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Abstract

The correspondence between matrix and graph is one of the funda-
mental characteristics of the spectral graph theory. This relation allows
us to formulate the characteristic polynomial of the graph and calculate
the energy of the graph as the sum of its absolute eigenvalues. This study
examines the non-commuting graph for dihedral groups. We establish the
spectral radius and energy of this graph using the adjacency-distance and
generalized adjacency-distance matrices. It should be noted that the ob-
tained energies are never an odd integer and are always equal to twice
its spectral radius.

Math. Subject Classification: 05C25, 15A18

Key Words and Phrases: energy of a graph, non-commuting
graph, dihedral group, adjacency-distance matrix, generalized adjacency-
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1. Introduction

Let G be a group and Z(G) be a center of G. The non-commuting
graph of G, denoted by I', has vertex set G\Z(G) and two distinct
vertices vy, v, in I'¢ are adjacent whenever v,v, # v,v, [1]. Throughout
this paper, the vertex set of ' is the non-abelian dihedral group of order
2n, Dy, where n > 3. We denote I'p, as the non-commuting graph for
dihedral groups.

Recently, research on the non-commuting graph has been linked with
the energy of the graph. Gutman first introduced the concept of graph
energy in 1978 [5]. The discussion of the energy of I'p, can be found in
[10] which is associated with the closeness matrix. Other types of graph
matrix that involve the degree of a vertex have been discussed by several
authors, for instance, the Sombor energy [11], and Wiener-Hosoya energy
[12] of T’ Doy -

Furthermore, in 1989, Schults discussed the adjacency distance ma-
trix of a graph [I3], and then this discussion was extended to the gener-
alized adjacency distance matrix in 2023 [7]. In addition, Guo and Zhou
established some properties for the adjacency-distance spectral radius of
connected graphs [4]. Based on these previous results, this research fo-
cuses on the energy of I'p, corresponding to the adjacency-distance and
generalized adjacency-distance matrices.
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The details of this research methodology are as follows. First, we
need to construct the adjacency and distance matrices of I'p, , then the
adjacency-distance and generalized adjacency-distance matrices can be
determined. The next method consists of formulating the characteristic
polynomial of the respective matrices, finding the eigenvalues and the
spectrum of the respective matrix, observing the spectral radius, and
analyzing the energies. We also investigate the relationship between the
spectral radius and the energies of the respective matrices.

2. Preliminaries

In this section, we recall some required basic notations and definitions
that play a very important role throughout this manuscript.

Let Dy, = (a,b:a" =0 =¢e,bab=a"') 2], G; = {a' : 1 < i <
n}\Z (Da,) and Gy = {a’b: 1 <i < n}. Let dp, be the distance between
vertex v, and v,. The next theorem describes the distance of every pair
of vertices in I'p,, .

THEOREM 2.1. [10] If v,, v, are two distinct vertices in I'p,, , then

|2, ifu,v, € Gy
(1) for odd n, d,, = { 1 otherwise, and
2, ifv,v, € Gy
(2) for even n, dpg = 2, v, € Ga,v, € {a2Tb}
1, otherwise.
Moreover, the distance matrix of I'p,, is given by D(I'p,,) = [dp]-

Let A(I'p,,) be the adjacency matrix of I'p, . The definitions of the
adjacency-distance and generalized adjacency-distance matrices are pre-
sented below.

DEFINITION 2.1. [13] The adjacency-distance (AD) matrix of I'p,,
1s

AD(FDQn) = A(FDQn) _'_ D(FDQH)'

DEFINITION 2.2. [7] The generalized adjacency-distance (GAD) of
FD2n 1s

GAD(Tp,,) = (1 —a)A(lp,,) +aD(Tp,,).
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We know that the center of Ds, is either Z (Ds,) = {e} for n is
odd, or {e,a%} for n is even. Then I'p, has 2n — 1 vertices for odd
n, and when n is even, there are 2n — 2 vertices. The characteristic
polynomial of AD(I'p,,) is denoted by Paprp, )(A). It is defined as
|A2,—1 — AD(T'p,, )| for odd n and |Als, o — AD(I'p,, )| for even n. For
formulating Pap(rp, )(), the following result is very helpful in simplify-
ing the process.

