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Abstract 

The research develops an advanced brain tumor segmentation system that combines a 

skip connection between ResNet-18 and Dice Loss in an encoder-decoder network. Brain tumor 

segmentation helps medical imaging specialists find and plan better treatment methods for 

patients. The proposed method uses ResNet-18 as a base which combines deep architecture 

with residual connections to prevent vanishing gradient problems. In the technique the model 

connects the encoder and decoder to keep spatial details that disappear in typical architectures 

during down sampling steps. The method can better identify hard-to-sector tumor areas because 

it handles small and nonuniform tissue elements effectively. The model uses Dice Loss as its 

optimization method to measure how well the predicted tumor outlines match the actual tumor 

areas. The proposed network proves better tumor segmentation results on its regular brain data 

collection through testing against older technique approaches. The new model outperforms U-

Net by 0.87% in accuracy plus 46.99% in precision along with better F1 scores and Dice 

coefficients but demonstrates an 0.84% drop in recall. The new method proves better than U-

Net by revealing improved performance and segmentation outcomes. The network design 

efficiently segments challenging areas using its encoder-decoder structure based on ResNet-18 

and Dice Loss calculations. 

 

Key words: Brain Tumor, Dice Loss, Encoder-Decoder block, Segmentation, Skip connection, 

ResNet-18.  

 

1. Introuduction 

Research into brain tumors has brought major changes to medical practices in diagnosis, 

treatment, and patient services [1]. Medical research now uses MRI and CT scans plus AI 

system segmentation tools to identify brain tumors before they become severe. The field of 

molecular biology enables doctors to create personal treatment options based on genetic 

mutations which increases treatment results. Modern surgery with modern technique, including 

minimally invasive techniques and neuro navigation systems, make doctors more precise and 
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give the patients less prolonged recovery time.  The introduction of techniques like stereotactic 

radiosurgery and proton therapy in radiation treatment has allowed for precise tumor targeting 

with minimal harm to healthy tissues.  

The blood-brain barrier has also improved in terms of crossing. And the immunotherapy is 

also developing new promising treatment options by harnessing immune system to fight against 

tumor. The advancements achieved in these areas have enabled enhanced interdisciplinary 

approach in neurology, oncology as well as radiology towards initiating a more reliable 

prognosis, survival forecast and treatment of brain tumors in more comprehensible manners 

with an optimistic outlook for additional advance in brain tumor treatment. 

Although traditional and advanced learning techniques support brain tumor detection they 

bring different methods to increase diagnostic precision and effectiveness [2]. Image 

enhancement through denoising and contrast change plus feature selection using histogram 

methods and wavelet tools make up standard methods. The system uses Support Vector 

Machines (SVM), Random Forests, K-Nearest Neighbors (KNN), and Logistic Regression 

algorithms for tumor classification from the obtained features. After segmentation the computer 

applies morphological transformations to enhance the segmentation results. Advanced methods 

of deep learning have become essential for detecting tumors today. CNNs use image data to 

develop their own basic features without the need for manual assistance. Encoder-decoder 

architectures and GAN models boost tumor boundary detection and make more diverse training 

samples helping the developed medical systems perform better. Models that were initially 

trained on different tasks can be modified with transfer learning to spot brain tumors when there 

are not enough marked datasets. Researchers currently blend machine learning and deep 

learning approaches to make best use of both strategies [3]. Despite strong processing capacity 

the system needs more accurate data sources while also updating its output for users to 

understand better.  Different technologies improve brain tumor detection today yet main 

advancements come from mixing traditional and advanced algorithms. 

 

Problem Statement 

Segmentation of brain tumor is in demand in medical image analysis because 

identification and segmentation of tumor locations is essential for establishing an effective 

equipments of diagnosis, treatment and monitoring. Unfortunately, the problem is dexterous in 

that anatomies of brain tumours vary from one patient to another exhibiting different shapes, 

sizes and even appearances. Reliable segmentation of the tumors is typically a challenge of 

traditional approaches due to tumors of irregular shape or positioning close to crucial parts of 

the brain. Besides that, the conventional deep learning architecture fails to maintain a high 

segmentation accuracy while the spatial information is lost with the down sampling in encoder 

decoder models. However, with the development of more advanced architectures e.g., ResNet 

network they have been able to tackle these issues to some levels, and it has become necessary 

to combine these models with an insightful loss function like Dice Loss in order to deliver the 

exactness and precision of tumor segmentation [4]. To address such problems of challenges, 



International Journal of Applied Mathematics 

Volume 38 No. 2s, 2025 

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version) 

 

745 
Received: July 19, 2025 

the study will propose a skip connected ResNet-18 encoder-decoder network [5] with Dice Loss 

to enhance the accuracy and efficiency of the process of brain tumor segmentation. 

 

Motivation 

It is motivated by a lack of current methods that can effectively deal with complex tumor 

structures in the brain tumor segmentation problem. Although the traditional approaches are 

successful, they usually fail to reach the level of high accuracy in segmentation, because of 

noise, irregularities and tumor shape variability. However, due to the downsampling in the 

encoder part, most encoder-decoder networks tend to lose spatial details while generating 

segmentations. To solve this problem, the ResNet-18 architecture, based on residual 

connections was suggested that prevents the problem of vanishing gradient, letting the networks 

go as deep as possible. The model can preserve important spatial information by applying skip 

connections between the encoder and the decoder, which helps to improve the segmentation 

accuracy. Furthermore, the usage of Dice Loss also aids in improving the segmentation 

performance which directly optimizes for the overlap of predicted with ground truth tumor 

regions. In this research we aspire to devise a new model which will improve the brain tumor 

segmentation's reliability and accuracy that will later assist with early diagnosis and also in 

improving treatment for the patients. 

 

The rest of the paper as follows. A brief background about tumor segmentation on MRI 

images is given in section 2. Bottomline of methodology used in the study is shown in section 

3. In Section 4, we provide dataset and performance evaluation metrics applied used, and 

comparison against baseline methods’ results. The section 5 has conclusions regarding the 

work. 

