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Abstract

Most things in the world can be modeled into graphs, and each graph
into a fractal, which is the independence fractal. For instance, in archi-
tecture, the ground plan of a building is converted to a graph by taking
rooms as vertices and edges as the direct connection between two rooms.
After that, these graphs changed to the corresponding fractal using its
independence polynomial, and this forms the very basis of the study of
architecture’s ground plan. This simple example proves the necessity of
the study of independence fractals.
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Now the question of consideration is, can other polynomials defined in
graphs, such as, chromatic polynomial, dichromatic polynomial, match-
ing polynomial, Tutte polynomial, etc., be used to create fractals instead
of independence polynomial.
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1. Introduction

French mathematician Benoit Mandelbrot invented the term fractal
from the Latin word fractus in the 1980s, [3]. As the name implies,
fractals are self-similar objects, [3]. The concept of independence frac-
tals was established in the 21st century, existing results on the roots of
polynomials and their limiting behavior under iteration [1] provide the-
oretical support for studying the independence fractal. The fractal of
a graph is explained using independence polynomials and is called the
independence fractals. A graph may have many such polynomials like
matching polynomials, chromatic polynomials, dichromatic polynomials,
etc. ([7]). Now the question is, is it possible to define the fractal of the
graph using these polynomials? In this paper, we intend to discuss the
criteria for interpreting the fractal of a graph. That is, to check whether
other polynomials of a graph can be used to create a fractal of the graph.
To reach at a conclusion on this, we attempt to take general polynomials
rather than independence polynomials of a graph and check the same.

Definition 1.1. [6] Let G be a graph. The independence polyno-

mial of G, denoted by iG(s), is given by iG(s) =
α∑

k=0

iks
k, where ik be

the number of independent sets of order k and α be the independence
number of G.

For any graph G i0 = 1 and i1 is the number of vertices of G, [6].

Example 1.1. Let G be the graph given in Figure 1. The indepen-
dence number of the graph is 3, so need to find i2 and i3. The indepen-
dent sets of order 2 are {V1, V4}, {V1, V5}, {V2, V4}, {V2, V5}, {V4, V5} and
i2 = 5. The independent set of order 3 are {V1, V4, V5}, {V2, V4, V5} and
i3 = 2. So the independence polynomial iG(s) = 2s3 + 5s2 + 5s+ 1.
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Figure 1

Definition 1.2. [6] The lexicographic product or composition G[H]
of graphs G and H is a graph such that:

(1) the vertex set of G[H] is the cartesian product V (G)×V (H) and
(2) Any two vertices (u, v) and (x, y) are adjacent in G[H] if and only

if either u is adjacent with x in G or u = x and v is adjacent with
y in H.

Example 1.2. For the graphsG = P3 andH = P2, the lexicographic
product G[H] is given in Figure 2.

Figure 2

Theorem 1.1. [8] The independence polynomial of G[H], the lexi-
cographic product of G and H, is given by iG[H](s) = iG(IH(s)− 1).

Example 1.3. The independence polynomial of lexicographic prod-
uct of G and H in the above example is iP3[P2](s) = 1 + 3(2s) + (2s)2 =
1 + 6s+ 4s2, since iP3(s) = 1 + 3s+ s2 and iP2(s) = 1 + 2s.

Definition 1.3. [8] The reduced independence polynomial of G is
the function fG(s) = iG(s)− 1.

Corollary 1.1. [6] fG[H](s) = fG(fH(s)).
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Definition 1.4. [8] The independence fractal of a graphG is defined
as the set F(G) = lim

k→∞
Roots(fGk).

Example 1.4. For the graph P3[P2],the lexicographic product of P3

and P2, the independence fractal is

F(P3[P2]) = lim
k→∞

Roots(fP3[P2]k) = {−1.5,−1.71510032 + 0.14809861

i,−1.71510032− 0.14809861i,−1.61201523 + 0.26286997i,−1.612015
23− 0.26286997i,−1.46912614 + 0.32277849i, −1.46912614− 0.32277
849i,−1.31730480 + 0.32486245i,−1.31730480− 0.32486245i,−1.181
83485 + 0.27861415i,−1.18183485− 0.27861415i,−1.08033723 + 0.19
611604i,−1.08033723− 0.196116040i, −1.027304930 + 0.092421770i,
− 1.02730493− 0.09242177i,−1.02107599,−.317638133, −.31264272
4,−.307666027,−.300367306,−.254566930,−.248416946, −.237600
533,−.233389867,−.0548358644,−.0520452693,−.0436247372, −.0
399867279,−.00919568447,−.00669433069,−.00153418322, 0, ...}.

