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Abstract

In this research, we present a finite difference scheme (FDS) aimed
at exploring the linear time and space fractional advection equation. To
approximate the fractional derivatives, we utilize the fractional Taylor
series for w(x,t) at t; and x;. Our primary focus lies in constructing a
numerical scheme (NS) for the mathematical model. Following this, we
delve into an examination of the stability and convergence of our NS.
Ultimately, we conduct numerical simulations of the fractional advection
equation using the FDM across different fractional parameter values.
The outcomes of these simulations demonstrate satisfactory convergence,
thereby confirming the efficacy of the proposed algorithm.
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1. Introduction

The variable-order time fractional semi-linear diffusion equation is a
partial differential equation that combines elements of fractional calculus
operators, diffusion, and nonlinearity. It is expressed in terms of a time
fractional derivative with a variable order, a diffusion term, and a semi-
linear term. The equation typically takes the form

0@y (.t O (x,t
ata—(;t)):D(x)#)Jrf(%tu)’ (1)

where u (x,t) is the unknown function representing the quantity being
diffused, D (x) is the diffusion coefficient and f (x,t,u) is a semi-linear
term, often involving u and its derivatives.

This equation describes the evolution of a quantity v over time and
space, where the diffusion process is influenced by a fractional deriva-
tive of variable order and is subject to a semi-linear forcing term. The
variable-order « (z,t) aspect allows for flexibility in modeling systems
with complex dynamics where the diffusion behavior may vary with both
time and space.
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2. The problem

Consider the variable order time fractional semi-linear diffusion equa-
tion
0@y (1) 0*u (z,t)
ey —o@t) 5+ f(u), (2)
O<z<L, 0<t<T, 0<al(xt)<]1,

with the initial condition

u(z,0)=g(x), (3)

and boundary conditions

w(0,t) =u(Ly,t). (4)
3. Discretization

Let [0, L] be the domain of interest, first we discretize this domain.
To do this, let us define z; = ih, where 0 < i < M, Mh = L, t; = jk,
0 <j <N, Nkt =T, where h is the space step length and k£ is time
step size. Suppose that uj be the numerical approximation of u(z;,t;),
ful)=f (u(xl, 7)) where f/ is the numerical approximation of f (z;,t;),

a(x;,t;) =a] and u(x;,0) = g,.

4. Development of the scheme

There exist different approaches to define the Caputo fractional order
derivative. For simplification, we consider the interval [0, ¢]

9@y (1) _{ - Mt) s tuiﬁéwdf’ if 0<al(zt)<l, )

oot u (x,t), if a(xt)=1.

The first-order and second spatial derivatives can be approximated by
the following expressions

ou\' Tt Wt !
e i AR
( at)i Ak (6)

and

@QU(x,t) J+l B uz;l—ll — ]+1 +u ]+1 AR ™
Ox? B h2

%
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We discretize the variable-order time fractional derivative

St
8a($l i+l u(a?i,tj+1)

as follows:
6ta<xi,t]-+1
9 (@istir1)y, (i, tj41) _ 1 /tj+1 ug (14,§)
ata(zz 1+1) ( — (l’z, t]+1)) 0 (tj+1 - f)&(mhtﬂ—l)
J (s+1)k
e(2,€)
— d§
(1 — o (i, tj41)) ;/sk 41— )a sty
s+1)

ﬁ

(t
_ ! R d¢
- T — o, ty4)) Z/sk ( 5) tjpr — &) mitiny)

_ 1 J uf-‘rl ;9 1 /(] s+1)k d77
P(l — (LUZ‘, tj+1)) k ¢

istj
pr i—s)k 7704(3” j+1)

kjfa(xi,tj+1) |: i1 ; J ' ) ' .
= (A E ug_"+ - ug_n_
L2 —a(z,tjn)) — ( )

o (®)

where n =t;1; —&.

Then, we have

9al@ititi)y, (-’Eu tj—H) L—a(@itit1)
dtalwiti) - D2 —a(wtin))
J
SRR ED S Catertaay
n=1
x [(n—i— 1)1—a(~’vi7tj+1) _ nl—a(wiijﬂ)} ] ) (9)

Now, using and , we obtain the following approximate scheme:
8]4—1 ]+1 _'_ (1 +292]+1) ug-‘rl 934—1 _]+1 h20]+1f( j+1) (10)

_ UZ _ Z (ug—n—‘rl _ ug—n—l) ¢g’+1 (n),
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with the initial condition

ud = g;, (11)
and the boundary conditions
w' = uy ! =yl (12)

where

o v
—odt 1—a§+1

gt = afk:o‘gﬂhQF(Q - af“) and ¢/ (n) = (n+ 1) —n
5. Stability of the approximate scheme

In this section, we utilize Fourier analysis to investigate the stability
of the approximate scheme @—. We define the following function:

, W, if oz <ax<u, 1=1,...,M —1,
W)= {0 Y BTy (13
0, otherwise.
The function «’ (z) possesses a Fourier series expansion:
~+00 )
1 TP 4 .
w(x) = ij(p)eL ,j=0,...,N, (14)
p=—00

where ¢ (p) = %fOL wi (z) e~ i"*dz, and here we denote ul = &erfhi
such that p? = —1.

