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Abstract

In this paper, we derive expressions for the bounds of the eigenvalues
of real symmetric matrices. We use symmetric projection operators and
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also consider situations when some of the eigenvalues may be known.
These bounds are based on the trace of the matrix and its Frobenius
norm. They are relatively easy and inexpensive to compute.
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1. Introduction

The knowledge of the eigenvalue distribution of a matrix A is crucial
in almost all branches of science and engineering. For real symmetric
matrices, this distribution is limited to R. Some recent applications
have been to search engines [5] and the crypto correlation matrix [3],
which assists in the creation of a crypto portfolio. The eigenvectors form
a canonical basis in which the associated linear operator is easily rep-
resented. The conditioning of a symmetric linear system depends on

the ration |λn|
|λ1| , λn is the eigenvalue of largest absolute magnitude and

λ1 is the eigenvalue of least absolute magnitude. Usually the accurate
location of the eigenvalues is synonymous with the computation of the
associated eigenvectors. For large dense matrices, such computation is
greatly facilitated by the location of the spectrum σ(A). Some simple,
yet effective methods, based on matrix entries are the Gerschgorin disks
and ovals of Cassini [2]. The power methods and its variants, together
with th Rayleigh quotient [6] can locate the dominant eigenpairs effec-
tively. Bounds based on only the traces of the matrix and the traces
of its powers, have been studied in great details, [8, 9, 10, 11]. Here
we generalize the trace bounds to cases where few eigenvalues may be
known, and show how the remainder of the spectrum may be bounded.
Our approach makes uses of projection operators and we illustrate its
effect with few examples.

2. Theory

Let λ = (λσi
), i = 1, 2, · · · , n be the eigenvalues of a real symmetric

matrix A, where σi ∈ Sn = {1, 2, · · · , n}. Also let Sk = {1, 2, · · · , k},
Skr = Sk ∪ {r}, where r ∈ Sn−k = Sn − Sk and Sr

n−k−1 = Sn−k − {r}.

Lemma 2.1. Let σi ̸= σj, i ̸= j and choose k and r ∈ Sn−k. Let
eσi

denote the standard basis vector in Rn, with 1 in the σith position.
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Define P ∈ Rn×n by

P = I−
∑
i∈Skr

eσi
etσi

− 1

n− k − 1

∑
i∈Sr

n-k-1

∑
j∈Sr

n-k-1

eσi
etσj

. (1)

Then the following is true:

(a) P is idempotent and symmetric

(b) rank (P) = n− k − 2

(c) an orthonormal basis for the nullspace N(P) is given by

{
{eσi

}i∈Skr
,

1√
n− k − 1

∑
i∈Sr

n-k-1

eσi

}
(2)

(d) Rn = R(P)⊕N(P) is an orthogonal decomposition of Rn, where
R(P) denotes the range of P.

P r o o f.

(a) The symmetry part is obvious. Let

Pk+1 =
∑
i∈Skr

eσi
etσi

=
∑
i∈Skr

Pσi
,

where Pσi
= eσi

etσi
and

Pn−k−1 =
1

n− k − 1

∑
i∈Sr

n-k-1

∑
j∈Sr

n-k-1

eσi
etσj

.
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Clearly Pσi
is a projector onto the eσi

axis. Furthermore, these
are orthogonal projectors. Now

P2
n−k−1

=
1

(n− k − 1)2

 ∑
i∈Sr

n-k-1

∑
j∈Sr

n-k-1

eσi
etσj

2

=
1

(n− k − 1)2

∑
i∈Sr

n-k-1

∑
q∈Sn-k-1

∑
j∈Sr

n-k-1

∑
p∈Sr

n-k-1

eσi

(
etσj

eσp

)
etσq

=
1

(n− k − 1)2

∑
i∈Sr

n-k-1

∑
q∈Sr

n-k-1

eσi
etσq

∑
j∈Sr

n-k-1

(1)

=
1

(n− k − 1)

∑
i∈Sr

n-k-1

∑
q∈Sr

n-k-1

eσi
etσq

= Pn−k−1.

It is easily verified that Pσi
Pn−k−1 = Pσi

Pn−k−1 = 0. Thus{
{Pσi

}i∈Skr
,Pn−k−1

}
is a set of mutually orthogonal projectors,

and the sum of such projectors is again a projector.
(b)

rank (I) = rank

P+
∑
i∈Skr

Pσi
+Pn−k−1


≤ rank (P) +

∑
i∈Skr

rank(Pσi
) + rank(Pn−k−1).