 

2. Background Study 

Other works of the same issue and those devoted to other types of brain tumors are 

valuable due to working as the source of basic tricks and methodologies that made the current 

more accurate and quick models possible. Segmenting brain tumors is difficult based on 

previous research since tumors are of all shapes, sizes and positions and worrisome to preserve 

spatial details in encoder decoder networks due to the downsampling process. Although studies, 

particularly incarnations of deep learning, including convolutional neural networks (CNNs) and 

encoder-decoder architectures, have addressed these concerns, such approaches have struggled 

in the area of complex tumor shapes or small tumor area relative to the background. In addition, 

the loss function such as Dice Loss is used to augment segmentation that maximizes overlap in 

the predicted and ground truth tumor regions. With skip connections, ResNet architectures 

prove to be capable of achieving great enhancements to preserve feature information in passing 

through the network. This work uses the study of these other works to extrapolate these 

advanced techniques (a skip connected ResNet-18 encoder decoder network combining it with 

Dice Loss) to increase the precision of segmentation which is vital towards improving 
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diagnostic precision, guidance for treatment decision-making and subsequently patient 

survival.. 

Shravan, Venkatraman [6] suggests a new deep learning method to help with detecting, 

and segmenting gliomas from brain MRI images. The authors recommend a synergy between 

SeNet (Squeeze-and-Excitation Networks) and ResNet (Residual Networks) into an encoder 

decoder structure. In particular, the SeResNet 152 is employed as the backbone of their model. 

The functions of this integration include the improvement of the feature extraction feature and 

the accuracy of segmentation by using Channel Attention Mechanism and Deep Feature 

Extraction.  SeNet introduces a Channel Attention mechanism to allow the network to pay 

attention to the most informative features in an attempt to recalibrate the channel-wise feaure 

responses. Residual connections in ResNet allow for it to be trained with deeper networks and 

item.Business learn more complicated patterns in the data. The model picks up these 

hierarchical features in hierarchical manners and combines these architectures, through an 

encoder decoder framework. Some performance metrics were adopted and the following 

benchmarks to estimate the proposed model which includes Dice Coefficient: 87 % Accuracy: 

89.12 % Intersection over Union (IoU) 88 % and mean IoU 82 % The value of these metrics 

evidences a good share of conforming to correctly segregate glioma regions from MRI scans. 

A combined encoder-decoder model with SeResNet being the basic model is proposed and 

demonstrated with high efficacy in segmenting glioma. The basis will be Deep learning residual 

and channel attention. Nevertheless, the paper fails to assess the model across a broader 

spectrum of clinical situation and variation of tumor. In addition, unlike most state-of-the-art 

methods there is no comparisons with other methods and the lack of a discussion on the 

computational efficiency of the proposed method may make it difficult for the proposal to be 

applied in practical settings. 

The goal of Zhang, Wenbo, et al.[7] research is to enhance the segmentation accuracy 

of 3D MRI brain tumors using an innovative architecture of deep learning. The dominant and 

most prevalent form of brain tumors is gliomas. In order to have a successful diagnosis and 

treatment planning, it is necessary to have accurate segmentation of these tumors in the MRI 

images. However, manual segmentation is a highly tedious process and is full of 

inconsistencies. Deep learning has indeed made it possible to do segmentation automatically 

but most of the existing methods work only at the level of 2D, thus leading to the issue of 

suboptimisation if the brain tumor happens to be 3D. Such challenges as voxel imbalance and 

variations in tumor size and location make it further complicated to have accurate segmentation. 

To address these issues, we apply ME-Net that is a multi-encoder, and single decoder. The 

network has four distinct encoders (multi-encoder design) for each of the four MRI modalities 

(T1, T1c, T2, and FLAIR). There is also permission for modal specific feature extraction in this 

design, thus providing the network with more opportunities to detect number of different tumor 

characteristics. The output of the four encoders is then combined, processed by the common 

decoder synthesizing the amalgamated features in order to output the final segmentation. A 

novel loss function, Categorical Dice, is brought into the fold. It makes different regions of the 
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tumor receive different weights in this case to address the issue of voxels imbalance thus 

enhancing the performance of segmentation across the various sub regions of the tumor.  

The performance of MENet was measured using the BraTS 2020 Challenge dataset that 

is a well-known brain tumor segmentation benchmark. Specifically, the following Dice scores 

were obtained using the model: WT (0.70249), TC (0.88267), ET (0.73864). Moreover these 

results demonstrate that ME-Net competes with state-of-the-art techniques and specifically it 

compares well on the tumor core segmentations. In this work, ME-Net delivers a strong measure 

for 3D brain development segregation utilizing modality specific encoders with an 

appropriately structured loss capacity to address certain primary complexities related to medical 

picture analysis. It is well suited for clinical use to diagnose and plan for its treatments from its 

architecture and performance. 

Saqib Qamar, Parvez Ahmad, and Linlin Shen[8] considers problem of segmentation of 

brain tumor from 3D MRI scan with aim of improve the segmentation accuracy using advanced 

deep learning model. A new improved 3D UNet architecture, HI-Net (Hyperdense Inception 

3D UNet), which includes the Factorized 3D Convolutions, where a standard 3D convolution 

is split into several branches to process extracted features from the orthogonal planes (axial, 

sagital and coronal) separately. Inception modules with residual connections are used in the 

Residual Inception Blocks in order to facilitate the extraction of multi-scale features. 

Hyperdense Connections further strengthen dense reuse of features and hence connections 

between and inside layers whenever they occur, making the gradient able to pass through the 

nn more easily. It is based on evaluating it with the BraTS 2020 dataset, a multimodal MRI that 

is annotated with Whole Tumor (WT), Tumor Core (TC), Enhancing Tumor (ET). The 

Performance Metric as Dice Similarity Coefficient (DSC) scores on WT (0.87494),Tumor Core 

(0.83712) and Enhancing Tumor (0.79457). High sensitivity and specificity in all the tumor 

regions demonstrated the reliability of the segmentations. 