Definition 1.5. [6, 8] Let f be a polynomial, and z0 a point
which does not lie in any attracting cycle or Siegel disk of f . Then
limk→∞ f−k(z0) = J(f), where the limit taken with respect to the Hous-
dorff metric on compact subspaces of (C, | . |).

Definition 1.6. [8] The forward orbit of a point z0 with respect to
f is the set: O+(z0) = {fk(z0)}∞k=0.

Definition 1.7. [8] For a polynomial f , its filled Julia set K(f) is
the set of all points z whose forward orbit O+(z) is bounded in (C, |.|).
The Julia set of f , J(f) is the boundary of K(f). The Fatoe set F (f) is
the compliment of J(f) in C.

2. Fractals from graph polynomials

There are only four non-isomorphic graphs of 3 vertices given in Fig-
ure 3. The corresponding independent polynomials are:

iG1(s) = s3 + 3s2 + 3s+ 1
iG2(s) = 2s2 + 3s+ 1
iG3(s) = s2 + 3s+ 1
iG4(s) = 3s+ 1 .
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Figure 3

It is easy to see that the coefficient of s in each of these polynomials
is 3. Since, in the independence polynomial of a graph G, the coefficient
of s is the number of vertices of G. But there exists an infinite number of
polynomials having three as the coefficient of s. Now our question that:

“Is there a polynomial p(s) having three as the coefficient of s which
is not an independence polynomial of a graph of 3 vertices such that:

lim
k→∞

Roots{pk(s)} = J(p), ”

where J(p) is the Julia set of the polynomial p(s). To check whether
such a polynomial exists or not, consider some examples.

Example 2.1. Let p(s) = s3 + s2 + 3s, p(s) is not an independence
polynomial of any graph of 3 vertices. Since p(0) = 0, 0 is fixed point
of p(s), and p′(s) = 3s2 + 2s + 3, so p′(0) = 3. This shows that 0 is a
repelling fixed point of p(s). It follows that 0 lies in the J(p). Also since
0 is a repelling fixed point, which does not lie on any attracting cycle
and therefore lim p−k(s) = J(p). That is, limk→∞Roots{pk(s)} = J(p).

Example 2.2. Let h(s) = s4 + 2s3 + 4s2 + 3s, h(s) is not an
independence polynomial of any graph of 3 vertices. Since h(0) = 0,
0 is fixed point of h(s), and h′(s) = 4s3 + 6s2 + 8s + 3, so h′(0) = 3.
This shows that 0 is a repelling fixed point of h(s). It follows that
0 lies in the J(h). Also since 0 is a repelling fixed point, which does
not lie on any attracting cycle and therefore limh−k(s) = J(h). That is
limk→∞Roots{hk(s)} = J(h).

Now check whether every polynomial with integer coefficients satisfies
this property. If not, what are the conditions to satisfy this property?

Example 2.3. Let g(s) = 6s3 + 4s2 + s, g(s) is not an indepen-
dence polynomial of any graph. Since g(0) = 0, 0 is fixed point of
g(s), and g′(s) = 18s2 + 8s + 1 so g′(0) = 1. This shows that 0 is a
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rationally indifferent fixed point of g(s). It follows that 0 lies in the
J(g). Also since 0 is a rationally indifferent fixed point, which does not
lie on any attracting cycle and therefore lim g−k(s) = J(g(s)). That is,
limk→∞Roots{gk(s)} = J(g).

Example 2.4. Let f(s) = s2 + 1, f(s) is not an independence poly-
nomial of any graph. Here f(0) = 1 and therefore 0 is not a fixed point of
f(s). Now f 2(s) = (s2+1)2+1, f 3(s) = f(f 2(s)) = ((s2+1)2+1)2+1,...
and f 2(0) = 2, f 3(0) = 5, f 4(0) = 26, ..., this means fk(0) ̸= 0 for k =
1, 2, 3, ... that is 0 is not a periodic point of f(s). To check whether
limk→∞Roots{fk(s)} = J(f), consider the zeros of f(s), that is i and
−i, and the forward orbit of i and −i are given below:

O+(i) = {i, 0, 1, 2, 5, 26, ...}; O+(−i) = {−i, 0, 1, 2, 5, 26, ...}.
This gives the forward orbit of i and −i are unbounded, so i, −i /∈

J(f) but both are lies in limk→∞ Roots{fk(s)}. Hence limk→∞Roots{fk(s)}
̸= J(f).