Clearly Pσi
are rank one matrices. Since eσi

etσj
is the matrix with

one in the ijth position, it follows that∑n
i∈Smn-kı1

∑
j∈Sn-k-1

eσi
etσj

is the (n− k− 1)× (n− k− 1) matrix
of all ones, thus Pn−k−1 also has rank one. We therefore conclude
that rank(P) ≥ n− k − 2. Hence nullity(P) ≤ k + 2. However it
is easily shown that P annihilates the k + 2 independent vectors
in (2), which implies that P has rank n− k − 2.

(c) This is shown in (b).

(d) It follows from the elementary theory of projections that Rn =
R(P)⊕N(P). This is an orthogonal decomposition as
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⟨Pz, y⟩ = ⟨z, Py⟩ = 0, where Pz ∈ R(P) and y ∈ N(P). Here
⟨., .⟩ denotes the standard inner product on Rn.

2

Definition 2.1. Denote by Sk
λ = {λσ1 , λσ2 , · · ·λσk

} the the set of
k known eigenvalues of A and Sn−k

λ = σ(A) − Sk
λ, the set of unknown

eigenvalues.

Lemma 2.2. Let mn−k denote the average of the set Sn−k
λ and vn−k

denote the variance and choose r ∈ Sn−k, then

|λσr −mn−k| ≤ vn−k

√
n− k − 1. (3)

P r o o f. Firstly, it is clear that

mn−k =
trace(A)−

∑
i∈Sk

λσi

n− k
, (4)

by definition. Let λn−k = [λσk+1
, λσk+2

, · · · , λσn ] and
en−k = [1, 1, · · · , 1] be the vector of length n− k, then

v2n−k =
1

n− k
⟨λn−k −mn−ke

n−k,λn−k −mn−ke
n−k⟩

=
⟨λn−k,λn−k⟩

n− k
− 2mn−k

⟨λn−k, en−k⟩
n− k

+m2
n−k

⟨en−k, en−k⟩
n− k

=
tr(A2)−

∑
i∈Sk

λ2
σi

n− k
−m2

n−k. (5)

From the Pythagorean theorem [7] in an inner product space we have

∥λ∥22 = ∥Pλ∥22 + ∥(I−P)λ∥22
≥ ∥(I−P)λ∥22
= ∥Pk+1λ+Pn−k−1λ∥22
= ∥Pk+1λ∥22 + ∥Pn−k−1λ∥22. (6)

Now

Pk+1λ =
∑
i∈Skr

Pσi
λ

=
∑
i∈Skr

⟨λ, eσi
⟩eσi

,
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thus

∥Pk+1λ∥22 =
∑
i∈Skr

λ2
σi
. (7)

Also

Pn−k−1λ =
1

n− k − 1

∑
i∈Sr

n-k-1

∑
j∈Sn-k-1

⟨λ, eσj
⟩eσi

=
1

n− k − 1

∑
j∈Sr

n-k-1

λσj

∑
i∈Sr

n-k-1

eσi
,

thus

∥Pn−k−1λ∥22 =
1

(n− k − 1)2

( ∑
j∈Sr

n-k-1

λσj

)2∥∥∥∥ ∑
i∈Sr

n-k-1

eσi

∥∥∥∥2
2

. (8)

=
1

n− k − 1

( ∑
j∈Sr

n-k-1

λσj

)2

. (9)

Using (7) and (9) in (6) results in∑
i∈Sn

λ2
σi

≥
∑
i∈Skr

λ2
σi
+

1

n− k − 1

( ∑
i∈Sn-k-1

λσi

)2

tr(A2)−
∑
i∈Sk

λ2
σi

≥ λ2
σr

+
1

n− k − 1

(
tr(A)−

∑
i∈Sk

λσi
− λσr

)2

. (10)

It follows that

(n− k − 1)

(
tr(A2)−

∑
i∈Sk

λ2
σi

)
≥ (n− k)λ2

σr
− 2λσr

(
tr(A)−

∑
i∈Sk

λσi

)

+

(
tr(A)−

∑
i∈Sk

λσi

)2

. (11)
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Thus, we get

n− k − 1

n− k

(
tr(A2)−

∑
i∈Sk

λ2
σi

)

≥ λ2
σr

− 2λσr

(
tr(A)−

∑
i∈Sk

λσi

n− k

)
+ (n− k)

(
tr(A)−

∑
i∈Sk

λσi

n− k

)2

= λ2
σr

− 2λσrmn−k + (n− k)m2
n−k

= (λσr −mn−k)
2 + (n− k − 1)m2

n−k, (12)

(λσr −mn−k)
2 ≤ (n− k − 1)

(
tr(A2)−

∑
i∈Sk

λ2
σi

n− k
−m2

n−k

)
. (13)

Taking the square root in (13) completes the proof. 2

Note that there is no need to evaluate A2 as it is equal to the Frobe-
nius norm ∥A∥2F .