To relieve a radiologist’s burden, in 2015, Huang, Wang, Zhang, Li, and Dong [9] 

proposed automated brain tumor segmentation in MRI images with the purpose of high 

accuracy. The Proposed Methodology had incorporated a parallel multi-scale feature-fusing 

architecture with feature extraction network (FEN) that extracts the features of a tumor at 

different levels. Multi scale Feature Fusing Network (MSFFN), Alternatively, it joins the 

feature in parallel from various scales to create rich feature. I developed two hybrid loss 

functions that assist in leveraging class imbalancing issue as HL1 and  HL2. HL1 is the 

amalgamation of cross entropy loss and recall loses for complete, core and enhancing tumor 

regions. HL2 is achieved by overlapping Dice loss with recall losses that apply to the same 

regions. We tested the method against the BRATS 2015 dataset, which has 274 cases for 

training (54 low-grade, 220 high-grade tumors) and 110 test cases whose ground truth was not 

disclosed. There are four MRI sequences for each case, namely T1, T1-contrast, T2, and 

FLAIR. Metrics related to evaluation were the Dice Similarity Coefficient (DSC), Positive 

Predictive Value (PPV), and Sensitivity. DSC has been to achieve 0.86 for complete tumor 

region and 0.73 for tumor core region, 0.61 for enhancing tumor region, model size is compact 

i.e, 6.3 MB. It performed better than other methods which are state-of-the-art but which have 
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no post processing for the complete segmentation of tumors. The fusion of multi-level features 

due to parallel structure ensures better accuracy of segmentation. To mitigate the class 

imbalance, the hybrid loss functions are used to enhance the sensitivity in the detection of tumor 

regions. It is demonstrated that the method can be potentially used on other cases of medical 

image segmentation. 

A suitable and automated segmentation of the brain tumor was the approach in which 

Wang G., Li W., Aertsen e.t. [10] developed based on the cascaded deep learning with 

anisotropic convolutions approach. Provided a cascade of three neural networks for segmenting 

three different tumor subregions namely Whole Tumor (WT), Tumor Core (TC), and 

Enhancing Tumor Core (ET) that contain only enhancing suprathreshold voxels. Detailed 3D 

context is obtained with ACNNs while computing cost is pushed down. Takes advantage of in 

plane and cross plane characteristics through the application of 2D/3D convolutions (hybrid). 

A multi view fusion approach is used to integrate predictions of axial, sagittal and coronal views 

and provide robustness. The test time augmentation technique is employed when the inference 

time has to increase accuracy by applying transforms at inference time. It has been tested on 

the BraTS 2017 dataset that contains multimodal MRI scans and the references label. On the 

performance evaluation, it had competitive Dice scores across all tumor sub regions. It was 

better than many baseline and state of the art methods, as it was ranked in BraTS 2017 challenge 

rankings. The scheme of effective anisotropic convolution enables efficient use of memory, as 

well as effective use of a cascade strategy to accomplish the processing of a complex tumor 

structure in stages. The cascaded anisotropic CNN approach obtains and maintains adequately 

good performance and computational expenses suitable for verities in the real-world clinical 

endeavors. 

Juhong Tie, Hui Peng, Jiliu Zhou [11] introduced a method based on the combination 

of DenseNet and ResNet into a 3D U-Net structure to enhance accuracy in brain tumor 

segmentation of MRI images. A new 3D U-Net architecture is constructed based on Dense 

Encoder Blocks and Residual Decoder Blocks. To increase feature propagation, alleviate 

vanishing gradients and cap the receptive field, it uses Dense Encoder Blocks, which utilize 

dense connections. Segments consist of residual Decoder Blocks, having residual connections 

to ensure more flow of gradients and improved segmentation results. Each layer of Dense 

Encoder Blocks takes inputs from all the preceding layers promoting reuse of feature and good 

flow of gradients and the ability of the net work to catch complex features the few parameters. 

The remarkable changes of Residual Decoder Blocks include the mainstay skip connections, 

which add nothing more than plain addition of input of a layer to its output, the aim is to assist 

in learning of identity mappings and convergence. A key evaluation aspect of the model is done 

using the (multimodal) MRI scans with marked tumor parts of the BraTS dataset that came out 

in 2019. Whole tumor (WT): Dice Similarity Coefficients. TC (Tumor Core): 0.901, ET 

(Enhancing Tumor): 0.815, SUVmax (Tumor ROI): 0.766. In the demonstration, the proposed 

model beats the traditional 3D U-Net when it comes to segmenting different sub regions of 

tumors. It demonstrated the increased accuracy and robustness for managing complex structure 

of tumor.  High-dimensional and residual connections layered using a 3D U-Net architecture 
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contribute to improving feature learning and segmentation performance. It also claims to be 

applicable to the clinical setting in automated diagnosis of brain tumor and planning of 

treatment. 

Aboussaleh I, Riffi J [12] and colleagues suggested an improved U-Net based model for 

segmentation of MRI images (brain tumor) through incorporating innumerable encoders and 

attention mechanisms. The architecture uses three pre-trained CNNs - VGG-19, ResNet50, and 

MobileNetV2 - as encoders to yield rich and variable features. A Bi-Directional Feature 

Pyramid Network (Bi-FPN), on the other hand, merges multi-view features of every encoder 

for boosting spatial and contextual knowledge. The decoder has focus modules that help in 

segmentation accuracy by focusing on the relevant features to suppress noise. Thisconfiguration 

of multi-encoders takes advantage of superrelative properties of other different CNN to better 

represent intricate tumor structures. On the basis of the BraTS 2020 dataset, the model has 

outperformed the traditional variants of the U-Net in terms of Dice Similarity Coefficient, IoU, 

and precision/recall for the subregions of tumors. It precisely segmented the entire tumor, tumor 

core, and enhancing regions. The architecture performed significantly better accuracy and 

computational efficiency relative to current state-of-the-art approaches. Its benefits make it very 

suitable for use in clinical settings where an accurate and reliable delineation of the tumor is 

needed. 

Zhang, J.; Shen, X.; Zhuo, et al. [13] suggested an improved method of brain tumor 

segmentation in MRI by improving Fully Convolutional Neural Networks (FCNNs) and 

implementing Hierarchical Dice Loss function. Acknowledging the issues related to class 

imbalance and the complexity in tumour’ nature (in particular gliomas), they have modified 

traditional FCNN prototypes by introducing inter-layer connections, expanding decoders, 

introducing residual structures, as well as introducing batch normalization to enhance the 

performance. Their novel loss function converts multi-class classification into binary 

classifications depending on the hierarchical tumor subregion relationships, which actually 

accounts for class imbalance. Trained on the BraTS dataset, the model exceeded the 

performance of traditional FCNNs with regard to precision, recall, mean IoU, and Dice 

Similarity Coefficient. It offered better accuracy in segmentation of whole tumors, tumor core, 

and enhancing areas. Architectural refinements and loss function came together for the artifacts 

of addressing tumor complexity and boundary delineation. Such an approach showcased high 

promise for clinical application situations where there was a need for precise and time-effective 

tumor segmentation.. 

