allowed time frame. In our tests, “Twilio” achieved a 98% OSR—98 out of 100 OTPs were 

entered successfully by legitimate users. Failures were due to SMS delays or input errors. 

Excluding one major delay (~15s), the effective OSR was 99%, showing high reliability. 
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5.1.2 OTP Delivery and Authentication Latency 

“Twilio” delivered OTPs within 1–2 seconds in most cases. Total authentication latency, 

including face recognition, OTP delivery, and user input, averaged 4.5 seconds per successful 

login. User response time and SMS delivery accounted for most of this delay, with minimal 

system-side overhead. 

5.1.3 Combined Security Efficacy  

No unauthorized access occurred in any scenario. Attempts using photos or impersonation 

were blocked at the biometric stage or failed due to lack of OTP. The combined effectiveness 

of biometric recognition and OTP reduced the Effective False Acceptance Rate to 0%, 

confirming the robustness of the layered authentication approach. 

6. RESULT AND DISCUSSION 

6.1 Interface developed 

The initial registration utilized Twilio’s API to verify users via mobile number and OTP. 

OTPs were delivered with a 98% success rate within 10 seconds, providing a reliable 

mechanism to ensure only valid users could proceed with registration. 

6.1.1. Credential Matching (MongoDB) 

User credentials, including usernames and security questions, were securely stored and 

retrieved from MongoDB. During testing, the system achieved a 100% accuracy in validating 

credentials, rejecting all mismatches without exception. 

6.1.2. Security Question Verification 

As an added security layer, the system required users to answer pre-defined security 

questions. This method consistently blocked unauthorized users, maintaining a 100% denial 

rate for incorrect responses. 

6.1.3. Facial Data Storage and Encoding (AWS Services) 

Face images were uploaded to AWS S3, and facial encodings were generated using AWS 

Lambda, then stored in DynamoDB. The average processing time for this step was 1.5 seconds, 

ensuring rapid biometric registration. 

6.1.4. Biometric Face Verification (AWS Recognition) 

At entry points, face verification was conducted via AWS Recognition. The system 

authenticated 96% of authorized quick and secure authentication. 
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Figure 2 (A). Registration Using Registered Mobile Number 

 

 

Figure 2 (B). OTP verification 
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Figure 3 (A). Verification of Login Credentials  

 

Figure 3 (B). Server response after verification process 

The integration of Twilio, AWS services, MongoDB, and a Raspberry Pi server resulted in a 

stable and scalable authentication platform. Facial data was handled as encoded vectors to 

ensure privacy. The multi-factor approach—covering credentials, OTP, security questions, and 

facial recognition—delivered a high level of security without compromising user experience. 

The system proved suitable for real-time access control in physical security environments. 

6.2 Result obtained 

The table-1, figure-4 presents the effectiveness of the proposed cloud-assisted anomaly 

detection model, which utilizes an artificial neural network (ANN) to identify cyber threats 

based on IoT device behavior patterns. 
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Table 1. Performance Metrics Of Cloud Based Anomaly Detection For Iot Devices 

Metric 
Observed 

Value  

Attack Detection Accuracy 

(ANN) 
93.10% 

Attack Detection Precision 91.00% 

Attack Detection Recall 90.00% 

Attack Detection F1-Score 90.50% 

Detection Latency (Edge + 

Cloud Avg.) 
2.3 s  

 

 

Figure 4. Cloud based Anomaly detection comparison graph 

The system achieved a high detection accuracy of 93.1%, with precision and recall values of 

91.0% and 90.0%, respectively, indicating reliable classification of attack events. The F1-score 

of 90.5% reflects balanced performance. The average detection latency across edge and cloud 

was 2.3 seconds, demonstrating suitability for real-time smart city applications. 

Table 2. Units For Performance Metrics Of Multifactor Authentication System 

Metric 
Observed 

Value  

False Acceptance Rate 

(Biometric) 
           0.00% 

False Rejection Rate (Biometric)            5.00% 

OTP Success Rate (Legitimate 

Users) 
           98.00% 
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OTP Delivery Time (via 

“Twilio”) 

      ~1.8 s 

(average) 

Total Authentication Latency 
       4.5 s 

(average)  

 

Table-2 summarizes the results of the multifactor authentication framework, combining 

biometric facial recognition with “Twilio”-based OTP delivery to ensure secure user 

verification. 

6.3 Result Discussion 

6.3.1. Edge-Cloud Synergy  

The framework effectively balances edge and cloud resources. Raspberry Pi nodes handle 

real-time local processing, while AWS cloud supports scalable analytics using ANN models. 

This division ensures fast detection and low network overhead, making the system suitable for 

large-scale smart city deployments. 