Theorem 2.1. Let λσm = minSn−k
λ and λσM

= maxSn−k
λ . Upper

and lower bounds for λσM
and λσm are given by

λσM
≤ mn−k + vn−k

√
n− k − 1 (14)

λσm ≥ mn−k − vn−k

√
n− k − 1. (15)

P r o o f. Let r = M and r = m in Lemma 2.2. 2

Theorem 2.2. Lower and upper bounds for λσM
and λσm are given

by

λσM
≥ mn−k +

vn−k√
n− k − 1

(16)

λσm ≤ mn−k −
vn−k√

n− k − 1
. (17)
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P r o o f. We use the fact that for the set of real numbers Sn−k
λ , the

variance vn−k satisfies the inequality [1].

v2n−k ≤ [λσM
−mn−k][mn−k − λσm ]. (18)

We prove only (16) as (17) is proved similarly. From (18) and (15) we
have

λσM
≥ mn−k +

v2n−k

mn−k − λσm

≥ mn−k +
vn−k√

n− k − 1
.

2

When k = 0 in Theorem 2.1 and Theorem 2.2 we obtain the classic
result of Wolkowicz and Styan [11].

Lemma 2.3. Let Q be a symmetric orthogonal projector and u,v /∈
N(Q) then

|⟨Qu,v⟩| ≤ ⟨Qu,u⟩
1
2 ⟨Qv,v⟩

1
2 . (19)

P r o o f. Use the Cauchy-Schwarz inequality and the fact that Q is
a symmetric projector to get

|⟨Qu,v⟩| = |⟨Q2u,v⟩|
= |⟨Qu,Qv⟩|

≤ ⟨Qu,Qu⟩
1
2 ⟨Qv,Qv⟩

1
2

= ⟨Qu,u⟩
1
2 ⟨Qv,v⟩

1
2 . (20)

2

Lemma 2.4. Choose λσp , λσq ∈ Sn−k
λ , p ̸= q then

|λσq −mp
n−k−1| ≤

√
n− k − 2

[
tr(A2)−

∑
i∈Sk

λ2
σi

n− k − 1
− (mp

n−k−1)
2

] 1
2

,

(21)

where

mp
n−k−1 =

trace(A)−
∑

i∈Sk
λσi

− λσp

n− k − 1
.
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P r o o f. Define the matrix Q of order n− k by

Q = I−
(en−k − en−k

σp
)(en−k − en−k

σp
)t

n− k − 1
. (22)

It is easily verified that Q is a symmetric orthogonal projector.

⟨Qλn−k, en−k
σq

⟩ = λσq −
1

n− k − 1

∑
i∈Sp

n-k-1

λσi

= λσq −
tr(A)−

∑
i∈Sk

λσi
− λσp

n− k − 1
= λσq −mp

n−k−1, (23)

⟨Qλn−k,λn−k⟩ =
∑

i∈Sn-k

λ2
σi
− 1

n− k − 1

(∑
i∈Sp

n-k-1

λσi

)2

= tr(A2)−
∑
i∈Sk

λ2
σi
−

(tr(A)−
∑

i∈Sk
λσi

− λσp)
2

n− k − 1

= tr(A2)−
∑
i∈Sk

λ2
σi
− (n− k − 1)(mp

n−k−1)
2, (24)

⟨Qen−k
σq

, en−k
σq

⟩ = 1− 1

n− k − 1

=
n− k − 2

n− k − 1
. (25)

Use Lemma 2.3 with u = λn−k and v = en−k
σq

to obtain the result. 2

Theorem 2.3.

λσm ≥ mM
n−k−1 −

√
n− k − 2

[
tr(A2)−

∑
i∈Sk

λ2
σi

n− k − 1
− (mM

n−k−1)
2

] 1
2

(26)

λσM
≤ mm

n−k−1 +
√
n− k − 2

[
tr(A2)−

∑
i∈Sk

λ2
σi

n− k − 1
− (mm

n−k−1)
2

] 1
2

.

(27)

P r o o f. Set q = m, p = M and q = M , p = m respectively in
Lemma 2.4 to obtain the result. 2
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3. Results

We shall consider three examples, all matrices are taken from [4]. For
ease of explanation we shall assume that σi = i and that the eigenvalues
are arranged in the order

λ1 ≤ λ2 ≤ · · ·λn−1 ≤ λn.

