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Abstract

A novel and reliable semi-analytical method to solving Volterra integro-
differential equations is presented in this study. A new modified Adomian
Decomposition Method is described in this paper. By presenting some
examples and plotting the error function and comparison between the
exact and approximate solutions, we show the ability, simplicity, and
effectiveness of this method.
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1. Introduction

The Adomian Decomposition Technique (ADM), developed by Man-
afianheris [1], separates an equation into linear and nonlinear compo-
nents. Equations involving nonlinear functions are solved using this
technique. To provide solutions that take the form of recursive series,
Adomian polynomials are used. Saray [2], discovered that problems in-
volving these equations may be reduced to a set of algebraic equations by
using a method for solving Volterra integro-differential equations. The
solution proved to be more successful than similar strategies that required
less computing work. Olayiwola, et al. [3] described how the modified
variational iteration approach converges to the precise solution after an
iteration for the solution of the class of initial and boundary value prob-
lems. As a result, the approach is effective and trustworthy for solving
bantu-type differential equations. Alaje, et al. [4] discovered that an
analytical strategy of modified initial guess Homotopy perturbation is
used to solve the Korteweg-de vries equation. The Banach fixed point
theorem was used to demonstrate the method’s convergence as well as a
sequence of arbitrary orders.

The multi-wavelets Galerkin method may be used to tackle second-
order problems that are both linear and nonlinear. Volterra integro-
differential equations are resolved using the operational integration ma-
trices and the wavelet transform matrix. Ibrahim, et al. [5] looked at
the original solution to the second-order nonlinear Fredholm integro-
differential equation, which involved applying the Simpson method to
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turn the Fredholm IDE into a collection of nonlinear algebraic equa-
tions. Siweilam [6] created the Variational Iteration Methodology (VIM),
which resolves the bulk of difficulties encountered in computing Adomian
polynomials using the Adomian decomposition method, to solve integro-
differential equations, which are difficult to solve analytically.

According to Asiya, et al. ([7], [8], [13]), a comparison of numer-
ical and analytical solutions to Fredholm integro-differential equations
is successful when utilizing a modified Adomian decomposition method.
According to Asiya, et al. [9], the system of general Fredholm Integro-
differential (FID) equations was solved using the Direct Computation
Method (DCM). It is crucial to note that additional techniques should be
used for systems with different or separate kernels. While any form of ker-
nel can be utilised with the DCM to solve the system of general Fredholm
Integro-differential (FID) equations and also according to Asiya, et al.
[10], using the Adomian decomposition method and Modified Adomian
decomposition method, we looked at the approximation solution of the
nonlinear Volterra-Fredholm integro-differential equation. The proposed
techniques have been successfully used to solve the integro-differential
equation and its system, and they require a great deal less computation
time than conventional approaches. Another benefit is that it has been
shown that theoretical conclusions, such as convergence and the unique-
ness of the technique suggester’s answers to the problem at hand, are
accurate. Furthermore, only a limited number of times are required to
provide a successful outcome. Also, according to Asiya, et al. [11], the
Series Solution Method is a powerful technique that is capable of handling
higher-order linear or non-linear Volterra Integro-differential equations.
In [12], authors implemented the technique suggested by HPM, ADM,
MADM, and VIM for obtaining the approximate solution of linear fuzzy
integro-differential equations along with a fuzzy parametric form with
suitable initial conditions and source functions. In this study, the fuzzy
MADM’s left bound of errors at z = 0.5 is competitive with the fuzzy
ADM, HPM, and VIM. However, when it came to the remaining errors,
fuzzy MADM outperformed fuzzy ADM.