Lijuan Yang et al. [14] suggested MUNet that leads to the combination of the strengths 

of local feature extraction of UNet and the modelling of brain global context abilities by Mamba 

in order to achieve better brain tumor segmentations. Traditional CNNs are good at capturing 

local details but bad for global context, transformers are good with global modeling but come 

with computational cost. The MUNet introduces the SD-SSM block where selective scanning 

and state-space modeling are combined in order to provide global as well as local learning from 

the features. The SD-Conv module brings the two options, i.e., SCCONV and depthwise 

separable convolutions, which improve efficiency by removing redundancies without adding 
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parameters. Skip connections help to implement multi-scale feature fusion and retain spatial 

details. A composite loss function—mIoU, Dice, and Boundary loss—seeks to optimize the 

segmentation quality as well as the boundary accuracy. Evaluation on BraTS2020, BraTS2018, 

and another isolated LGG dataset reported good Dice and competitive Hausdorff95 

performances. In terms of efficiency, MUNet performed with superior speed compared to 

SwinUNet and TransUNet, having only 7.27M parameters and 140.97 GFLOPs. All the same, 

there are challenges that arise in interpretability, fear of overfitting, and also segmenting very 

heterogeneous tumors. Future improvements are recommended to incorporate improvements in 

boundary detection and the use of data augmentation and transfer learning.. 

Akshya Kumar Sahoo, Priyadarsan Parida, et al. [15] developed an intelligent system 

for automatic brain tumor detection for 2D contrast-enhanced MRI images utilizing two-stages: 

segmentation followed by classification. Segmentation was done using a U-Net with the 

backbone of a residual network whereas classification of glioma, meningioma, and pituitary 

tumors was carried out using a YOLOv2 transfer learning approach. The model reported a high 

Segmentation accuracy (99.60%), and Classification accuracy (97%) and higher than the state-

of-the-art techniques. Some of the main areas of contribution include the fusion of segmentation 

and classification into a single pipeline and the effective deployment of transfer learning for 

medical imaging. The results of the system were good in terms of sensitivity, specificity, 

precision, and Dice score. It has important feasibility for clinical use in diagnosis and treatment 

decision in part. Future work proposes further development of the idea to the 3D image to 

increase accuracy and vice versa, as well as considering other deep learning models. It is 

recommended that further validation is done on larger and more varied datasets to allow for 

generalizability. 

Sedigheh Sina et al. [16] suggested a method of automated segmentation of 

Glioblastoma Multiforme (GBM) in MRI images using the DeepLabv3+ structure with pre-

initialized ResNet18 weights. The model was trained on 293 HGG cases using the BraTS 2020 

dataset, which had multimodal MRI scans (T1ce and FLAIR). Manual annotations by expert 

neuroradiologists were employed as ground truth to demarcate the tumor subregions during the 

process, which included: enhanced tumor, edema, necrotic regions, and normal regions. The 

network was optimized by various hyperparameter experiments and performed best in epoch 

37 with 97.53% Global accuracy at a loss of 0.14 and higher than 90% sensitivity to find out 

enhanced tumors. The Deep-Net model scored high on segmentation accuracy, especially for 

the tricky GBM one. The study illuminates the fact that integrative DeepLabv3+ and pre-trained 

ResNet18 is a strong and viable option for utilizing semantic segmentation in medical imaging. 

In their review, M.K.H. Khan and colleagues [17] discussed the application of machine 

learning (ML) and deep learning (DL) methods in tumor segmentation from MRI data, 

comparing the advantages and challenges and the emerging trends of the subject under 

discussion. Common algorithms that are mentioned in comparison with ML are thresholding 

and edge detection, as well as GMM, SVM, and FCM, which deliver a good range of accuracy 

while also failing to perform well with noise and variability. DL methods, especially CNNs and 

U-Net, demonstrate outstanding successes in diagnosing and serendipitous tumors but have 
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high needs in big annotated data sets and computing power. The analysis of the segmentation 

methods was based on datasets such as BraTS (2012–2021), TCIA, BrainWeb, and IBSR. 

Despite other models, U-Net always does a better job in depicting detailed structures of tumors. 

It is increasingly preferred to use ML and DL methods in combination to take advantage of the 

two’s strengths. Some of the key limitations include generalization of the model to different 

patterns of tumors, the lack of interpretability, and the implementation of powerful hardware. 

The future efforts are to develop diverse, annotated datasets, enhance the real-time performance 

and develop user-friendly systems for clinical integration thus make them acceptable in hospital 

settings. 

From the above study, it is identified that, several limitations in brain tumor 

segmentation using deep learning have been found consistently. Currently, approaches are 

lacking in generalizability across different tumor type, clinical conditions and datasets and 

limited in the analysis of robustness towards artifacts and variations in the model. However, 

there has often been a strong emphasis on segmentation accuracy to the extent that much less 

attention is paid to other essential factors like computational cost, efficiency, and deployment 

feasibility on a real-world system. Due to high architectural complexity and high required 

computational resources, many models cannot be used in real-time in a clinical application. 

Further on, several methods exhibit a risk of overfitting, are often not scalable and/or not 

interpretable – which are both critical for clinical trust. Additionally, some of the studies do not 

utilize all possible MRI modalities or are restricted to 2D images Cyprus reducing their scope 

for analyzing the tumor in 3D. Additionally, proposed innovations are hard to validate as there 

are no comparisons with state-of-the art techniques, and there are not enough ablation studies. 

Thus, there are still challenges with regard to data availability, efficiency, interpretability, and 

generalization in the field overall. 