Theorem 2.1. For any polynomial p(s) = a0+a1s+a2s
2+ ...+ans

n

where ai ∈ Z for i = 0, 1, 2, ..., n. If a0 = 0 and a1 ̸= 0 or 0 is a periodic
point of order m, m > 1, and am ̸= 0 then limk→∞ Roots{pk(s)} = J(p),
where J(p) is the Julia set of the polynomial p(s). Moreover the result
holds if p(s) is a complex polynomial, 0 is a periodic point of p(s) of
order m and |am| ≥ 1.

P r o o f. Let p(s) = a0+ a1s+ a2s
2+ ...+ ans

n, where ai ∈ Z for i =
0, 1, 2, ..., n.

Case 1: a0 = 0 and a1 ̸= 0. Since a0 = 0 we have p(s) = a1s +
a2s

2 + ... + ans
n and p(0) = 0. That is zero is a fixed point of p. Now

p′(s) = a1 + 2a2s + 3a3s
2 + ... + nans

n−1, then p′(0) = a1. Given that
a1 ̸= 0 so |a1| ≥ 1, thus 0 is not in the attracting cycle of p. Therefore,
limk→∞Roots{pk(s)} = limk→∞ p−k(0) = J(p).

Case 2: 0 is a periodic point of order m and am ̸= 0.

Subcase 1: If m > n, then am = 0, nothing to prove.

Subcase 2: if m ≤ n, given 0 is a periodic point and am ̸= 0.

p(s) = a0 + a1s+ a2s
2 + ...+ ans

n

p′(s) = a1 + 2a2s+ 3a3s
2 + ...+ nans

n−1

p′′(s) = 2a2 + 6a3s+ 12a4s
2 + ...+ n(n− 1)ans

n−2.
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Continuing like this we get the mth derivative of p(s) as pm(s) =
m!am + (m+1)!am+1s+ (m+2)(m+1)m...3am+2s

2 + ...+ n(n− 1)(n−
2)...(n − m + 1))ans

n. Thus |pm(0)| = |m!am| ≥ 1, since am ̸= 0. This
shows that 0 is not in the attracting cycle. Thus we have

lim
k→∞

Roots{pk(s)} = lim
k→∞

p−k(0) = J(p).

Let p(s) be a complex polynomial and 0 is a periodic point of order m and
also |am| ≥ 1. Thus |pm(0)| = |m!am| ≥ 1 and 0 is not in the attracting
cycle. Hence limk→∞ Roots{pk(s)} = limk→∞ p−k(0) = J(p). 2

Example 2.5. Let t(s) = s2 − 1. The zeros of t(s) are 1 and −1, it
shows that 0 is not a fixed point of t(s). Now t(t(s)) = t(s2 − 1) = (s2 −
1)2−1 = s4−2s2+1−1 = s4−2s2, and t2(0) = 0. Therefore, 0 is a periodic
point of t(s) with periodicity 2. Also (t2)′(s) = 4s3− 4s and (t2)′(0) = 0,
hence 0 is in the super attracting cycle and therefore lies in F (t). 0 is
a zero of t2 and lies in F (t), it shows that limk→∞Roots{tk(s)} ̸= J(t).
To prove that the forward orbit of each zeros of tn is bounded, find a
bound for each. Let znk

be the zeros of tn(s), k = 1, 2, 3, ..., d, where d is
the degree of tn(s). Since z1k = 1,−1, it follows that |z1k | = 1. Assume
that z(n−1)k are the zeros of tn−1(s) and which satisfies the condition
|z(n−1)k | ≤ 1.6. Let znk

be the zeros of tn(s). t(znk
) = 0 ⇒ tk−1(t(znk

)) =
0 ⇒ t(znk

) is a zero of tk−1(s). Thus,

|t(znk
)| ≤ 1.6

−1.6 ≤ t(znk
) ≤ 1.6

−1.6 ≤ (znk
)2 − 1 ≤ 1.6

0 ≤ (znk
)2 ≤ 2.6

−1.6 ≤ znk
≤ 1.6

|znk
| ≤ 1.6.

This shows that each zero of tn, for all n, lies in the interval [−1.6, 1.6]
and t([−1.6, 1.6]) ⊆ [−1.6, 1.6]. Therefore the forward orbit of each of
the zero of tn is bounded. Thus all the zeros of tn lies in the K(t), the
filled Julia set of t.