LEMMA 2.1. [9] If a,b,c and d are real numbers, then the determi-
nant of the (ny + ng) X (ny 4+ ny) matrix of the form

A+ a)l,, —ady,, —Jny xny
VS W A

can be simplified in an expression as
A+ a)" A+ )" (A= (n = 1) a) (A = (n2 — 1)b) — minacd)
where 1 < ni,ny < n and ny + ny = n.

If the above lemma is not suitable for the obtained matrices, then we
need to apply row and column operations. We define R; and C; as the
i-th row and column of the matrix, respectively. Then we have R; and
C; as the new i-th row and column provided from the respective row and
column operations.

Furthermore, the roots Pap(rp, )(A) = 0 are the eigenvalues of AD(I'p,,)
and denoted by Ai, Ag, ..., Ap. The AD—spectral radius of I'p,, [6] is

PAD(FDQ,L) = max{\)\| A E SPGCAD(FD%). (1)

The spectrum of I'p,, is

Specap(Tp,, ) = {(Al)’“ o), (Am)k”} . 2)

Therefore, the AD—energy of I'p, [0] is defined as follows:

Eap(Tp,,) = Z RYE (3)

The above notations also apply to GAD(T'p,, ).
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3. Adjacency-distance energy

This part is devoted to discussing fundamental spectral properties
related to the adjacency-distance matrix of I'p, .

THEOREM 3.1.  The characteristic polynomial of I'p, —associated
with the adjacency-distance matrix is

(1) for n is odd:
Paprp, y(A) = (A+2)*""* (A2 = 2(2n — 3)A = 8(n — 1)) ,
(2) for n is even:

Paprp, y(A) = (A+2)2"72 (A2 — 4(n — 2)A — 4(2n — 3)) .

Proof (1) Suppose n is odd, so by Theorem (1), we can
determine the distance matrix of I'p, . Thus, from Definition
2.1l AD(Tp,,) is as the following:

AD(FDzn) = A(FDzn) + D<FD2n)

O ... 01 ... 1 o ... 21 ... 1
o 01 200 1
|1 10 1 1 1 0 . 1

] 1 0] |1 11 .0

0 .22 i
12 02 .2
12 .20 2

2 .22 .0
_ | 2( = Dn-1 2Jn-1)xn

2J(n-1)xn 2(J=1), |-

PAD(FD2n)()\) is given below:
Paprp, )(A) =[Aap-1 — AD(I'p,, )|

_ (>\ + 2)In—l - 2Jn—l _2J(n71)><n
| 2y A2, —2J, |
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According to LemmaR.J]witha =b=c=d=2,n;, =n—1, and
no = n, then we obtain the formula of PAD(FD%)()\) as follows:

Paprp, y(A) = (A+2)"72 (A —2(2n = 3)A = 8(n — 1)) .
(2) Presume that n is even. In that case, we can construct AD(I'p,,)
by Theorem (2) and Definition Consequently, we have

(2n — 2) x (2n — 2) matrix as given below.

AD(FDzn) = A(FDzn) + D(FD2n)

(0...01...11...1] Jo...21...11...1]
0...01...11...1 2...01...11...1
1...10...10...1 1...10...12...1
i B S PR (e m IS PR S
1...11...01...0 1...11...01...2
1...10...10...1 1...12...10...1
1...11...01...0 1...11...21...0

[0 22 ... 22 2]

2 Oé 2 2 2

2 20 2 2 2

2 2 2 .62 2

2 2 2 .20 2

5 2222 0]

It consists of four block matrices and can be written as follows:

2(<]_ I)n—2 2<](n—2)><n

AD(Le) = 2Jpx(n-gy  2(J =1, |



ADJACENCY-DISTANCE AND ... 427

Pap(rp, )(A) is given below:
Pap(rp, )(A) = [Man—s — AD(I'p,, )|

<>\ + Q)In—Q - 2Jn—2 _2<](n—2)><n
2 () A+2)1, —2J, |

By Lemma 2.1l witha =b=c=d =2, ny =n — 2, and ny = n,
we then obtain

Paprp, y(A) = (A+2)°2 (X — 4(n — 2)A — 4(2n — 3)) .