 

3. Proposed Work 

3.1 ResNet-18 

ResNet-18, on the other hand, is a deep convolutional neural network that replaces some 

of these problems with residual learning to alleviate the challenges associated with training very 

deep networks [18]. ResNet-18 architecture is given as Figure.1 [19]. It has 18 layers consisting 

mainly of convolutional and identity shortcut connections that are responsible for the reduction 

in the vanishing gradient problem. The architecture is to be considered as starting by applying 

7 × 7 conv then moving on to max-pool, which leads to a decrease in spatial resolution. This is 

then followed by four (Layer 1 to Layer 4) all have Layer 2 having 2 residual blocks with either 

two filter depths, 64, 128, 256, and 512. In another stage (other than Layer1), an initial down-

sampling of the feature maps is done with stride2, and the rest of the blocks have dilations 

towards the respective dilation index. The second is a residual block, which includes two layers; 

the first being 3x3 convolution, batch normalization, and ReLU; the second is also 3x3 

convolution, batch normalization, and ReLU. In every block, we apply skip connections which 

skip over onto the convolutional layers and hook back onto the output in order to promote 

gradient flow. Finally, a global average pooling is applied to it, so as to reduce the 
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dimensionality of the feature maps on this channel down to a single vector. Finally, among 

these, a fully connected layer provides the classification scores. Despite having a relatively low 

cost in terms of computation, ResNet-18 is able to achieve a strong performance that can be 

used for both academic and pragmatic ends. 

 

Figure 1. ResNet-18 architecture. 

3.2 Proposed Methodology 

The proposed methodology is based on developing a skip connected ResNet-18 Encoder 

Decoder network, optimized with Dice Loss in order to improve the accuracy and precision of 

tumor delineation with medical images. The first step involves the acquisition and 

preprocessing of brain tumor MRI images stabilizing typical problems of MRI like noise, 
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intensity variation, and other artifacts by typical standard processes of image normalization and 

denoising. 

 

 
Figure 2. Block diagram of proposed method.  

 

The novelty of the proposed method can be observed in the use of ResNet-18, a wide-

spread known deep convolutional neural network deployed based on residual connections. The 

residual connections make the model learning deeper, more complex representations, and 

allows the model avoid the issue of vanishing gradients. The encoder – decoder architecture in 

this case performs feature extraction in which the encoder reduces the dimensions of the feature 

maps and retains the high level features and the decoder reconstructs the image by up sampling 

the feature maps to fill up all the empty spaces. An encoder and a decoder are linked via a skip 

connection to disseminate high-resolution spatial information to earlier layers of the network 

to later layers ensuring the maintenance of any important information as regards to the shape 

and the borders of the tumor in the process of down sampling. 

A Dice Loss is added as an optimization goal and further enhances the accuracy of the 

segmentation [20]. As another form of metric, Dice Loss is the one which is far more specific 

in that it tries to transition into maximizing the overlap between the prediction made by the 

regarded model for the segmentation of the tumor with the ground truth. This variation of metric 

is more preferable, particularly to function as a way of assessing a model designed with the 

scope of predicting the tumor specifically out of the extensive border of the healthy tissue. 
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In this method, the ideas of residual learning, skip connections, and a loss function have 

been merged to impart it with the strength to be a good methodology toward brain tumor 

segmentation. The ultimate aim is to create more accurate segmentations to help better diagnose 

and treat patients leading to better patient outcome. Implementation approach of proposed 

method is shown in the block diagram Figure 2. 

 

3.2.1 Pre-Processing 

Image resizing appears to be the first step of the preprocessing phase in order to get 

images of the same resolution i.e (256 × 256) or (224 × 224) pixels depending on the input 

requirement of the network. This is important in ensuring that you will have consistent feature 

extraction, and an efficient batch processing. Once the resize is done in this step, a masking 

operation is conducted in which resize ground truth segmentation masks according to the 

segmentations of tumor regions are resized in the same manner as the input images are aligned 

pixel to pixel. This means masking aids in telling the model what is tumor vs non tumor and 

telling the model the spatial patterns. In training, the ResNet-18 embedder encodes deep level, 

and skip connection is used to save the fine level localization information. These features are 

gradually up-samples by the decoder to reconstruct a detailed segmentation map. The Dice Loss 

function works really well for imbalanced classes such as tumor and background as it calculates 

the overlap between the predicted mask and the ground truth, and prompts the model to properly 

segment both small and also irregular tumor regions. When using image resizing, you have 

uniformed inputs, and when using masks indicate the model exactly where to aim at during 

training.  

 

3.2.2 Encoder Function 

The encoder is an adapted ResNet-18, modified to be able to entertain 1-channel 

grayscale MRI inputs in place of standard RGB images. The parts for both convolutional feature 

extraction remain while the final fully connected (FC) classification layers are stripped away. 

We skip-linked encoder-decoder stages at matched stages: res4b_relu, res3b_relu, and 

res2b_relu are passed to the respective decoder layers. Therefore, this design enables us to retain 

high-level semantic as well as fine-grained spatial detail when up sampling which is very 

important for accurate segmentation of complex boundaries of brain tumour when segmenting 

them.  

The encoder maps an input image x to a set of increasingly abstract feature maps. Each 

block inside ResNet-18 has a residual connection. Mathematically, each block can be 

represented as: 

( ,{ })iy F x W x= +     (1) 

Where: 

• x=input to the block (feature map),  

• ( ,{ })iF x W = residual function (typically two or three convolutions with batch 

normalization and ReLU),  
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• { }iW =weights of convolution layers,  

• y=output of the block. 

 

Structure of ResNet-18 

The structure of ResNet-18 [21] which is shown in Figure.3, is composed of two main 

components: ResNet-18 contains two separate parts: its initial layers with subsequent stacks of 

residual blocks arranged in four stages. The first stages in the network receive raw images and 

generate fundamental image properties from them. It uses a 7×7 convolutional layer with a 

stride of 2 to detect basic image features including shape and texture. The network applies batch 

normalization to stabilize learning when it follows these steps. The ReLU activation function 

creates non-linearity for the network so it can understand intricate patterns. This next layer 

transforms the spatial inputs twice to achieve better results with minimal increase in 

computation demands. 