The physical phenomena in engineering may all be solved using integral-
differential equations. The third-order derivatives of unknown functions
are contained in integro-differential equations (IDEs) known as third-
order IDEs. Haar functions are employed in integro-differential equa-
tions, both linear and nonlinear, to approximate the third-order de-
rivative. Lower-order derivatives and the solution to the mystery are
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produced through integration. Several partial differential equations are
both linear and nonlinear that Chen [14] and Rohaninasab, et al. [15]
have been utilized to solve. It has been proven to be a successful tech-
nique for getting numerical solutions. The Legendre collocation spectral
method may be used to solve high-order linear Volterra-Fredholm integro-
differential equations under mixed situations. Nonlinear Volterra integral
and integro-differential equations may be used to study a variety of sci-
entific topics, including heat transport, the spread of infectious illnesses,
semiconductor neutron diffusion, and others (see [16]). Non-orthogonal
polynomials can also be decomposed using the Laplace Adomian ap-
proach. The Adomian decomposition technique is a summation of an
infinite convergent series without any restrictive constraints. When solv-
ing functional equations that are no longer valid, the Laplace-Adomian
decomposition method combines two efficient techniques. The modified
Laplace Adomian Decomposition Technique (LADM), which uniformly
distributes the source function before performing Laplace Adomian De-
composition, is used to solve the Volterra integral and integro-differential
equations. To estimate the solutions of nonlinear partial differential equa-
tions, the Laplace transform employs the decomposition method.

Many researchers have explored third-order integro-differential equa-
tions, notably the nonlinear variety in closed form. The answer is then
integrated to acquire the lower-order derivatives, while the trapezoidal
approach is used to derive the unknown function itself. The power
of series and canonical polynomials is used to approximate the largest
derivatives in the topics studied. The polynomial issues presented by
Olayiwola and Kareem [17] may be solved analytically using a variety of
approaches; however, some of these approaches are challenging and call
for several iterations that may be challenging to solve and take a long
time to arrive at an approximation. This method is applied in numerous
fields, including engineering, economics, chemical kinetics, fluid mechan-
ics, etc. Olayiwola, et al. [18] explained how to develop Maple code for
the method and simulation of the generalized Burger-equation Fisher’s
solution. With less computation, the results were produced. The Homo-
topy perturbation method was used to solve Integro-differential equations
with two-point boundary conditions, and the numerical results obtained
proved to be a very accurate algorithm for solving problems of linear
Fourth-order Integro-differential equations.

The Laplace transform employs the decomposition method to approx-
imate the solutions of nonlinear partial differential equations. According
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to Amin, et al. [19], many scholars have explored third-order integro-
differential equations, especially the nonlinear variety in closed form. The
answer is then integrated to create the lower-order derivatives, while the
trapezoidal approach is used to derive the unknown function itself. The
power of series and canonical polynomials approximate the largest deriva-
tives in the topics studied. This method is utilized in numerous areas,
including engineering, economics, chemical kinetics, fluid mechanics, etc.

In this paper, we introduce a new modification of decomposition
method and make further progress beyond the achievements made so far
in this regard. Several examples concerning Volterra integro-differential
equations are tested, and the results suggest that this new idea proposes a
promising tool for the computation of integro-differential equations both
linear and nonlinear.

2. Description of the new modified
Adomian Decomposition Method

Since the beginning of the 1980s, the Adomian decomposition method
has been applied to a wide class of integro-differential equations. To
illustrate the procedure, consider the following linear Volterra integro-
differential equations of the second kind given by

ϕn(z) = g(z) + λ

∫ z

0

K(z, t)ϕ(t)dt

and the non-linear Volterra integro-differential equation of the second
kind as follows:

ϕn(z) = g(z) + λ

∫ z

0

K(z, t)G(ϕ(t))dt,

ϕn(z) = g(z) + λ

∫ z

0

K(z, t)(L(ϕ(t)) +N(u(t)))dt, λ ̸= 0, (1)

where ϕn(z) indicate the nth derivative of ϕ(z) such as ϕn = dnϕ
dzn

, initial

conditions ϕ(p)(0) = dp; 0 ≤ p ≤ (n − 1) such as ϕ(0), ϕ
′
(0), ϕ

′′
(0), . . . ,

ϕn−1(0), the function g(z) are given real valued functions, K(z, t) is the
kernel of integral equation, λ is suitable constant and dp are constants
that define the initial conditions. The function G(ϕ(z)) is a non-linear
function of ϕ(z) such as ϕ2(z), sin(ϕ(z)), and eϕ(z). Because the equation
in (1) combines the differential operator and the integral operator, it is
necessary to define initial conditions for the determination of the partic-
ular solution ϕ(z) of the nonlinear Volterra integro-differential equation.
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In the decomposition method, we usually express the solution of (1)
in a series form defined by

ϕ(z) =
∞∑
i=0

ϕi(z). (2)

Moreover, the decomposition method identifies the nonlinear termN(ϕ(z))
by the decomposition series

