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Abstract

Most things in the world can be modeled into graphs, and each graph
into a fractal, which is the independence fractal. For instance, in archi-
tecture, the ground plan of a building is converted to a graph by taking
rooms as vertices and edges as the direct connection between two rooms.
After that, these graphs changed to the corresponding fractal using its
independence polynomial, and this forms the very basis of the study of
architecture’s ground plan. This simple example proves the necessity of
the study of independence fractals.
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Now the question of consideration is, can other polynomials defined in
graphs, such as, chromatic polynomial, dichromatic polynomial, match-
ing polynomial, Tutte polynomial, etc., be used to create fractals instead
of independence polynomial.
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1. Introduction

French mathematician Benoit Mandelbrot invented the term fractal
from the Latin word fractus in the 1980s, [3]. As the name implies,
fractals are self-similar objects, [3]. The concept of independence frac-
tals was established in the 21st century, existing results on the roots of
polynomials and their limiting behavior under iteration [I] provide the-
oretical support for studying the independence fractal. The fractal of
a graph is explained using independence polynomials and is called the
independence fractals. A graph may have many such polynomials like
matching polynomials, chromatic polynomials, dichromatic polynomials,
etc. ([7]). Now the question is, is it possible to define the fractal of the
graph using these polynomials? In this paper, we intend to discuss the
criteria for interpreting the fractal of a graph. That is, to check whether
other polynomials of a graph can be used to create a fractal of the graph.
To reach at a conclusion on this, we attempt to take general polynomials
rather than independence polynomials of a graph and check the same.

DEFINITION 1.1. [6] Let G be a graph. The independence polyno-

mial of G, denoted by ig(s), is given by ig(s) = Ziksk, where i, be
k=0
the number of independent sets of order k and « be the independence

number of G.
For any graph G ip = 1 and i; is the number of vertices of G, [6].

ExaAMPLE 1.1. Let G be the graph given in Figure 1. The indepen-
dence number of the graph is 3, so need to find 73 and ¢3. The indepen-
dent sets of order 2 are {Vi, Vi }, {Vi, V5 },{Va, Vi}, {Va, V5 }, {V4, V5} and
io = 5. The independent set of order 3 are {V;, Vy, V5}, {Va, V4, V5} and
i3 = 2. So the independence polynomial ig(s) = 2s® + 5s* + 5s + 1.
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FIGURE 1

DEFINITION 1.2.  [6] The lexicographic product or composition G[H]
of graphs G and H is a graph such that:

(1) the vertex set of G[H] is the cartesian product V(G) x V(H) and

(2) Any two vertices (u,v) and (z,y) are adjacent in G[H] if and only
if either u is adjacent with x in G or u = x and v is adjacent with
yin H.

ExXAMPLE 1.2. For the graphs G = P; and H = P, the lexicographic
product G[H] is given in Figure 2.

Vq.Uq) (V4.U3)
(V3.Uq) (V5.U5) (V3.0 V3.Uj)
FIGURE 2

THEOREM 1.1. [§] The independence polynomial of G[H]|, the lexi-
cographic product of G and H, is given by iciu(s) = ic({u(s) — 1).

ExAMPLE 1.3. The independence polynomial of lexicographic prod-
uct of G and H in the above example is ip,p,(s) = 1+ 3(2s) + (2s)* =
1+ 65 + 4%, since ip,(s) =1+ 3s+ s and ip,(s) = 1 + 2s.

DEFINITION 1.3. [8] The reduced independence polynomial of G is
the function fg(s) =ig(s) — 1.

CorOLLARY 1.1. [6] faum(s) = fa(fu(s)).
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DEFINITION 1.4. [§] The independence fractal of a graph G is defined
as the set F(G) = klim Roots(fqr).
—00

EXAMPLE 1.4. For the graph P3[P;],the lexicographic product of P;
and P,, the independence fractal is

F(Py[P2]) = lim Roots(fp,(pye) = {~1.5, ~1.71510032 + 0.14300861

7, —1.71510032 — 0.148098617, —1.61201523 + 0.262869977, —1.612015
23 — 0.262869977, —1.46912614 + 0.32277849:, —1.46912614 — 0.32277
849, —1.31730480 + 0.324862457, —1.31730480 — 0.324862457, —1.181
83485 + 0.27861415z, —1.18183485 — 0.278614157, —1.08033723 4 0.19
6116047, —1.08033723 — 0.196116040z, —1.027304930 + 0.092421770¢,
— 1.02730493 — 0.092421777, —1.02107599, —.317638133, —.31264272
4, —.307666027, —.300367306, —.254566930, —.248416946, —.237600
533, —.233389867, —.0548358644, —.0520452693, —.0436247372, —.0
399867279, —.00919568447, —.00669433069, —.00153418322, 0, ...}.