After its starting layers ResNet-18 uses four stage blocks with two blocks each to reach 

eight blocks total [21]. Each residual block uses two 3×3 convolutional layers. Batch 

normalization and ReLU activate the results of each convolution except for the last 3×3 

convoluted layer before it passes to the next block. Residual blocks are designed with a special 

connection that lets their input travel directly to their output. This identity mapping helps 

gradients navigate better through deep structures and fixes the problem deep networks usually 

have with vanishing gradients. 

The four processing stages in this architecture regularly downscale spatial dimensions 

while adding more feature channels. The image resolution decreases across stages with 

corresponding filter increases from 56×56 with 64 features to 7×7 at 512 features. Each stage 

down sampled through two-layer block combinations where the first block implements a stride 

of 2 convolution and includes a 1×1 convolution in its shortcut path for dimension adjustment. 

The performance-relevant design choices in ResNet-18 led to its straightforward transition into 

deep models hence becoming a popular deep learning framework. 

 

Residual Block Definition 

Each residual block performs the following computation: 

 

2 1( ) ( )F x W W x=     (2) 

Where:   

• W1, W2 are convolutional filters, 

• σ is ReLU activation. 

 

With the skip connection, the final output becomes: 

( )y F x x= +      (3)  

The architecture enables networks to discover the residual mapping while reducing 

training time and enabling deep network training without performance loss. 



International Journal of Applied Mathematics 

Volume 38 No. 2s, 2025 

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version) 

 

756 
Received: July 19, 2025 

 
Figure 3. The structure of ResNet-18 

 

3.2.3 Decoder and Skip Connections 

In segmentation networks skip connections help keep spatial details intact after down 

sampling in the encoder phase. 

• Feature maps are saved at each phase of the encoder process. 

• The decoder combines saved maps with its own up sampled output during 

processing. 

 

The formal definition of Skip Connection at Level l is 

l lS y=      (4)   

Where:  

• lS =saved feature map at level l.   

• ly = output of the encoder at level l. 

 

Decoder Structure 

The decoder rebuilds full-resolution segmentation maps by using transposed 

convolution networks called deconvolutions to expand the feature maps. Through this design 

the architecture builds output quality step by step. The decoder connects to encoder output data 

(via skip connections) to both keep detailed spatial information and enhance its ability to 

segment images. 

 

3.2.4 Loss Function: Dice Loss 

The model is trained using the Dice Loss [20], which is particularly useful for medical 

imaging segmentation tasks, where class imbalance (e.g., small tumor vs. large background) is 

a concern. The Dice Loss helps address class imbalance and matches predicted regions more 

accurately with their ground truth in medical image segmentation. The standard Dice Loss 

formula represented as: 
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2 P G
Dice Loss=1-

P G



+
   (5) 

Where:  

• P=predicted segmentation 

• G = ground truth segmentation 

• P G = intersection (common area) between prediction and ground truth 

It effectively penalizes both misclassification of positive samples as negative and vice 

versa, which is beneficial in applications such as tumour segmentation.  

 

Pixel-Wise Sum Formulation dice loss is represented as: 

2 2

i ii

i ii i

2 p g
Dice Loss=1-

p g+


 

  (6) 

Where:   

• ip =predicted probability at pixel i. 

• ig =ground-truth label (0 or 1) at pixel i. 

 

This formulation is convenient for implementing in code with tensor operations and is 

greatly efficient for measuring the overlaps in segmentation tasks. 

 

Decoder Fusion Step (Transposed Convolutions + Skip Fusion) 

The saved feature maps from the encoder (via skip connections), are fused with 

upsampled decoder features for the sake of spatial context during decoding. The decoder fusion 

equation is represented as  

1( )l l ld Decoder d s+= +    (7) 

Where: 

•  ld = decoder feature at level l . 

• ls  = corresponding skip connection (encoder feature at level l ) 

 

The fusion allows the decoder can retrieve high-resolution details from encoder layers of the 

network for enhanced segmentation accuracy. 

 

3.2.5 SoftMax Layer 

The SoftMax layer helps the network transform its raw logits into probabilities that 

show the distribution between background and tumor classes [22]. With this step the model 

demonstrates how confident it is about placing each pixel into its correct category. SoftMax 

adjustments help relate predicted outputs across pixels so users can set thresholds for better 

decision-making during segmentation. Models need SoftMax outputs during training to 

compute loss functions such as cross-entropy and Dice Loss which require probability 
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estimation. Basic SoftMax processing makes it possible for the network to learn properly and 

produce reliable tumor segmentation results.  

For an input vector of logits 1 2[ , , , ]Kz z z z= corresponding to K classes, the SoftMax 

function outputs a probability distribution:   

1 2( ) [ ( ), ( ), , ( )]Kz z z z   =    (8) 

Where:  

1

( )
zi

i K zj

j

e
z

e


=

=


for each 1, 2, ,i K=  

This guarantee that the output values sum to 1 and also represent valid probabilities for 

classification tasks. 

 

Here, 
zie   raise each logit value to the power of the element value, indicating higher 

values. The denominator 
1

K zj

j
e

=   makes certain that the predicted probabilities in every class 

add up to 1. Thus, each of them is in the interval (0, 1), where each number corresponds to the 

probability of class i. 

 

In the case of Brain Tumor segmentation with 2 classes, namely background and tumor, 

the SoftMax provides two probabilities for each pixel of a given image to allow the network 

distinguish between which class the pixel is most likely belongs to.  

 

 
Figure 3. Enhanced Brain Tumor Segmentation framework using a skip-connected 

ResNet-18 Encoder-Decoder Network with Dice Loss. 

When it comes to deep learning, hyperparameters will be very vital, as they will have a 

significant impact on the performance of your model and also its generalization. Tuning 

properly enables the optimization of not only the learning rate and the batch size (see Batch 
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Size), but also the network structure for it not to be underfitting, overfitting [23]. This ensures 

that data input is parsed in a suitable way for the model so that the learning of the models occurs 

and the model convergences faster. Even with advanced models, they can be destroyed while 

tuning. Table 1. presenting hyper parameters declared for train the model. 

 

Table 1. Hyperparameters and configurations used in the proposed model. 

