ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

G(X)-QUASI INVO-CLEAN RINGS

Fatemeh Rashedi

Department of Basic Sciences,
Technical and Vocational University (TVU),
Tehran, Iran
e-mail: frashedi@tvu.ac.ir

Abstract

Let C(R) be the center of a ring R and $g(x) \in C(R)[x]$ be a fixed polynomial. In this paper, we introduce the notion of g(x)-quasi invo-clean rings where every element r can be written as r = v + s, where $v \in Qinv(R)$ and s is a root of g(x). We study various properties of g(x)-quasi invo-clean rings. We prove that, for an even polynomial g(x), the ring $R = \prod_{i \in I} R_i$ is g(x)-quasi invo-clean if and only if every R_i is g(x)-quasi invo-clean.

Math. Subject Classification: 16D60, 16S34, 16U60. Key Words and Phrases: Quasi involution elements, Quasi invo-clean rings, g(x)-quasi invo-clean rings.

1 Introduction

Let R be an associative ring with identity. An element $v \in R$ is called an involution when $v^2 = 1$. Moreover, v is said to be a

quasi-involution if either v itself or its complement 1-v is an involution [9]. We use the following notations throughout: U(R) for the set of units of R, Id(R) for the collection of idempotent elements, Inv(R) for the set of involutions, and Qinv(R) for the set of quasi-involutions. A ring R is termed clean if every $r \in R$ can be written as r = u + e, where $u \in U(R)$ and $e \in Id(R)$ [3, 20]. Various extensions of the concept of clean rings have been investigated in the literature [2, 5, 12, 13, 14, 15, 16, 17]. The ring R is called q(x)-clean whenever, for every $r \in R$ there exist a unit $u \in U(R)$ and a root s of the polynomial g(x) such that r = u + s[11]. Similarly, R is said to be invo-clean if for each $r \in R$ one can find $v \in Inv(R)$ and $e \in Id(R)$ satisfying r = v + e [6, 7]. In the same manner, the ring R is defined as g(x)-invo-clean when for each $r \in R$ there exist $v \in Inv(R)$ and a root s of q(x) with r = v + s [10]. Finally, R is called quasi invo-clean if for every $r \in R$ there exist an element $v \in Qinv(R)$ together with an idempotent $e \in Id(R)$ such that r = v + e [8]. In this paper, we introduce and investigate the concept of a q(x)-quasi invo-clean ring. Let R be a ring and $g(x) \in C(R)[x]$ be a fixed polynomial. An element $r \in R$ is said to be g(x)-quasi invo-clean if there exist some $v \in Qinv(R)$ and a root s of q(x) such that r = v + s. The ring R itself is called q(x)-quasi invo-clean whenever every element of R admits such a decomposition. We study various properties of g(x)-quasi invo-clean rings. We establish a number of structural results concerning these rings. In particular, for a ring R, elements $a, b \in R$ and a natural number n, we prove that R is $(ax^{2n} - bx)$ -quasi invo clean if and only if it is $(ax^{2n} + bx)$ -quasi invo clean (Lemm 7). Moreover, it is shown that if g(x) is an even polynomial, then the direct product ring $R = \prod_{i \in I} R_i$ is g(x)-quasi invo-clean precisely when each component ring R_i enjoys the same property (Lemma 13).

Finally, we demonstrate that for any commutative ring R, the polynomial ring R[x] fails to be $(x^2 - x)$ -quasi invo-clean (Theorem 17).

2 Main Results

Definition 1. A ring R is said to be invo-clean if for each $r \in R$ one can find $v \in Inv(R)$ and $e \in Id(R)$ satisfying r = v + e [6].

Definition 2. An element $v \in R$ is said to be a quasi-involution element if $v^2 = 1$ or $(1 - v)^2 = 1$. Qinv(R) denotes the set of all quasi-involutions in R [8].

Definition 3. Let R be a ring and $g(x) \in C(R)[x]$ be a fixed polynomial. The ring R is called g(x)-invo-clean when for each $r \in R$ there exist $v \in Inv(R)$ and a root s of g(x) with r = v + s [10].

Definition 4. A ring R is called quasi invo-clean if for every $r \in R$ there exist an element $v \in Qinv(R)$ together with an idempotent $e \in Id(R)$ such that r = v + e [8].