DEFINITION 1.5. [0, 8] Let f be a polynomial, and z, a point
which does not lie in any attracting cycle or Siegel disk of f. Then
limy oo f7(20) = J(f), where the limit taken with respect to the Hous-
dorff metric on compact subspaces of (C,| . |).

DEFINITION 1.6. [§] The forward orbit of a point z, with respect to
fis the set: O (z9) = {f*(20)}3,-

DEFINITION 1.7. [8] For a polynomial f, its filled Julia set K (f) is
the set of all points z whose forward orbit O*(z) is bounded in (C, |.|).
The Julia set of f, J(f) is the boundary of K(f). The Fatoe set F(f) is
the compliment of J(f) in C.

2. Fractals from graph polynomials

There are only four non-isomorphic graphs of 3 vertices given in Fig-
ure 3. The corresponding independent polynomials are:

ig,(s) =5 +3s*+3s+1
ig,(s) = 2s% +3s+ 1
iGy(s) =s*+3s+1
’iG4(8) =3s+1.
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FIGURE 3

It is easy to see that the coefficient of s in each of these polynomials
is 3. Since, in the independence polynomial of a graph G, the coefficient
of s is the number of vertices of G. But there exists an infinite number of
polynomials having three as the coefficient of s. Now our question that:

“Is there a polynomial p(s) having three as the coefficient of s which
is not an independence polynomial of a graph of 3 vertices such that:

lim Roots{p"(s)} = J(p),”
k—o0

where J(p) is the Julia set of the polynomial p(s). To check whether
such a polynomial exists or not, consider some examples.

EXAMPLE 2.1. Let p(s) = s® + s® + 3s, p(s) is not an independence
polynomial of any graph of 3 vertices. Since p(0) = 0, 0 is fixed point
of p(s), and p'(s) = 3s> 4+ 2s + 3, so p’(0) = 3. This shows that 0 is a
repelling fixed point of p(s). It follows that 0 lies in the J(p). Also since
0 is a repelling fixed point, which does not lie on any attracting cycle
and therefore lim p=(s) = J(p). That is, limy_,., Roots{p*(s)} = J(p).

EXAMPLE 2.2. Let h(s) = s* + 2s% + 4s? + 3s, h(s) is not an
independence polynomial of any graph of 3 vertices. Since h(0) = 0,
0 is fixed point of h(s), and h/(s) = 4s® 4+ 6s* + 8s + 3, so A'(0) = 3.
This shows that 0 is a repelling fixed point of h(s). It follows that
0 lies in the J(h). Also since 0 is a repelling fixed point, which does
not lie on any attracting cycle and therefore lim h=%(s) = J(h). That is
limy, o0 Roots{h*(s)} = J(h).

Now check whether every polynomial with integer coefficients satisfies
this property. If not, what are the conditions to satisfy this property?

EXAMPLE 2.3. Let g(s) = 6s® + 4s® + s, g(s) is not an indepen-
dence polynomial of any graph. Since g(0) = 0, 0 is fixed point of
g(s), and ¢'(s) = 18s® +8s + 1 so ¢’(0) = 1. This shows that 0 is a
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rationally indifferent fixed point of g(s). It follows that O lies in the
J(g). Also since 0 is a rationally indifferent fixed point, which does not
lie on any attracting cycle and therefore lim g=*(s) = J(g(s)). That is,
limy, oo Roots{g*(s)} = J(g).

EXAMPLE 2.4. Let f(s) = s*+ 1, f(s) is not an independence poly-
nomial of any graph. Here f(0) = 1 and therefore 0 is not a fixed point of
f(s). Now f2(s) = (s2+1)2+1, f3(s) = f(f%(s)) = ((s2+1)2+1)2+1,...
and f2(0) = 2, f3(0) = 5, f4(0) = 26, ..., this means f*(0) # 0 for k =
1,2,3,... that is 0 is not a periodic point of f(s). To check whether
limy, oo Roots{f*(s)} = J(f), consider the zeros of f(s), that is i and
—1, and the forward orbit of ¢ and —¢ are given below:

0t (i) = {4,0,1,2,5,26,...}; O (—i) ={—4,0,1,2,5,26,...}.
This gives the forward orbit of ¢ and —i are unbounded, so i, —i ¢

J(f) but both are lies in limy,_, o, Roots{f*(s)}. Hence limy,_,, Roots{f*(s)}
# J(f).