For all examples the eigenvalues are summarized in the first table. The
second table lists the bounds on the extreme eigenvalues from Sn−k

λ us-
ing equations (14)-(17). The third table lists the upper bound on the
maximum eigenvalue from Sn−k

λ , when additionally the minimal one is
known, as well as the minimum eigenvalue from Sn−k

λ when, additionally
the maximal one is known. Here we use equations (26)-(27).

Example 3.1.

A =


2 1 3 4
1 −3 1 5
3 1 6 −2
4 5 −2 −1



λ σ(A)

λ1 −8.028578
λ2 −1.573191
λ3 5.668864
λ4 7.932905

Table 1. σ(A)-Example 3.1

Example 3.2.

A =


5 4 3 2 1
4 6 0 4 3
3 0 7 6 5
2 4 6 8 7
1 3 5 7 9


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k Sk
λ Sn−k

λ Bounds

0 ∅ {λ1, · · · , λ4} λ1 ∈ [−9.885771,−2.628590]
λ4 ∈ [ 4.628590, 11.885771]

1 {λ1} {λ2, · · · , λ4} λ2 ∈ [−1.724177, 1.142674]
λ4 ∈ [ 6.876378, 9.743229]

1 {λ4} {λ1, · · · , λ3} λ1 ∈ [−9.223537,−5.267252]
λ3 ∈ [ 2.645316, 6.601600]

2 {λ1, λ4} {λ2, λ3} λ2 ∈ [−1.573191,−1.573191]
λ3 ∈ [ 5.668864, 5.668864]

Table 2. Bounds using (14)-(17)

k Sk
λ Sn−k

λ Known Bounds

0 ∅ {λ1, · · · , λ4} λ1 λ4 ≤ 12.718567
λ4 λ1 ≥ −11.536560

1 {λ1} {λ2, · · · , λ4} λ2 λ4 ≤ 8.388000
λ4 λ2 ≥ −4.628789

1 {λ4} {λ1, · · · , λ3} λ1 λ3 ≤ 8.781400
λ3 λ1 ≥ −9.947341

2 {λ1, λ4} {λ2, λ3} λ3 λ4 ≤ 5.668864
λ4 λ2 ≥ −1.573191

Table 3. Bounds using (26)-(27)

λ σ(A)

λ1 −1.096595
λ2 1.327046
λ3 4.848950
λ4 7.513724
λ5 22.406875

Table 4. σ(A)-Example3.2

Example 3.3.

A =


5 1 −2 0 −2 5
1 6 −3 2 0 6

−2 −3 8 −5 −6 0
0 2 −5 5 1 −2

−2 0 −6 1 6 −3
5 6 0 −2 −3 8


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k Sk
λ Sn−k

λ Bounds

0 ∅ {λ1, · · · , λ5} λ1 ∈ [−9.492423, 2.876894]
λ5 ∈ [ 11.123106, 23.492423]

1 {λ1} {λ2, · · · , λ5} λ2 ∈ [−4.887800, 4.386832]
λ5 ∈ [ 13.661465, 22.936098]

1 {λ5} {λ1, · · · , λ4} λ1 ∈ [−2.549432, 1.249044]
λ4 ∈ [ 5.047519, 8.845994]

2 {λ1, λ5} {λ2, · · · , λ4} λ2 ∈ [ 0.979951, 2.771595]
λ4 ∈ [ 6.354885, 8.146529]

Table 5. Bounds using (14)-(17)

k Sk
λ Sn−k

λ Known Bounds

0 ∅ {λ1, · · · , λ5} λ1 λ5 ≤ 22.968474
λ5 λ1 ≥ −17.075838

1 {λ1} {λ2, · · · , λ5} λ2 λ5 ≤ 22.569334
λ5 λ2 ≥ −14.079507

1 {λ5} {λ1, · · · , λ4} λ1 λ4 ≤ 8.256699
λ4 λ1 ≥ −5.346366

2 {λ1, λ5} {λ2, · · · , λ4} λ2 λ4 ≤ 7.810994
λ4 λ2 ≥ −2.509232

Table 6. Bounds using (26)-(27)

λ σ(A)

λ1 −1.598734
λ2 −1.598734
λ3 4.455990
λ4 4.455990
λ5 16.142745
λ6 16.142745

Table 7. σ(A)-Example3.3
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k Sk
λ Sn−k

λ Bounds

0 ∅ {λ1, · · · , λ6} λ1 ∈ [−10.132119, 3.040243]
λ6 ∈ [ 9.626424, 22.798785]