Definition 5. Let R be a ring and $g(x) \in C(R)[x]$ be a fixed polynomial. An element $r \in R$ is said to be g(x)-quasi invo-clean if there exist some $v \in Qinv(R)$ and a root s of g(x) such that r = v + s. The ring R itself is called g(x)-quasi invo-clean whenever every element of R admits such a decomposition.

Every g(x)-invo-clean ring as well as every quasi-invo-clean ring automatically belongs to the class of g(x)-quasi invo-clean rings. However, the next example demonstrates that, in general, a g(x)-quasi invo-clean ring need not be g(x)-invo-clean nor quasi-invo-clean.

Example 6. (i) Let Z denote the set of integers and $R = Z_5$. Then $Qinv(R) = \{0, 1, 2, 4\}$, $Inv(R) = \{1, 4\}$ and $Id(R) = \{0, 1\}$. Hence R is a quasi invo-clean ring which is not invo-clean. Then R is a $(x^2 - x)$ -quasi invo-clean ring which is not $(x^2 - x)$ -invo-clean.

(ii) Let Z denote the set of integers and $R = Z_7$ and $g(x) = x^7 + 6x \in C(R)[x]$. Then $Qinv(R) = \{0, 1, 2, 6\}$, $Root(g(x)) = \{0, 2, 3, 5, 6\}$ and $Id(R) = \{0, 1\}$. Hence R is a g(x)-quasi invo-clean ring which is not quasi invo-clean.

Lemma 7. Suppose R is a ring and $a, b \in R$ with a natural number n. Then R is $(ax^{2n} - bx)$ -quasi invo clean precisely when it is $(ax^{2n} + bx)$ -quasi invo clean.

Proof. Suppose that R is $(ax^{2n}-bx)$ -quasi invo clean and $r \in R$. Hence 1-r=v+s where $v \in Qinv(R)$ and $as^{2n}-bs=0$. Then r=(1-v)+(-s) such that $1-v \in Qinv(R)$ and $a(-s)^{2n}+b(-s)=0$. Therefore R is $(ax^{2n}+bx)$ -quasi invo clean.

Conversely, assume that R is $(ax^{2n}+bx)$ -quasi invo clean and $r \in R$. Hence 1-r=v+s where $v \in Qinv(R)$ and $as^{2n}+bs=0$. Then r=(1-v)+(-s) such that $1-v \in Qinv(R)$ and $as^{2n}-bs=0$. Therefore R is $(ax^{2n}-bx)$ -quasi invo clean.

The next example illustrates that Lemma 7 fails to remain valid when odd powers are considered.

Example 8. Let Z denote the set of integers. Then the ring Z_7 is a $(x^7 + 6x)$ -quasi invo-clean ring which is not $(x^7 - 6x)$ -quasi invo-clean.

Corollary 9. A ring R is quasi invo-clean precisely when it is $(x^2 + x)$ -quasi invo clean.

Proof. It follows from Lemma 7. \Box

Suppose R and S are two rings and $\phi: C(R) \longrightarrow C(S)$ is a ring homomorphism with $\phi(1_R) = 1_S$. If $g(x) = \sum_{i=0}^n r_i x^i \in C(R)[x]$, we let $g_{\phi}(x) := \sum_{i=0}^n \phi(r_i) x^i \in C(S)[x]$.

Lemma 10. Let R and S be two rings, and let $\phi: R \longrightarrow S$ be a surjective ring homomorphism. Suppose $g(x) = \sum_{i=0}^{n} r_i x^i \in C(R)[x]$ is an even polynomial. If R is g(x)-quasi invo-clean, then the image ring S is $g_{\phi}(x)$ -quasi invo-clean.

Proof. Let $g(x) = \sum_{i=0}^n r_i x^i \in C(R)[x]$ and define $g_{\phi}(x) := \sum_{i=0}^n \phi(r_i) x^i \in C(S)[x]$. Take any element $a \in S$. Then there exists $r \in R$ such that $1 - a = \phi(r)$. Since R is g(x)-quasi invoclean, we can write r = v + s with $v \in Qinv(R)$ and $s \in R$ satisfying g(s) = 0. Consequently, $1 - a = \phi(r) = \phi(v) + \phi(s)$, which implies $a = (-1 + \phi(v)) + \phi(-s) = \phi(-1 + v) + \phi(-s)$, where $\phi(-1 + v) \in Qinv(S)$ and

$$g_{\phi}(\phi(-s)) = \sum_{i=0}^{n} \phi(r_i)(\phi(-s))^i$$

$$= \sum_{i=0}^{n} \phi(r_i)\phi((-s)^i) = \sum_{i=0}^{n} \phi(r_i(-s)^i)$$

$$= \phi(\sum_{i=0}^{n} r_i(-s)^i) = \phi(g(-s)) = \phi(0) = 0$$

Therefore S is $g_{\phi}(x)$ -quasi invo-clean.