N(ϕ(z)) =
∞∑
i=0

Ai(z), (3)

where Aj(z) is the so-called Adomian polynomials, which can be evalu-
ated by the following formula:

An =
1

n!

dn

dλn

[
N

(
n∑

i=0

λiϕi

)]
λ=0

, (4)

where n = 0, 1, 2, 3, . . . and i = 2, 3, 4, . . . .
Substituting (2) and (3) into both sides of (1) gives

∞∑
i=0

ϕn
i (z) = g(z) + λ

∫ z

0

K(z, t)

[
L

(
∞∑
i=0

ϕi(t)

)
+

∞∑
i=0

Ai(t)

]
dt. (5)

In the following, we outline the basic feature of the standard decom-
position method and the modified decomposition method.

The Standard Adomian Decomposition Method (SADM)

By the standard decomposition method, the components ϕ0(z), ϕ1(z),
ϕ2(z), . . . of the solution ϕ(z) of (1), are completely determined in the
following recurrence manner:

ϕ0(z) = g(z) (6)

ϕn
i+1(z) = λ

∫ z

0

K(z, t)(L(ϕi) + Ai)dt, i ≥ 0 (7)

Having determined the components ϕ0(z), ϕ1(z), ϕ2(z), . . . the solution
ϕ(z) in a series form defined by (2) follows immediately.

The Modified Adomian Decomposition Method (MADM)

The standard decomposition method by Adomian ([7], [8]) was mod-
ified by Wazwaz [20]. The modification is based on the assumption that
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the function g(z) can be divided into two parts, namely, g0(z) and g1(z).
Under this assumption we set

g(z) = g0(z) + g1(z).

Accordingly, a slight variation was proposed only for the components
ϕ0(z) and ϕ1(z). The suggestion was that only the part g0(z) will be
assigned to the zeroth component ϕ0(z), whereas the remaining part
g1(z) will be combined with the other terms given into (7) to define
ϕ1(z). Consequently, the modified recursive relation

ϕ0(z) = g0(z),

ϕ1(z) = g1(z) + λ

∫ z

0

K(z, t)(L(ϕ0) + A0)dt,

ϕ2(z) = λ

∫ z

0

K(z, t)(L(ϕ1) + A1)dt,

...

ϕi+1(z) = λ

∫ z

0

K(z, t)(L(ϕi) + Ai)dt, i ≥ 0,

was developed.

This Modified Decomposition Method is a lower order comparison of
the Adomian Decomposition Method. The Modified Adomian Decompo-
sition Method gives exact solutions that can be derived from using two
iterations only for ϕ0(z) and ϕ1(z) ([8]-[10]).

It is important to note here that there were some conclusions made
in ([20], [21]). First, the slight variation in reducing the number of terms
of ϕ0 will result in a reduction of the computational work and will accel-
erate the convergence. Second, this slight variation in the definition of
the components ϕ0 and ϕ1 may provide the solution by using two itera-
tions only. Third, there is no need sometimes to evaluate the so-called
Adomian polynomials required for the nonlinear equations.

The New Modified Adomian Decomposition Method (NMADM)

The modification was carried out by decomposing the source term
function into series of the form (1), and the new recursive relation was
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obtained as the theoretical aspect of the method:

ϕ0(z) = g0(z),

ϕ1(z) = g1(z) + g2(z) + λ

∫ z

0

K(z, t)(L(ϕ0(t)) + A0)dt,

ϕ2(z) = g3(z) + g4(z) + λ

∫ z

0

K(z, t)(L(ϕ0(t) + ϕ1(t)) + A1)dt,

...

ϕi+1(z) = g2(i+1)(z) + g2(j+1)−1(z) + λ

∫ z

0

K(z, t)(L(ϕi(t)

+ ϕi−1(t)) + A1)dt.

(8)

In case of non-linear, the newly modified Adomian decomposition method
(NMADM) accelerates the convergence of the solution (MADM) faster
than Standard Adomian Decomposition Method (SADM). Assuming that
the nonlinear function is N(ϕ(z)) can be evaluated by using the equa-
tion(4). Therefore, below are few of Adomian polynomials:

A0 = N(ϕ0),

A1 = ϕ1N
′
(ϕ0),

A2 = ϕ2N
′
(ϕ0) +

1

2!
ϕ2
1N

′′
(ϕ0),

A3 = ϕ3N
′
(ϕ0) + ϕ1ϕ2N

′′
(ϕ0) +

1

3!
ϕ3
1N

′′′
(ϕ0),

A4 = ϕ4N
′
(ϕ0) +

(
1

2!
ϕ2
2 + ϕ1ϕ3

)
N

′′
(ϕ0) +

1

2!
ϕ2
1ϕ2N

′′′
(ϕ0)

+
1

4
ϕ4
1N

(iv)(ϕ0).