THEOREM 3.2. The AD—spectral radius for I'p,  is:

(1) for n is odd: pap(I'p,,) = 4(n —1),
(2) for n is even: pap(I'p,,) = 2(2n — 3).

Proof. (1) Let n is odd. By the result of Theorem (1), we
can provide the eigenvalues of I'p, . They are A\; = —2 of multi-
plicity 2(n—1) and Ay = 4(n—1) of multiplicity 1. Consequently,
we have the spectrum of I'g and so

Specan(Toy,) = {(4(n = 1)", (=2}
The spectral radius of I'p, is
pap(I'p,,) = max{[4(n —1)[,[=2[} = 4(n = 1).

(2) In the same way for the even n case, since Theorem (2) pro-
vides the characteristic polynomial of I'p, , we have two eigenval-
ues, which are A\; = —2 of multiplicity 2n — 3, and Ay = 2(2n — 3)
of multiplicity 1. Hence, the spectrum of I'p, as the following:

Specap(Tp,,) = {(2(2n — 3))', (=2)*" "},
and so

pap(T'p,,) = max{[2(2n = 3)[,[=2]} = 2(2n - 3).

THEOREM 3.3. The AD—energy for I'p,, Iis:

(1) for n is odd: Eap(I'p,,) = 8(n —1),
(2) for n is even: Esp(I'p,,) = 4(2n — 3).
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Proof (1) We have observed the spectrum of I'p, for odd n
in Theorem (1). Thus, the AD—energy of I'p,, follows from
Equation ({3]),

Eap(Tp,,) = 2(n — 1) |=2| + (1) |4(n — 1)] = 8(n — 1).

(2) Since n is even, from Theorem (2), we see from Equation (3)
that the AD—energy of I'p, is given by

Eap(Tp.,) = (D]2(2n — 3)| + (2n — 3)| 2| = 4(2n — 3).

4. Generalized adjacency-distance energy

Several spectral properties of I'p, have been presented in this sec-
tion including the characteristic polynomial, spectral radius, spectrum,
and energy of I'p, corresponding to the generalized adjacency-distance
matrix.

THEOREM 4.1. The characteristic polynomial of I'p, —associated
with the generalized adjacency-distance matrix is:

(1) for n is odd:

Paaprp, )(A) = (A + 20)"2(\ + 1)
(X = (n—1+2a(n —2)A— (n — 1)(n — 2a(n — 2)),

(2) for n is even:

3n—6

PGAD(FDQH)()\) = ()\ + 20[) 2 ()\ — 20+ 2)%71
(A = (n—2)2a+ DA+ 2a(n —3)(2a +n —2) —n(n —2)).
Proof. (1) Assume that n is odd. The distance matrix of I'p,,

follows by Theorem [2.1| (1). We observe from Definition [2.2| that
GAD(T'p,,) is as the following:
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GAD(Tp,,) = (1 —a)A(Tp,,) +aD(Tp,,)

"0 ... 0 1 ... 17 "0 ... 2 1 ... 17
_(17)0.01.1+2 0 1 1
- Y1110 .1 X1 10 1

111 0 | 1 11 0 |

-0 2 1 17
12 ... 0 1 1
|1 1 0 1
1 ... 1 1 ... 0|

_ { 2a(J = Dn-1 Jn-1)xn }
J(n—l)xn (J_ I)n .

Hence, we can write Poap(rp, y(A) as given below:

Peap(rp,,)(A) =[Aon—1 — GAD(I'p,, )|

_ ()\ + 2CV)In—l - 20&]”_1 _J(nfl)xn
N _Jnx(nfl) ()\ + 1)[71 - Jn

According to Lemma 2. with a =20, b=c=d=1,n; =n—1,
and ny = n, then the formula of PGAD(FD%)()\) is

Peap(rp,,)(\) = (A +20)" (A +1)"
(>\2 —(n—=14+2a(n—-2)A—(n—1)(n—2a(n — 2)) '

(2) Now for the even n case, the combination of Theorem and
Definition gives us the GAD(I'p,,) with the size (2n — 2) x
(272, - 2)7