Definition 11. Let R and S be two rings and $g(x) \in C(R)[x]$ be an even polynomial such that R is g(x)-quasi invo-clean. If there is an epimorphism $\phi: R \longrightarrow S$, then S is called a $\overline{g}(x)$ -quasi invo-clean.

Corollary 12. Let R and S be two rings and g(x) be an even polynomial. Then the following statements hold.

- (i) Let I be an ideal of a g(x)-quasi invo-clean ring R. Then R/I is $\overline{g}(x)$ -quasi invo-clean.
- (ii) Let the upper triangular matrix ring $T_n(R)$ is g(x)-quasi invoclean. Then R is $\overline{g}(x)$ -quasi invoclean.
- (iii) Let the skew formal power series $R[[x, \alpha]]$ over R is g(x)-quasi invo-clean. Then R is $\overline{g}(x)$ -quasi invo-clean.
- (iv) Let M be an (R,S)-bimodule and $T=\begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$ be the

Received: July 25, 2025

formal triangular matrix ring. If T is g(x)-quasi invo-clean. Then R and S are $\overline{g}(x)$ -quasi invo-clean.

Proof. It follows from Lemma 10.

Lemma 13. Let $\{R_i\}_{i=1}^n$ be rings and g(x) be an even polynomial. Then the direct product ring $R = \prod_{i \in I} R_i$ is g(x)-quasi invo-clean precisely when each component ring R_i enjoys the same property.

Proof. Suppose that R is g(x)-quasi invo-clean. Since π_j : $\prod_{i=1}^n R_i \longrightarrow R_j$ by $\pi_j((r_i)) = r_j$ is a ring epimorphism, for every $1 \le j \le n$, R_j is g(x)-quasi invo-clean, by Corollary 12. Conversely, Suppose that $r = (r_i) \in R$. For $1 \le i \le n$, write $r_i = v_i + s_i$ such that $v_i \in Qinv(R_i)$ and $g(s_i) = 0$. Then $r = (v_i) + (s_i)$ such that $(v_i) \in Qinv(R)$ and $g((s_i)) = 0$. Therefore R is g(x)-quasi invo-clean.

Let R be a ring with an identity and S be a ring which is an R-R-bimodule such that $(s_1s_2)r = s_1(s_2r)$, $(s_1r)s_2 = s_1(rs_2)$ and $(rs_1)s_2 = r(s_1s_2)$ hold for all $s_1, s_2 \in S$ and $r \in R$. The ideal extension of R by S is defined to be the additive abelian group $I(R, S) = R \oplus S$ with multiplication $(r, s_1)(r', s_2) = (rr', rs_2 + s_1r' + s_1s_2)$. If $g(x) = (r_0, s_0) + (r_1, s_1)x + \cdots + (r_n, s_n)x^n \in C(I(R, S))[x]$, then $g_R(x) = r_0 + r_1x + \cdots + r_nx^n \in C(R)[x]$.

Lemma 14. Let R be a ring with an identity, S be a ring which is an R-R-bimodule and $g(x) \in C(I(R,S))[x]$ be an even polynomial. If I(R,S) is g(x)-quasi invo-clean, then R is $g_R(x)$ -quasi invo-clean.

Proof. Suppose that $\phi_R: I(R,S) \longrightarrow R$ by $\phi_R(r,s) = r$. Since ϕ_R is a ring epimorphism, R is $g_R(x)$ -quasi invo-clean by Lemma 10.

Let R be a ring and $\alpha: R \longrightarrow R$ be a ring endomorphism. The ring $R[[x,\alpha]]$ of skew formal power series over R; that is all formal power series in x with coefficients from R with multiplication

defined by $xr = \alpha(r_x \text{ for all } r \in R$. It is clear that $R[[x]] = R[[x, 1_R]]$ and $R[[x, \alpha]] \cong I(R, \langle x \rangle)$ where $\langle x \rangle$ is the ideal generated by x.