THEOREM 5.1.  The implicit finite difference scheme @Df ex-
hibits unconditional stability within the range 0 < « (x,t) <1 if a posi-
tive constant C' exists, satisfying

61 < Cléol, j=1,...,N. (15)

P r o of We can describe the error function by
eg = uf — Tf (16)
Now, we start to calculate the error ez , by replacing in @D, then
we obtain

J+1 _j+1 J+1\ _7+1 Jj+1_j+1
J

— h20I" (f (™)~ f (r{“)) =el =Y (el =) ¢l (n),
" (17)
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therefore,

&1 =
P2 (f () = (7)) 46 = SIS (Gen — &) 0l (= 9)

1+ 467" sin? (eh)]

2

Now, we assume that f is Lipshitz function, i.e. there is a positive
constant K such that

@) =1 (1)

We use to proof by recurrence for j = 0, to have

R2OL(f (ub) = £ (1)) + &0
14 46} sin (eh)

< Ky|udt — it (18)

IS

K1h291§ e,u@hz’ +€
1 4 46} sin (eh)

| K1h20} E1eoM | + 1€

T |1+ 46} sin® (2)]
K1h?10]] 6] + |€ol

= |14 46} sin® (2)]

IN

(19)

then

6] < |1+491sm (Gh)|
UL+ 46] sin? (D] - K, b2 |6
1+ 4 |af| ko h? ol o
= |1+ 46! sin® ()] — Kih?|6}]
= CO |€0| ) (22)
the constant Cy is non-negative, where
o] < — ! |
k4T (2 — o)) (Kih? —4)
We assume that the statement is true:

[€ol (20)

(23)




STUDY THE STABILITY OF THE ... 277

and then we prove that the statement is also true
|§j+1| SCj-i-l |§0|7 j:Oa7N_1 (25)
First, we have

€] =

P (f (W) = (7)) 46 = SIS (€en — &) 0l (5= 9)
1+ 467+ sin” (2)
B R R A R SIS (€)1 (G-9)
B |1+ 467" sin? (2)]
K2 |07 [l = ]+ 1]+ | D10 €t —
N |1 +493+1 sin? (%)‘
_ K20 160] + 2141

. 26
‘1 + 49{“ sin? (%h)| (26)
< K1h2|95+1| ‘€j+1’+20j |€0‘ (27)
J+1 . 2 (0h ’
|1—i—49i sin (7)’
and we can conclude that
20
‘£j+1’ < K1h§|03+1‘ ‘€0| (28)
[0 sin? ()]
+oo 2 |pgi+l ¢
K% |07 )
=2C; | 1+ T ol » (29)
5 (e
K1h2|07"| .
where a0 ‘12(%” < 1 and ¢ = +o00, and we can obtain
B Sin o
&1 < Cigr |60l (30)

as result. The approximate scheme is unconditionally stable. O

6. Test problem and numerical experiments

In this section, we present numerical results for several values of «
for solving variable-order time fractional semi-linear diffusion equation.
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Two examples are given. The numerical results reveal that differential
finite difference method is very efficient and accurate.

Example 1.

We consider the variable order time fractional semi-linear diffusion
equation f described by

807;;07102(:1?@(;0, t) = sin (m2t) Uy + HLu’ 0<z<1l,0<t<?2,
(31)
with the initial condition
u(x,0) =e “sin(x), (32)
and boundary conditions
u(0,t) =u(l,t) =0. (33)

Then, we obtain the following approximate scheme for equation (|2))—
(1):
R (R e A Y
14+
J

_ Uf _ Z (ug—nﬂ _ ug—n—l) ¢g+1 (n),

with the initial Conditior:b 1
u) = e “isin(z;), i=0,...,M, (35)
and the boundary conditions
wt = T =4, j=0,...,N, (36)
where:
93+1 _

0.01 (0.02) 705 cos@ili) (1 25 4 0.5 cos (2it;41)) sin (wxitj41),  (37)
i=0,...,M, j=0,...,N,
and
¢g+1 (n) _ (n 4 1)0.25—0A5cos(zitj+1) _ 0-25-0.5cos(xitj41) (38)

According to Theorem and the figures below, the approximate
scheme — is unconditionally stable.
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. . ) . ) Figure 2.  Numerical solution of the system (34) (38) where
Figurel.  Numerical solution of the system (34)-(38) where O<x<l.5and 0<t<2

0<x<l and 0<t<2

Figure4.  Numerical solution of the system (34) (38) where

Figure3. Numerical solution of the system (34)-(38) where 0<x<2.5 and D<t<2

0<x<2 and 0<t<2
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