Hyperparameter Value Description 

Learning Rate 1e-4 
Initial learning rate for the Adam 

optimizer 

Mini Batch Size 8 
Number of training samples in each 

mini-batch 

Num Epochs 30 
Number of times the model will see 

the full training dataset 

Image Size  [256 256] 
Input size for MRI and mask images 

(images are resized) 

Normalization  'Zerocenter' 
Input images are normalized using 

zero centering 

Optimizer 'Adam' Optimizer used for training 

Shuffle 'Every-Epoch' Shuffles data after each epoch 

Execution 

Environment 
'Auto' 

MATLAB chooses between CPU and 

GPU based on availability 

Transposed Conv 

Stride 
2 

Stride used in all transposed 

convolutional (upsampling) layers in 

the decoder 

Transposed Conv 

Filter Size 
4×4 

Filter size for all decoder layers 

(deconvolutions) 

Decoder Channels [256, 128, 64, 32, 2] 
Number of output channels used in 

each decoder layer 

 

4. Result and Analysis 

4.1 Dataset Collection 

For the research, authors used the Brain Tumor dataset from Southern Medical 

University in Guangzhou that they collected from [24] and [25]. As demonstrated in Figure.4, 

data are given by 233 patients who brought 3064 medical scans. All the pictures in the dataset 

lie within the threshold as belonging to any of the 3 tumor classes: According to Southern 

Medical University’s brain tumor data, there are three different types of the tumors, namely 

meningioma, glioma and pituitary representing the tumor groups for 23.11%, 30.35% and 

46.54% respectively to the overall cases. According to the dataset, there is a single slice that 

has 512 pixels. Figure 5 is a presentation of the transformed images and masks which in their 

original form were in .MAT format and currently in .PNG format. 
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Figure 4. Composition of tumor images in dataset. 

 

Tumor 

type 
   

Meningioma Glioma Pituitary 

Tumor 

mask 
   

Meningioma Glioma Pituitary 

Figure 5. Brain MRI scans with tumor region masks. 

 

4.2 Performance metrics 

 

Dice Similarity Coefficient (DSC) also called Dice Score and Jaccard Index (JI) are 

important measures for the evaluation of the segmentation accuracy in medical imaging since 

they measure the overlapping of the predicted and the ground truth regions [26]. The DSC 

becomes very useful in a medical setting because of its sensitivity to small target regions. These 

high scores on these measures signify credible segmentation, which is paramount important for 

clinical decision-making. In addition to segmentation metrics, the confusion matrix is used for 

evaluating the performance of classification by representing a true/false positive and negative 

ratios to calculate accuracy, precision, recall, F1-score, and false positive rate (FPR) [27]. This 

matrix allows one to see how well a model classifies validation data. True positives and negative 

values represent correct predictions, while false positives and false negatives will represent 

incorrect predictions. Other performance indices are sensitivity, specificity, and area under 

ROC curve. These are obtained with standard equations to generally assess the AI model’s 

performance effectiveness in diverse areas of performance. Equations numbered from 9 to 14 

corresponds to performance metrics. 

 

2 A B
Dice Similarity Coefficient (DSC)=

A B

 

+
  (9) 

708

1426

930

Distribution of brain Tumor

MRI images

Menigioma

Glioma

Pituitary
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A B
Jaccard Index (JI)

A B


=


    (10) 

TP
Precision=

TP+FP
     (11) 

TP
Recall=

TP+FN
     (12) 

TP+TN
Accuracy=

TP+TN+FP+FN
    (13) 

Precision Recall
F1-Score=2

Precision+Recall


     (14) 

 

The evaluation of segmentation and classification performance parameters are shown in 

Table 2 and 3. Figures numbered from 7 to 12 showing the graphical analysis of segmentation 

and classification performance parameters.  The proposed model demonstrates better results 

than the U-Net across measurement sets except for one occasion. Proposed model reaches 

0.87% higher accuracy than the original U-Net design. The proposed system shows a 46.99% 

boost in accuracy which means it detects fewer false positive cases. Using both F1-score and 

Dice metrics we found a 28.27% enhancement in object detection accuracy and quality. The 

new model matches 44.98% more closely with expert-initialized marker positions when 

compared to ground truth information. Despite U-Net ranking better for recall by 0.84% our 

model surpassed every other performance metric leading to superior total segmentation results. 

The research shows that proposed model achieves better segmentation outcomes than other 

approaches because it limits errors and improves area matching specificity. 

 

Image  

No. 
Original Image 

Ground truth 

image 

Segmented Tumor Image 

U-Net  Proposed ResNet-18 

1 

    

2 
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3 

    

4 

    

5 

    

 (a) (b) (c) (d) 

Figure 6. Segmentation results of U-Net and proposed model. 

Table 2. DSC and JI parameter evaluation between U-Net and Proposed model.  

Image Dice Score Jaccard Index 

U-Net Proposed Model U-Net Proposed Model 

1 0.3421 0.6966 0.2063 0.5345 

2 0.6084 0.9060 0.4372 0.8282 

3 0.8667 0.9801 0.7647 0.9609 

4 0.8618 0.9654 0.7572 0.9331 

5 0.8341 0.9587 0.7154 0.9207 

Table 3. Accuracy, Precision, Recall and F1-Score results between U-Net and Proposed model. 

Image Accuracy Precision Recall F1-Score 

U-Net Proposed 

Model 

U-

Net 

Proposed 

Model 

U-

Net 

Proposed 

Model 

U-

Net 

Proposed 

Model 

1 0.9832 0.9963 0.2080 0.5536 0.9630 0.9394 0.3421 0.6966 

2 0.9885 0.9982 0.4462 0.8910 0.9559 0.9216 0.6084 0.9060 

3 0.9879 0.9984 0.7747 0.9721 0.9835 0.9881 0.8667 0.9801 

4 0.9898 0.9977 0.7792 0.9768 0.9640 0.9543 0.8618 0.9654 

5 0.9972 0.9994 0.7428 0.9444 0.9509 0.9734 0.8341 0.9587 
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Figure 7. Dice Score analysis between U-Net and Proposed Model 
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Figure 8. Jaccard Index analysis between U-Net and Proposed Model 
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Figure 9. Accuracy analysis between U-Net and Proposed Model 
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Figure 10. Precision analysis between U-Net and Proposed model 
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Figure 11. Recall analysis between U-Net and Proposed Model 
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Figure 12. F1-Score analysis between U-Net and Proposed Model 

 

The evaluation of segmentation and classification performance parameters are shown in 

Table 2 and 3. Figures numbered from 7 to 12 showing the graphical analysis of segmentation 

and classification performance parameters.  The proposed model demonstrates better results 

than the U-Net across measurement sets except for one occasion. Proposed model reaches 

0.87% higher accuracy than the original U-Net design. The proposed system shows a 46.99% 

boost in accuracy which means it detects fewer false positive cases. Using both F1-score and 

Dice metrics we found a 28.27% enhancement in object detection accuracy and quality. The 

new model matches 44.98% more closely with expert-initialized marker positions when 

compared to ground truth information. Despite U-Net ranking better for recall by 0.84% our 

model surpassed every other performance metric leading to superior total segmentation results. 