Two important observations can be made here. First, A0 depends only
on ϕ0, A1 depends only on ϕ0 and ϕ1, A2 depends only on ϕ0, ϕ1, and
ϕ2, and so on.
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Secondly, substituting these A
′
is in (8) gives:

N(ϕ) = A0 + A1 + A2 + A3 + . . .

= N(ϕ0) + (ϕ1 + ϕ2 + ϕ3 + . . . )N
′
(ϕ0)

+
1

2!
(ϕ2

1 + 2ϕ1ϕ2 + 2ϕ1ϕ3 + ϕ2
2)N

′′
(ϕ0)

+
1

3!
(ϕ3

1 + 3ϕ2
1ϕ3 + 6ϕ1ϕ2ϕ3 + . . . )N

′′′
(ϕ0) + . . .

= N(ϕ0) + (ϕ− ϕ0)N
′
(ϕ0) +

1

2!
(ϕ− ϕ0)

2N
′′
(ϕ0) + . . . .

3. Results and discussions

3.1. Results. Some research results are given in 3 different cases of ex-
amples.

Example 3.1. Consider the first order linear Volterra integro-
differential equation:

ϕ
′
(z) = 1−

∫ z

0

ϕ(t)dt, 0 ≤ z, t ≤ 1

with initial condition ϕ(0) = 0 and exact solution is ϕ(z) = sin z.

Table 1. Comparison of numerical results for Example 1.

x Exact MADM NMADM
0 0 0 0
0.1 0.099833416646828 0.099833416646827 0.099833416646828
0.2 0.198669330795061 0.198669330795060 0.198669330795061
0.3 0.295520206661340 0.295520206661340 0.295520206661340
0.4 0.389418342308651 0.389418342308650 0.389418342308651
0.5 0.479425538604203 0.479425538604203 0.479425538604203
0.6 0.564642473395035 0.564642473395035 0.564642473395035
0.7 0.644217687237691 0.644217687237691 0.644217687237691
0.8 0.717356090899523 0.717356090899523 0.717356090899523
0.9 0.783326909627483 0.783326909627483 0.783326909627483
1.0 0.841470984807897 0.841470984807897 0.841470984807897
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Figure 1. Comparison curve results for Example 1.

Example 3.2. Consider the second order linear Volterra integro-
differential equation:

ϕ
′′
(z) = 1 +

∫ z

0

(z − t)ϕ(t)dt,

with initial conditions ϕ(0) = 1, ϕ
′
(0) = 0 and exact solution is ϕ(z) =

cosh z.

Table 2. Comparison of numerical results for Example 2.

x Exact MADM NMADM
0 1.000000000000000 1.000000000000000 1.000000000000000
0.1 1.005004168055804 1.005004168055804 1.005004168055804
0.2 1.020066755619076 1.020066755619076 1.020066755619076
0.3 1.045338514128861 1.045338514128861 1.045338514128861
0.4 1.081072371838455 1.081072371838455 1.081072371838455
0.5 1.127625965206381 1.127625965206381 1.127625965206381
0.6 1.185465218242268 1.185465218242268 1.185465218242268
0.7 1.255169005630943 1.255169005630943 1.255169005630943
0.8 1.337434946304845 1.337434946304845 1.337434946304845
0.9 1.433086385448775 1.433086385448775 1.433086385448775
1.0 1.543080634815244 1.543080634815244 1.543080634815244
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Figure 2. Comparison curve results for Example 2.

Example 3.3. Consider the third order linear Volterra integro-
differential equation:

ϕ
′′′
(z) = 1− 1

2
z2 +

∫ z

0

ϕ(t)dt,

with initial conditions ϕ(0) = 1, ϕ(1) = e + 1, ϕ
′
(0) = 2, ϕ

′
(1) = e + 1

and exact solution is ϕ(z) = ez + x.