6.3.2. Machine Learning Efficacy 

The ANN model successfully identified subtle cyberattack patterns missed by basic threshold 

rules. Though results were promising, the model’s effectiveness depends on training data. 

Continuous updates or federated learning could improve detection in dynamic environments. 

6.3.3. Multifactor Authentication Benefits  

Combining biometric verification with “Twilio”-based OTP added strong security. Even if 

one layer is compromised, unauthorized access remains unlikely. Additionally, audit logs and 

OTP alerts improve transparency and forensic capability. 

6.3.4. User Experience and Accessibility  

The system maintains security without sacrificing usability. Average login times (~4–5 

seconds) are acceptable, though fallback options (e.g., hardware tokens) may be needed in 

emergencies or for accessibility support. 

6.3.5. Integration of AWS and “Twilio”  

Both platforms offered high reliability and ease of integration. However, dependence on 

cloud services introduces cost and availability concerns. A hybrid mode with offline fallback 

enhances resilience in case of network issues. 

6.3.6. Privacy Considerations  

Biometric data and personal identifiers are protected using encryption and best practices. 

Transparency, consent, and regulatory compliance (e.g., GDPR) are essential to maintain user 

trust and data security. 
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6.3.7. Detection of Diverse Attacks 

 While the system detected DDoS and abnormal usage patterns effectively, future 

improvements should address stealthy threats and physical tampering. Additional metrics like 

firmware integrity and adversarial ML resistance can be integrated. 

The results confirm that the proposed framework enhances IoT security by combining cloud-

based analytics with layered authentication. Its modularity supports future upgrades, making it 

a practical foundation for resilient and adaptive smart city protection. 

7. CONCLUSION AND FUTURE SCOPE 

This paper presented an original framework for bolstering the cybersecurity of IoT-driven 

smart cities by merging cloud-based anomaly detection with multifactor authentication. In 

doing so, we addressed both the technical aspect of attack detection and the human factor of 

user authentication, which together form a comprehensive defense strategy. The proposed 

system leverages Raspberry Pi edge devices and the AWS cloud to monitor and analyze IoT 

device behavior in real time, successfully detecting cyberattacks such as simulated DDoS 

attempts with high accuracy and low latency. At the same time, the integration of biometric 

verification and “Twilio”-facilitated OTP adds a robust verification layer ensuring that only 

authorized individuals can access or manipulate the smart city’s IoT resources. 

Through a series of experiments, we demonstrated that our approach can achieve substantial 

improvements: the machine learning-based detection achieved over 93% accuracy in 

identifying anomalies, outperforming simpler edge-only methods, and the authentication 

scheme yielded a 0% false acceptance rate with only minimal false rejections and negligible 

delays. These results highlight the potential of cloud computing (in this case, AWS) to augment 

the inherent capabilities of IoT systems, providing scalability and advanced analytics that would 

be unattainable on the edge alone. They also underscore the value of combining multiple 

security mechanisms – no single technique is a panacea, but together, anomaly detection and 

multifactor authentication reinforced each other’s effectiveness. 

The contributions of this work are multifold. First, it illustrates a practical implementation of 

an edge-cloud security architecture, complete with details on how data flows, decisions are 

made, and responses are executed in a smart city context. Second, it provides evidence that 

outsourcing heavy computation to the cloud (for tasks like ANN inference) can be done without 

sacrificing real-time performance, validating the viability of using services like AWS in critical 

IoT applications. Third, it integrates a user-centric security measure (2FA via “Twilio” SMS 

OTP and biometrics) into the IoT framework, which is an often overlooked but crucial aspect 

when devices act based on user commands – effectively tying user identity verification into the 

cyber-physical security loop. By rewriting the original approach and introducing these 

enhancements, the paper also serves as a template for how existing IoT security solutions can 

be modernized and extended. 
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Moving forward, there are several avenues to expand and refine the proposed system. One 

direction is to incorporate additional types of biometric authentication (e.g., fingerprint or iris 

recognition) and allow adaptive authentication policies – for example, requiring fewer factors 

during low-risk operations but automatically escalating to full multifactor authentication when 

an anomaly is detected or when high-risk actions are requested. Another area for exploration is 

the use of AI at the edge: techniques like Tiny ML could enable more complex anomaly 

detection to happen on the Raspberry Pi itself, further reducing detection latency and cloud 

dependence. Likewise, exploring federated learning could allow each smart city node to 

improve the global model without sharing raw data, enhancing privacy. We also plan to test the 

system in more diverse scenarios, such as larger-scale simulations with dozens of edge nodes 

or deployment in a small real-world pilot, to evaluate its performance and reliability at scale. 
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