GAD(Tp,,) =(1 —a)A(Tp,,) + aD(Tp, )
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[0...01...11...1] [0...21...11...1]
0...01...11...1 2...01...11...1
1...10...10...1 1...10...12...1
=(l—a) [t it ba b
1...11...01...0 1...11...01...2
1...10...10...1 1...12...10...1
(1...11...01...0] (1...11...21...0]
[0 20 1 1 1 1 ]
20 0 1 1 1 1
1 1 0 1 2« 1
1 1 1 0 1 20
1 1 2a . 1 0 1
|1 1 1 ... 2« 1 0 |

The above matrix can be written as the partition of nine block
matrices as presented below:

20(J — 1) Jn-2)x 2 Jn-2)x 2
GAD(FD%) = J%X(nfg) (J — I)g (QOz - 1)[% + J%
J%X(nfg) (20[—1)[%—1—(]% (J—I)%

Consequently, Pg AD(FD%)(A) is given below:

()\ + QQ)]n—Q - 2a/<]n—2 _J(an)X% _J(an)X%
—J%X(n_g) ()\ + 1) f% — J% (1 — 20()[% — J%
—J%X(n_g) —(1—204)Ig —J% ()\—|—1) ]g —J%

To solve this determinant, we need to apply the row and col-
umn operations. First step is replacing R,_o12; by R
= Rpoynyi — Ruoy, for every 1 < ¢ < 2
Paaprp, )(A) as the following:

n—2+5+i
Then we see

v
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()\ + 205)]71—2 - 205<]n—2 _J(n—2)><% _J(n—Q)X%
—ng(n_g) A+ 1) Ig —Jg (1—204)[% —J%
O%x(an) —(/\—FQCV)[% ()\‘FQCY) I%

/

The next step is replacing C,_o; by C,_o; = Ch_oyy
+Ch—21 14, for every 1 <i < 2, then PGAD(FD%)()\) is

(>\ + 2a>]n—2 —2ad, _2J(n72)><% _J(n72)><%
_J%x(an) (A —2a+2) ]g —QJ% (1—2(1)1% —J%
O%X(an) O% ()\ + QOz) Ig

Now, we consider the following steps:

(a) Replace Ry, 11+ by R;_Hi = R, 14 — R,_1, for every 1 <
(b) Replace C,_1 by C | = Cry +Cr 4+ Cryy + ... + Cr-gyn,
(¢) Replace C; by C; = C; — Cp_g, forall 1 <i <n —3,

(d) Replace R, o by R, s =R, o+ R+ Ry + ...+ R, _3,

then we see PGAD(FDZH)O‘) as follows:

A+2a)]—3 —20)m-3x1  —nJm-3)x1 —QI(n73)X(%71> —Jn-3)x1 _J(n—:i)x(%—l)
Oix(n-3) A—2a(n—3) -n 72J1x(%71) -1 7J1><(%71)
O1x(n-3) -1 A—2a—n+2 72]“((%71) —2a 7.]”(%71)

O 1)ensy  O(z-1)t O 1y (A=20+203 1 20— 1)y ). (1-20)15
01x(n—3) 0 0 le(gq) A+ 2a le(%71

Og-x-n Og-npa Og-1)a 051 Og-ipa (2000

PGAD(FD%)()\) can be written as:

3n—6

Poaprp, y(A) = (A+2a) 7 (A —2a + 2)5-1
(A2 —(n—2)2a + DA +2a(n —3)(2a +n —2) —n(n — 2)).

THEOREM 4.2. The GAD—spectral radius for I'p,, is:
(1) for n is odd:
peap(Tp,.) = a(n—2) + 1 (n 14 /(n—1—2a(n—2)2+ dn(n — 1)) ,

(2) for n is even:
n—2)(2a+1)++/(n—2)2(2a+1)2—8a(n—3)(2a—n—2)+4n(n—2
pean(Tn,, ) = (n—2)( )+4/ (n—2)2( )2 (n—=3)( )+4n( )‘
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Proof (1) We consider the odd n case. The eigenvalues of
GAD(T'p,,) follows by Theorem [1.1](1). Thus, we have \; = —2a«
of multiplicity n — 2, Ay = —1 of multiplicity n — 1, and 34 =
aln —2) + 21 + \/(n_1_2a(n;2))2+4n(n_1) each of multiplicity 1.
Hence, the spectrum of I'p, as the following:

Specaap(Tp,,) =

(oo

1
<a(n—2)—|—; (n—l— \/(n—1—2a(n—2))2+4n(n—1))> ,
(~1)" 7 (~20)"
From Equation (), the spectral radius of I'p,, is

pGAD(FD2n) = maX{|>‘1| ) |>‘2| ) |>‘3| ) |>‘4|} =

a(n—2)+%(n—1+\/(n—1—2a(n—2))2+4n(n—1)).

—_

1

[\]

Y

(n—1+%(n—1—2a<n—2>)2+4”(”_1>>>

(2) When n is even, we see that I'p, has four eigenvalues which by
Theorem (2). Consequently, we get A\; = —2a of multiplicity
3"2_6, A2 = 2(a — 1) of multiplicity § — 1, and

N34 =

(n—2)2a+1) £ /(n —2)2(2a + 1)2 — 8a(n — 3)(2a —n — 2) + 4n(n — 2)
2 Y

each of multiplicity 1. Hence, by Equation , the spectrum of
I'p,, as the following:

Speccgap('p,,) =

{((n— 220+ 1)+ /(n—2)2(2a + 1)2 —8a(n —3)(2a —n—2) +dn(n—2)\
2 7

2

)

((n —2)2a+1) — /(n - 2)?Q2a + 1) — 8a(n — 3)(2a — n — 2) + 4n(n — 2))1

2(a—1)F", (~20) 7" } .

By the same argument following Equation , the spectral ra-
dius of I'p,, is:
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pGAD(FDzn) = max{|/\1| ) |/\2| ) |/\3| ) |/\4|} —
(n—2)(2a—|—1)+\/(n—2)2(2a+1)2—8a(n—3)(2a—n—2)+4n(n—2)
2

O
THEOREM 4.3. The GAD—energy for I'p,, is:
(1) for n is odd:

Egap(Tp,,) =2a(n —2) +n—1++/(n—1—2a(n —2))2 +4n(n — 1),
(2) for n is even:

EGAD(FDgn) = (n - 2)(2@ + 1)—|—

V(n—2)22a+1)2 —8a(n — 3)(2a —n — 2) +4n(n — 2).

Proof. (1) We consider the first case when n is odd. The
AD—energy of I'p, follows by Theorem (1) and Equation
(3) as follows:

Egap(Tp,,) = (n—1)|-1] + (n — 2) |—2a| +

n—1,+y/(n—1-2a(n—2))%+4n(n—1)
2 + 2

a(n —2) +

=2a(n—2)+n—14++/(n—1—-2a(n—2))2+4n(n —1).

(2) For even n, by the same argument, by Theorem 4.2 (2) and Equa-
tion (3), then the GAD—energy of I'p,, is

Foan(Tp,.) = (5 —1) [2(a— 1) + <3”2_ 6) —20] +

(n—2)(20+1)£4/(n—2)2(2a+1)2—8a(n—3)(2a—n—2)+4n(n—2)
2

= (n—2)(2a+1) + /(n — 2)2(2a + 1)2 — 8a(n — 3)(2a — n — 2) + 4n(n — 2).
O

5. Discussion
In this part, we consider the discussion based on the results of The-

orems [3.2] 3.3} 4.2 and [£.3]

COROLLARY 5.1. InTp, ,

Eap(Tp,,) is always an even integer.
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COROLLARY 5.2. InTp, ,

Egap(Tp,,) is never an odd integer.

The above corollaries restate the well-known fact from [3] and [§].
Moreover, we also highlight the interesting relationship between energy
and spectral radius.

COROLLARY 5.3. InTp, ,

Exp(Tp,,) =2 pap(T'p,,),

We recall the obtained energies in Theorems [3.3] and [4.3| and we ob-
tain the link between the adjacency-distance and generalized adjacency-
distance energies of I'p, as given below:

COROLLARY 5.4. For a € [0,1],
Eap(I'p,,) > Ecap(I'p,,)-
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