THEOREM 2.1. For any polynomial p(s) = ag+ais+ass®+ ...+ a,s"
where a; € Z fori =0,1,2,....,n. If ag =0 and a; # 0 or 0 is a periodic
point of order m, m > 1, and a,, # 0 then lim_,o, Roots{p*(s)} = J(p),
where J(p) is the Julia set of the polynomial p(s). Moreover the result
holds if p(s) is a complex polynomial, 0 is a periodic point of p(s) of
order m and |a,,| > 1.

Proof. Letp(s) =ag+ais+axs®+...+a,s", where a; € Z for i =
0,1,2,...,n.

Case 1: ap = 0 and a; # 0. Since ap = 0 we have p(s) = a1 +
ass® + ... + a,s™ and p(0) = 0. That is zero is a fixed point of p. Now
P'(s) = a1 + 2ass + 3azs* + ... + na,s" !, then p'(0) = a;. Given that
a; # 0 so |ai| > 1, thus 0 is not in the attracting cycle of p. Therefore,
limy, oo Roots{p*(s)} = limy_,oo p*(0) = J(p).

Case 2: 0 is a periodic point of order m and a,, # 0.

Subcase 1: If m > n, then a,, = 0, nothing to prove.

Subcase 2: if m < n, given 0 is a periodic point and a,, # 0.
p(s) = ap+ars+azs® + ...+ a,s"
p'(s) = ai+2a9s+ 3a3s® + ... + na,s"”
2ay + 6ass + 12a48% + ... + n(n — 1)a,s" 2.
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Continuing like this we get the m'™ derivative of p(s) as p™(s) =
mla, + (m+ Dla,8+ (m+2)(m+1)m...3a,,.028* + ... + n(n —1)(n —
2)...(n = m+1))a,s™. Thus [p™(0)| = |mla,| > 1, since a,, # 0. This
shows that 0 is not in the attracting cycle. Thus we have

lim Roots{p*(s)} = lim p~"(0) = J(p).
k—o0 k—o0

Let p(s) be a complex polynomial and 0 is a periodic point of order m and
also |a,,| > 1. Thus [p™(0)| = |m!a,,| > 1 and 0 is not in the attracting
cycle. Hence limy o, Roots{p*(s)} = limj_,o p~*(0) = J(p). O

EXAMPLE 2.5. Let t(s) = s> — 1. The zeros of #(s) are 1 and —1, it
shows that 0 is not a fixed point of ¢(s). Now t(t(s)) = t(s* — 1) = (s* —
1)2—1 = s7—252+1—1 = s*—25? and t>(0) = 0. Therefore, 0 is a periodic
point of ¢(s) with periodicity 2. Also (#?)'(s) = 45 —4s and (¢?)'(0) = 0,
hence 0 is in the super attracting cycle and therefore lies in F'(t). 0 is
a zero of t* and lies in F(t), it shows that limy_,., Roots{t*(s)} # J(t).
To prove that the forward orbit of each zeros of ¢" is bounded, find a
bound for each. Let z,, be the zeros of t"(s), k = 1,2,3,...,d, where d is
the degree of ¢"(s). Since z;, = 1,—1, it follows that |z;,| = 1. Assume
that z(,_1), are the zeros of t"~!(s) and which satisfies the condition
|z(n—1),] < 1.6. Let z,, be the zeros of t"(s). t(z,,) = 0= tF "1 (t(2y,,)) =
0 = t(2,,) is a zero of t*~1(s). Thus,

[tz < 16

~1.6 <t(z,,) < 16
—1.6<(2,,)2 -1 < 16
0<(2,) < 26
-16<2, < 16

|zn,| < 1.6.

This shows that each zero of ", for all n, lies in the interval [—1.6, 1.6]
and ¢([—1.6,1.6]) C [—1.6,1.6]. Therefore the forward orbit of each of
the zero of t" is bounded. Thus all the zeros of " lies in the K(t), the
filled Julia set of ¢.