Proposition 15. Let R be a ring, $\alpha: R \longrightarrow R$ be a ring endomorphism and g(x) be an even polynomial. If $R[[x,\alpha]]$ is g(x)-quasi invo-clean, then R is $g_{\phi}(x)$ -quasi invo-clean such that $\phi: R[[x,\alpha]] \longrightarrow R$ is defined by $\phi(f) = f(0)$.

Proof. It follows from Lemma 10.

Lemma 16. Let R be a commutative ring and $h = \sum_{i=0}^{n} r_i x^i \in Qinv(R[x])$. Then $r_0 \in Qinv(R)$ and $r_i \in Nil(R)$ for each $1 \le i \le n$.

Proof. Since $h = \sum_{i=0}^n r_i x^i \in Qinv(R[x]), \ h^2 = 1 \text{ or } (1-h)^2 = 1$. Hence $r_0^2 = 1$ or $(1-r_0)^2 = 1$, and so $r_0 \in Qinv(R)$. Suppose that P is a prime ideal of R. Hence (R/P)[x] is an integral domain. Let $\psi: R[x] \longrightarrow (R/P)[x]$ by $\psi(\sum_{i=0}^n r_i x^i) = \sum_{i=0}^n (r_i + P) x^i$. Then ψ is a ring epimorphism. Since $\psi(h)\psi(h) = 1$ or $\psi(1-h)\psi(1-h) = 1$, $deg(\psi(h)\psi(h)) = deg(\psi(1))$ or $deg(\psi(1-h)\psi(1-h)) = deg(\psi(1))$. Then $r_1 + P = r_2 + P = \cdots = r_n + P = P$. Therefore $r_i \in Nil(R)$ for each $1 \leq i \leq n$.

Theorem 17. Let R be a commutative ring. Then the polynomial ring R[x] fails to be $(x^2 - x)$ -quasi invo-clean.

Proof. Suppose that R[x] is $(x^2 - x)$ -quasi invo-clean. Hence x = v + s where $v \in Qinv(R[x])$ and s is a root of $x^2 - x$. Then $x - s \in Qinv(R[x])$. So $1 \in Nil(R)$ and $-s \in Qinv(R)$ by Lemma 16, a contradiction.

A Morita context is a 6-tuple $\mathcal{M}(R, M, K, S, \phi, \psi)$, where R and S are rings, M is an (R, S)-bimodule, K is a (S, R)-bimodule, and $\phi: M \otimes_S K \longrightarrow R$ and $\psi: K \otimes_R M \longrightarrow S$ are bimodule homomorphisms such that $T(\mathcal{M}) = \begin{pmatrix} R & M \\ K & S \end{pmatrix}$ is an associative ring with the obvious matrix operations. The ring $T(\mathcal{M})$ is the

Morita context ring associated with \mathcal{M} . For more on Morita context rings see [1, 4, 18, 19]. If $g(x) = \begin{pmatrix} r_0 & m_0 \\ k_0 & s_0 \end{pmatrix} + \begin{pmatrix} r_1 & m_1 \\ k_1 & s_1 \end{pmatrix} x + \cdots + \begin{pmatrix} r_n & m_n \\ k_n & s_n \end{pmatrix} x^n \in C(T(\mathcal{M}))[x]$, then $g_R(x) = r_0 + r_1 x + \cdots + r_n x^n \in C(R)[x]$ and $g_S(x) = rs_0 + s_1 x + \cdots + s_n x^n \in C(S)[x]$.

Theorem 18. Let g(x) be an even polynomial and the Morita context ring $T(\mathcal{M}) = \begin{pmatrix} R & M \\ K & S \end{pmatrix}$ is g(x)-quasi invo-clean with $\phi, \psi = 0$. Then R is $g_R(x)$ -quasi invo-clean and S is $g_S(x)$ -quasi invo-clean.

Proof. Suppose that $T(\mathcal{M})$ is g(x)-quasi invo-clean with $\phi, \psi = 0$. Hence $I = \begin{pmatrix} 0 & M \\ K & S \end{pmatrix}$ and $J = \begin{pmatrix} R & M \\ K & 0 \end{pmatrix}$ are two ideals of $T(\mathcal{M})$. Since $T(\mathcal{M})/I \cong R$ and $T(\mathcal{M})/J \cong S$, the assertion holds by Lemma 10.