Table 3. Comparison of numerical results for Example 3.

x Exact MADM NMADM
0 1.000000000000000 1.000000000000000 1.000000000000000
0.1 1.205170918075648 1.205170918075648 1.205170918075648
0.2 1.421402758160170 1.421402758160170 1.421402758160170
0.3 1.649858807576003 1.649858807576003 1.649858807576003
0.4 1.891824697641270 1.891824697641270 1.891824697641270
0.5 2.148721270700128 2.148721270700128 2.148721270700128
0.6 2.422118800390509 2.422118800390509 2.422118800390509
0.7 2.713752707470476 2.713752707470476 2.713752707470476
0.8 3.025540928492468 3.025540928492468 3.025540928492468
0.9 3.359603111156950 3.359603111156950 3.359603111156950
1.0 3.718281828459046 3.718281828459046 3.718281828459046
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Figure 3. Comparison curve results for Example 3.

3.2. Discussion. This research work has introduced a new approach to
the modification of Adomian Decomposition Method. This new method
applies effectively to the solution of Volterra Integro-differential equa-
tions. The approximate solutions of three numerical examples obtained
with the help of MADM and NMADM, in Tables 1-3, respectively. From
the numerical results, it is clear that the NMADM is more efficient and
accurate. The graphical comparison of exact and approximate solutions
is shown in Figures 1-3, respectively.

In Examples 2 and 3, both MADM and NMADM can fulfil the exact
solution effectively but in example 1, it is of certain difficulty to obtain
the exact solution through the first finite terms of the series solution when
using MADM. Whereas, ADM needs quite a little computational work
to obtain the exact solution. If the exact solution exists in the zeroth
component, MADM needs extensive workload for the suitable choice of
ϕ0(z) and ϕ1(z), while the new modification can proceed in a fixed man-
ner. The proposed method converges faster. Also, selection of the Taylor
series expansion of the source term needs to be of high order to make the
selection of the Taylor series expansion of the source term. The accuracy
is also improved through an increase in the selection of terms of the Tay-
lor series expansion. The result obtained compared well with the exact
and in most cases, they converge directly to the exact in low number
of iterations. It is therefore worthy to state that the method is elegant
and sufficiently applicable to the solution of Volterra integro-differential
equations.
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4. Conclusion

This study developed a new method for modifying the Adomian De-
composition Technique. The Volterra Integro-Differential Equation is
easily solved using this novel approach. The Taylor series extension of
the source word must be chosen with care to broaden the selection as
much as feasible. To boost the convergence tendency, we broaden the
Taylor series of the source term with additional options. The proposed
method converges more quickly to exact than existing methods. The idea
has been shown to be computationally efficient in applying the proposed
technique to several linear Volterra integro-differential equations. Also,
through the examples, it is seen that the new modification suits for those
integro-differential equations where the exact solution appears as part of
the zeroth term. It is also interesting to point out that one can obtain
the approximate solution of integro-differential equations as mentioned
in [10-12] simply by slightly varying the modification of this work. Also,
this method is useful for finding an accurate approximation of the exact
solution.

Acknowledgments.

The authors would like to thank the Integral University, Lucknow
(India) for providing the manuscript number (MCN):
IU/R&D/2025-MCN0003470 to the present work.

Conflicts of interest.

The authors declare no conflicts of interest regarding the publication
of this paper.

References

[1] J. Manafianheris, Solving the integro-differential equations using the
modified Laplace Adomian decomposition method, Journal of Math-
ematical Extension, 6, No 1 (2012), 1–15.

[2] B. N. Saray, An efficient algorithm for solving Volterra integro-
differential equations based on Alpert’s multi-wavelets Galerkin
method, Journal of Computational and Applied Mathematics, 348,
(2019), 453–465; doi: 10.1016/j.cam.2018.09.016.

[3] M. Olayiwola, F. Akinpelu, and A. Gbolagade, Modified variational
iteration method for the solution of a class of differential equations,



510 A. Ansari, N. Ahmad, A. Hasan Ali

American Journal of Computational and Applied Mathematics, 2, No
5 (2012), 228–231; doi: 10.5923/j.ajcam.20120205.05.

[4] A. I. Alaje, M. O. Olayiwola, K. A. Adedokun, J. A. Adedeji, and A.
O. Oladapo, Modified Homotopy perturbation method and its ap-
plication to analytical solitons of fractional-order korteweg–de Vries
equation, Beni-Suef University Journal of Basic and Applied Sci-
ences, 11, No 1 (2022), 139; doi: 10.1186/s43088-022-00317-w.