THEOREM 2.2. For any polynomial p(s) = ag+a;s+as*+...+a,s",
where a; € Z for i« = 0,1,2,....,n. If 0 is not a fixed point and not
a periodic point of p and a; > 0 for i = 0,1,2,...,n, a; < 0 for i =
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0,1,2,...,n or a; # 0 and the sequence (p"(0)) converges to £oo. Then
limy, oo Roots{p*(s)} # J(p).

Proof. Let p(s) = ap+ a15 + azs* + ... + a,s" be a non-constant
polynomial, where a; € Z. Suppose that 0 is not a fixed point and not
a periodic point of p, that is p*(0) # 0 for all k € N. Since p(s) is non-
constant a; # 0 for some i. Let k be the largest integer in {0,1,2,...,n}
such that aj # 0.

Case 1: a; >0 forv=0,1,2,...,n.

To prove the sequence (p"(0)) is strictly monotonic increasing se-
quence. Since 0 is not a fixed point of p, p(0) = ag > 0 and p?(0) =
p(p(0)) = plag) = ap + ajag + azal + ... + agal + ... + a,a?, aral > ag
since ay # 0. Hence p(0) < p?(0). In general p"™1(0) = p(p™(0)) =
ap+a1p™(0)+asp™(0)*+...4+app™(0)f+...+a,p™(0)", here app™(0)* > p"(0)
for all n € N. This shows that the sequence (p"(0)) is strictly monotonic
increasing sequence. Therefore the sequence (p™(0)) converges to oo,
since a; > 0.

Case 2: a; <0for:=0,1,2,....n.

In this case the sequence (p™(0)) is strictly monotonic decreasing (as
in Case 1) and therefore, converges to —oo.

Case 3: a; # 0 for i = 0,1,2,...,n. Given that the sequence (p"(0))
converges to +o0o in this case.

Now we need to prove the result, so let xq, x5, x5, ..., 2, be zeros of
p(s), thus it belongs to limy_,., Roots{p®(s)}. Let us consider the forward
orbit of each of these zeros. O (z;) = {p*(x,)}32, = {z1, 0, p(0), p*(0), ...},
t =1,2,...,n, which is unbounded since in each case (p"(0)) is converges
to too. It follows that =, ¢ J(p), t =1,2,...,n. Hence,

lim Roots{p"(s)} # J(p).
O

This theorem has been already illustrated in Example 2.4. As a con-
clusion, polynomials of graph that satisfy the conditions in Theorem 2.2
can be used to create a fractal of the graph.

3. Special case

The number of proper coloring of a graph G using s colors is the
chromatic polynomial and is denoted as yq(s), [II]. For a graph G,
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the constant term of x(s) is always zero and hence 0 is a fixed point
of xg(s), [I1]. For a connected graph G the coefficient of s in yq(s)
is always nonzero, [11]. Therefore using Theorem 2.2, define chromatic
fractals of connected graphs as follows.

DEFINITION 3.1. The chromatic fractal of a connected graph G
is defined as J,(G) = klim Roots(x%,), where xq(s) is the chromatic
—00

polynomial of G.

ExAMPLE 3.1. Consider the graph G = K3, the complete graph on 3
vertices. The chromatic polynomial of K3 is s(s—1)(s—2) or s*—3s%+2s.
Here the chromatic fractal of Kj.

Fractal Visualization after 10 Iterations
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Fractal Visualization after 25 Iterations
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Fractal Visualization after 500 Iterations
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ExaMPLE 3.2. Consider the graph G = P;, the path on 3 vertices.
The chromatic polynomial of Ps is s(s — 1) or s3> — 2s? + s. Here the
chromatic fractal of P;.

Fractal Visualization after 10 Iterations
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Fractal Visualization after 25 Iterations
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Fractal Visualization after SO0 iterations
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4. Conclusion

Independence fractals have many applications in our daily lives. So
the study of fractal of a graph is essential to understand its impact on our
day-to-day activities. In this paper, we intended to discuss the fractal
of a graph and also the criteria for defining the fractal of graphs using
graph polynomials. In conclusion, we reached the inference that it is
possible to create the fractal of a graph using any polynomials be it
matching polynomials, chromatic polynomials, di-chromatic polynomials,
or independence polynomials.
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