Corollary 19. Let R and S be two rings, M be an (R,S)-bimodule and g(x) be an even polynomial. Let $T = \begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$ be the formal triangular matrix ring. If T is g(x)-quasi invo clean, then R is $g_R(x)$ -quasi invo-clean and S is $g_S(x)$ -quasi invo-clean.

Proof. Follows from Theorem 18.

Corollary 20. Let R be a commutative ring, M be an (R, R)-bimodule such that 2M = 0 and g(x) be an even polynomial. Then $T = \begin{pmatrix} R & M \\ 0 & R \end{pmatrix}$ is g(x)-quasi invo clean precisely when R is g(x)-quasi invo-clean.

Proof. Follows from Lemma 10 and Corollary 19. \Box

We close the article with the following two problems.

Problem 21. What is the behaviour of the matrix rings over g(x)-quasi invo clean rings?

Problem 22. Let R be a g(x)-quasi invo clean ring and $e \in Id(R)$. What is the behaviour of the corner ring eRe?

References

- [1] S. A. Amitsur, Rings of quotients and Morita contexts, *J. Algebra*, **17** (1971), 273298.
- [2] M. Y., Ahn and D. D. Anderson, Weakly clean rings and almost clean rings, *Rocky Mountain Journal of Mathematics*, **36** (2006), 783–799.
- [3] D. D. Anderson, V. P. Camillo, Commutative rings whose elements are a sum of a unit and an idempotent, *Comm. Algebra*, **30** (2002), 3327-3336.
- [4] H. Bass, *The Morita Theorems, Mimeographed Notes.*, Oregon: University of Oregon 1962.
- [5] A. Y. M. Chin, K. T. Qua, A note on weakly clean rings, Acta Math. Hungra., 132 (2001), 113–116.
- [6] P. V. Danchev, Invo-clean unital rings, Commun. Korean Math. Soc., 32 (2017), 19-27.
- [7] P. V. Danchev, Corners of invo-clean unital rings, *Pure Mathematical Sciences*, **7** (2018), 27-31.
- [8] P. V. Danchev, Quasi invo-clean rings, Bulletin of the Transilvania University of Brasov Series III: Mathematics and Computer Science, 63 (2021), 71-80.
- [9] T. Y. Lam, A First Course in Noncommutative Rings, Second Edition, Graduate Texts in Math., Vol. 131, Springer-Verlag, Berlin-Heidelberg-New York, 2001.
- [10] M. El Maalmi, H. Mounis, On g(x)- invo clean rings, Commun. Korean Math. Soc., **35** (2019), 455-468.

- [11] L. Fan, X. Yang, On rings whose elements are the sum of a unit and a root of a fixed polynomial, *Comm. Algebra*, **36** (2008), 269-278
- [12] F. Rashedi, Uniquely exchange rings, Publications de l'Institut Mathematique Nouvelle Srie, Tome, 112 (2022), 53–57.
- [13] F. Rashedi, Invo k-clean rings, Bulletin of the Transilvania University of Brasov Series III: Mathematics and Computer Science, 2 (2022), 167–172.
- [14] F. Rashedi, On weakly k-clean rings, Jordan Journal of Mathematics and Statistics (JJMS), 16 (2023), 507-513.
- [15] F. Rashedi, Weakly g(x)-invo-clean rings, Quasigroups and Related Systems, **31** (2023), 285–292.
- [16] F. Rashedi, Weakly quasi invo-clean rings, Quasigroups and Related Systems, 49 (2023), 117–124.
- [17] F. Rashedi, Weakly g(x)-quasi invo-clean rings, Transactions of A. Razmadze Mathematical Institute, 178 (2024), 111–114.
- [18] A. D. Sands, Radicals and Morita contexts, J. Algebra, 24 (1973), 335345.
- [19] G. Tang, C. Li, Y. Zhou, Study of Morita contexts, Comm. Algebra, 42 (2014), 16681681.
- [20] W. K. Nicholson, Lifting idempotents and exchange rings, *Trans. Amer. Math. Soc.*, **229** (1977), 269-278.