[5] A. A.-E. Ibrahim, A. A. S. Zaghrout, K. R. Raslan, and K. K. Ali, On
the analytical and numerical study for nonlinear Fredholm integro-
differential equations, Applied Mathematics & Information Sciences,
14, No 5 (2020), 921–929; doi: 10.18576/amis/140520.

[6] N. Sweilam, Fourth order integro-differential equations using vari-
ational iteration method, Computers & Mathematics with Applica-
tions, 54, No 7 (2007), 1086–1091.

[7] A. Ansari, N. Ahmad, Numerical accuracy of Fredholm linear integro-
differential equations by using Adomian Decomposition Method,
Modified Adomian Decomposition Method and Variational Iteration
Method, Journal of Science and Arts, 23, No 3 (2023), 625-638.

[8] A. Ansari N. Ahmad, Numerical Accuracy of Fredholm integro-
differential equations by using Adomian Decomposition Method and
Modified Adomian Decomposition Method, Bull. Cal. Math. Soc.,
115, No 5 (2023), 567-578.

[9] A. Ansari, N. Ahmad, F. Deeba, Application of the direct computa-
tion method for solving a general Fredholm integro-differential equa-
tions, Global and Stochastic Analysis, 11, No 1 (2024), 65-74.

[10] A. Ansari, N. Ahmad, Numerical solution for nonlinear Volterra-
Fredholm integro-differential equations using Adomian and Modified
Adomian Decomposition Method, Transylvanian Review, 31, No 2
(2023), 16321-16327.

[11] A. Ansari, N. Ahmad, H.A. Ali, Numerical Study of the Series solu-
tion method to analysis of Volterra integro-differential equations, J.
Appl. Math. & Informatics, 42, No 4 (2024), 899-913.

[12] A. Ansari, N. Ahmad, Approximate solution of fuzzy Volterra
integro-differential equations using numerical techniques, Applica-
tions and Applied Mathematics: An International Journal (AAM),
19, No 4 (2024), 1-15.

[13] N. Ahmad, B. Singh, A. Ansari, Numerical solution of integral equa-
tion by using Picard method, homotopy and modified Adomian De-
composition Method, Ganita, 74, No 2 (2024), 349-360.



ON SOLVING VOLTERRA . . . 511

[14] J. Chen, M. He, Y. Huang, A fast multiscale Galerkin method for
solving second order linear Fredholm integro-differential equation
with Dirichlet boundary conditions, Journal of Computational and
Applied Mathematics, 364, (2020), 112-352.

[15] N. Rohaninasab, K. Maleknejad, R. Ezzati, Numerical solution of
high-order Volterra–Fredholm integro-differential equations by using
Legendre collocation method, Applied Mathematics and Computa-
tion, 328, (2018), 171–188.

[16] S. M. Yassein, Application of iterative method for solving higher or-
der integro-differential equations, Ibn AL-Haitham Journal for Pure
and Applied Sciences, 32, No 2 (2019), 51–61.

[17] M. O. Olayiwola and K. Kareem, A new decomposition method for
integro-differential equations, Cumhuriyet Science Journal, 43, No 2
(2022), 283–288.

[18] M. Olayiwola, A. Gbolagade, and F. Akinpelu, An efficient algorithm
for solving the nonlinear PDE, International Journal of Scientific and
Engineering Research, 2, No 10 (2011), 1–10.

[19] R. Amin, I. Mahariq, K. Shah, M. Awais, and F. Elsayed, Numerical
solution of the second order linear and nonlinear integro-differential
equations using haar wavelet method, Arab Journal of Basic and
Applied Sciences, 28, No 1 (2021), 12–20.

[20] A. Majid Wazwaz, A First Course in Integral Equations (2nd edi-
tion), ISBN-978-981-4675-11-16, 122-130 (2015).

[21] A. Majid Wazwaz, A reliable modification of Adomian decompo-
sition method Applied Mathematics and Computation, 102, No 1
(1999), 77-86.


	1. Introduction
	2. Description of the new modified  Adomian Decomposition Method
	3. Results and discussions
	3.1.  Results
	3.2.  Discussion

	4. Conclusion
	References