Theorem 2.2. For any polynomial p(s) = a0+a1s+a2s
2+...+ans

n,
where ai ∈ Z for i = 0, 1, 2, ..., n. If 0 is not a fixed point and not
a periodic point of p and ai ≥ 0 for i = 0, 1, 2, ..., n, ai ≤ 0 for i =
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0, 1, 2, ..., n or ai ̸= 0 and the sequence (pn(0)) converges to ±∞. Then
limk→∞Roots{pk(s)} ≠ J(p).

P r o o f. Let p(s) = a0 + a1s + a2s
2 + ... + ans

n be a non-constant
polynomial, where ai ∈ Z. Suppose that 0 is not a fixed point and not
a periodic point of p, that is pk(0) ̸= 0 for all k ∈ N. Since p(s) is non-
constant ai ̸= 0 for some i. Let k be the largest integer in {0, 1, 2, ..., n}
such that ak ̸= 0.

Case 1: ai ≥ 0 for i = 0, 1, 2, ..., n.

To prove the sequence (pn(0)) is strictly monotonic increasing se-
quence. Since 0 is not a fixed point of p, p(0) = a0 > 0 and p2(0) =
p(p(0)) = p(a0) = a0 + a1a0 + a2a

2
0 + ... + aka

k
0 + ... + ana

n
0 , aka

k
0 > a0

since ak ̸= 0. Hence p(0) < p2(0). In general pn+1(0) = p(pn(0)) =
a0+a1p

n(0)+a2p
n(0)2+...+akp

n(0)k+...+anp
n(0)n, here akp

n(0)k > pn(0)
for all n ∈ N. This shows that the sequence (pn(0)) is strictly monotonic
increasing sequence. Therefore the sequence (pn(0)) converges to ∞,
since ai ≥ 0.

Case 2: ai ≤ 0 for i = 0, 1, 2, ..., n.

In this case the sequence (pn(0)) is strictly monotonic decreasing (as
in Case 1) and therefore, converges to −∞.

Case 3: ai ̸= 0 for i = 0, 1, 2, ..., n. Given that the sequence (pn(0))
converges to ±∞ in this case.

Now we need to prove the result, so let x1, x2, x3, ..., xn be zeros of
p(s), thus it belongs to limk→∞Roots{pk(s)}. Let us consider the forward
orbit of each of these zeros. O+(xt) = {pk(xt)}∞k=0 = {xt, 0, p(0), p

2(0), ...},
t = 1, 2, ..., n, which is unbounded since in each case (pn(0)) is converges
to ±∞. It follows that xt /∈ J(p), t = 1, 2, ..., n. Hence,

lim
k→∞

Roots{pk(s)} ≠ J(p).

2

This theorem has been already illustrated in Example 2.4. As a con-
clusion, polynomials of graph that satisfy the conditions in Theorem 2.2
can be used to create a fractal of the graph.

3. Special case

The number of proper coloring of a graph G using s colors is the
chromatic polynomial and is denoted as χG(s), [11]. For a graph G,
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the constant term of χG(s) is always zero and hence 0 is a fixed point
of χG(s), [11]. For a connected graph G the coefficient of s in χG(s)
is always nonzero, [11]. Therefore using Theorem 2.2, define chromatic
fractals of connected graphs as follows.

Definition 3.1. The chromatic fractal of a connected graph G
is defined as Fχ(G) = lim

k→∞
Roots(χk

G), where χG(s) is the chromatic

polynomial of G.

Example 3.1. Consider the graph G = K3, the complete graph on 3
vertices. The chromatic polynomial ofK3 is s(s−1)(s−2) or s3−3s2+2s.
Here the chromatic fractal of K3.



540 Sreeji P C, Shahida A T



CREATION OF FRACTAL OF A . . . 541

Example 3.2. Consider the graph G = P3, the path on 3 vertices.
The chromatic polynomial of P3 is s(s − 1)2 or s3 − 2s2 + s. Here the
chromatic fractal of P3.
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4. Conclusion

Independence fractals have many applications in our daily lives. So
the study of fractal of a graph is essential to understand its impact on our
day-to-day activities. In this paper, we intended to discuss the fractal
of a graph and also the criteria for defining the fractal of graphs using
graph polynomials. In conclusion, we reached the inference that it is
possible to create the fractal of a graph using any polynomials be it
matching polynomials, chromatic polynomials, di-chromatic polynomials,
or independence polynomials.
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