The research shows that proposed model achieves better segmentation outcomes than other 

approaches because it limits errors and improves area matching specificity. 

 

4.3 Comparison with state-of-the-art methods 

Table 4. Comparative analysis of classifier efficacy of various models. 

Ref No. Models Accuracy F1-score Recall Precision 

Ilani, M. A., Shi, D. et al. 

(2025) [28] 

3-Layer CNN 98 98 98 98 

EfficientNETB4 98.31 98 98 98 

VGG19 97.72 97 97 97 

InceptionV3 97.27 97 97 97 
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U-Net 98.56 99 99 99 

H. A. Shah et al (2022) 

[29] 
EfficientNet-B0 98.8 98.9 99.5 99.4 

Mostafa, A. M., Zakariah, 

M. et al. (2023) [30] 
Deep CNN 99.21 - 96 99 

Proposed Model ResNet-18 99.8 95.25 95.9 94.61 

 

Table 5.  Comparative analysis of segmentation efficiency of various models 

Ref No. Model Dice 

Score 

Jaccard 

Index 

F. J. D. Pernas, M. Martínez-Zarzuela et al. (2021) 

[31] 

CNN-based 0.828 - 

B. V. Isunuri and J. Kakarla (2020) [32] U-Net with AT 0.6239 - 

S. Tripathi, A. Verma et al.(2020) [33] SegNet  0.9332 0.8827 

W. Huang and J. Wang et al. (2022) [34] DFP-Unet 0.8169 - 

A. K. Sahoo, P. Parida et al. (2023) [35] Residual-Unet 0.9011 - 

A. Ingle, M. M. Roja et al. (2022) [36] Residual101-Unet 0.8369 0.85 

B. Kumar, R. Panda et al. (2020) [37] QuickTumorNet 0.724 - 

C. Öksüz, O. Urhan  et al. (2021) [38] DeepLab with pre-

trained 

0.8091 - 

Z. Sobhaninia, S. Rezaei et al.(2020) [39] Cascadeddual-

scale LinkNet 

0.8003 - 

A. Rehman, S. Naz,  et al. (2019) [40] SegNet VGG16  0.9314 0.7622 

Saifullah, S., Dreżewski, R. et al. (2025) [41] ResUNet50 0.9553 0.9151 

Proposed Model ResNet-18 0.9525 0.9107 

 

Different deep learning models tested on Figshare dataset [24] achieve their 

classification results as shown in Table 4. Both Deep CNN model [30] and EfficientNet-B0 

model [29] demonstrate excellent results with accuracy rates of 99.21% and 98.8%. While U-

Net was built for segmentation tasks it achieved impressive classification results at 99% F1-

score and recall. The proposed method achieves 99.8% accuracy which proves its better ability 

to handle new datasets. Within the comparison set the model achieved lower efficiency in 

detection but invested in reducing false positive diagnoses which represents a very important 

function for medical applications. The proposed model achieves both outstanding accuracy and 

adequate error management making it an effective solution. 

 

The evaluation of present segmentation approaches (Figshare dataset) uses Dice Score 

and Jaccard Index in Table 5. The proposed model ranks second only to ResUNet50 [41] by 

achieving Dice Scores of 0.9553 and Jaccard Index values of 0.9151. Proposed model produces 

segmentation results that perform nearly as well as ResUNet50 while probably needing less 

processing power or exhibiting higher operational speeds. These segmentation models (U-Net 
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with Attention [32], QuickTumorNet [37]) give unsatisfactory results with markedly reduced 

Dice scores. The proposed model demonstrates strong performance across both tumor detection 

and analysis roles making it a preferred selection for automated medical image analysis. 

 

5. Conclusion and Future Scope 

In this study, an improved framework for segmenting brain tumour was put forward 

using an optimised skip-connected ResNet-18 encoder-decoder system based on Dice loss. 

Through the combination of the powerful feature extraction of ResNet-18, combined with the 

spatial detail recovery refinement of the skip connections, the model showed an increase in 

accuracy to segment complex tumor areas when compared to conventional encoder-decoder 

models. The Dice loss developed for highly imbalanced data is the final factor that enhanced 

the segmentation performance by focusing on overlap of the true and predicted tumor areas. 

Experimental outcomes reveal that the suggested method is efficient enough in balancing out 

the computational efficiency and the precision of segmentation to be accommodated in clinical 

applications. The proposed model has attained an accuracy of 0.87%, precision of 46.99%, and 

F1-score and Dice coefficient of 28.27%, a Jaccard index of 44.98% and the loss in recall is 

minimal, around 0.84 % comparing to U-Net. This demonstrates how the precision and the 

degree of segmentation of the proposed model are the bettered from such results. 

The future development of the improved brain tumor segmentation model has several 

fundamental developments. First of all, the investigation of further architectures such as 

ResNet-50 or the use of transformer-based models might increase the accuracy of segmentation 

due to the ability to represent more complex features. Developing the approach into multi-class 

segmentation across various tumor subregions and incorporating attention is another way to 

improve focusing on important parts by the model. Also, it would be possible to migrate from 

2D to 3D segmentation by means of volumetric data in order to provide richer contextual 

information. The use of post-processing methods like Conditional Random Fields (CRFs) and 

transfer learning for cross-modality adaptation would improve the robustness of the model. 

Lastly, optimizing the model for real time deployment on edge devices would allow for 

immediate on-site clinical decision making, faster diagnoses and treatments rating. 
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