1 {λ1} {λ2, · · · , λ6} λ2 ∈ [ −6.217639, 4.385400]
λ6 ∈ [ 11.454093, 22.057133]

1 {λ6} {λ1, · · · , λ5} λ1 ∈ [ −8.585829, 1.132131]
λ5 ∈ [ 7.610771, 17.328731]

2 {λ1, λ6} {λ2, · · · , λ5} λ2 ∈ [ −5.270745, 2.152417]
λ5 ∈ [ 9.575578, 16.998740]

Table 8. Bounds using (14)-(17)

k Sk
λ Sn−k

λ Known Bounds

0 ∅ {λ1, · · · , λ6} λ1 λ6 ≤ 22.129266
λ6 λ1 ≥ −15.028592

1 {λ1} {λ2, · · · , λ6} λ2 λ6 ≤ 20.514657
λ6 λ2 ≥ −12.008429

1 {λ6} {λ1, · · · , λ5} λ1 λ5 ≤ 17.084490
λ5 λ1 ≥ −13.502411

2 {λ1, λ6} {λ2, · · · , λ5} λ2 λ5 ≤ 16.251340
λ5 λ2 ≥ −11.346977

Table 9. Bounds using (26)-(27)

Example 3.4.

A =



7 6 5 4 3 2 1
6 6 5 4 3 2 1
5 5 5 4 3 2 1
4 4 4 4 3 2 1
3 3 3 3 3 2 1
2 2 2 2 2 2 1
1 1 1 1 1 1 1


The last two rows of Tables 2 and 3 give exact results as they are a

special case for which n − k = 2, mn−k = λ2+λ3

2
and vn−k = λ2−λ3

2
. For

all examples, we note that the second tables give very good bounds for
the minimum and maximum of the set Sn−k

λ . In fact these bounds are



70 P. Singh, S. Singh, V. Singh

λ σ(A)

λ1 0.261295
λ2 0.299557
λ3 0.381966
λ4 0.558365
λ5 1.000000
λ6 2.618034
λ7 22.880783

Table 10. σ(A)-Example3.4

k Sk
λ Sn−k

λ Bounds

0 ∅ {λ1, · · · , λ7} λ1 ∈ [−14.973666, 0.837722]
λ7 ∈ [ 7.162278, 22.973666]

1 {λ1} {λ2, · · · , λ7} λ2 ∈ [−13.718375, 0.954819]
λ7 ∈ [ 8.291416, 22.964610]

1 {λ7} {λ1, · · · , λ6} λ1 ∈ [ −0.995682, 0.483426]
λ6 ∈ [ 1.222980, 2.702088]

2 {λ1, λ7} {λ2, · · · , λ6} λ2 ∈ [ −0.744603, 0.542538]
λ6 ∈ [ 1.400631, 2.687772]

Table 11. Bounds using (14)-(17)

k Sk
λ Sn−k

λ Known Bounds

0 ∅ {λ1, · · · , λ7} λ1 λ7 ≤ 22.966161
λ7 λ1 ≥ −20.115668

1 {λ1} {λ2, · · · , λ7} λ2 λ7 ≤ 22.954377
λ7 λ2 ≥ −19.565442

1 {λ7} {λ1, · · · , λ6} λ1 λ6 ≤ 2.703612
λ6 λ1 ≥ −1.902861

2 {λ1, λ7} {λ2, · · · , λ6} λ2 λ5 ≤ 2.690438
λ6 λ2 ≥ −1.755287

Table 12. Bounds using (26)-(27)

tighter as the set Sk
λ increases in size. However the same is not true for

results from the third tables. Here as additionally the maximum of Sn−k
λ
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is known, results for the lower bound of the minimum of Sn−k
λ are rather

poor. However if additionally the the minimum of Sn−k
λ is known, then

the upper bound on its maximum is greatly improved. Thus formulae
(14),(17) and (27) are useful in this case. As there are innumerable
combinations for choosing the set Sk

λ, we have not investigated all. The
fundamental reason is that it is fairly well known that variants of the
power method can be used to calculate the maximum and minimum
eigenvalues of A. Having found the latter, the bounds from the second
tables for example may be used to great advantage to further calculate
the next two extreme eigenvalues of A, by say shifted power iteration.
This is useful especially for matrices of large dimensions.

4. Conclusion

We have provided relatively simple bounds for the extremal eigen-
values of real symmetric matrices. In the event that some eigenvalues
are known, we have shown how this information may be used to further
bound the extremal eigenvalues of the remaining unknown set. These re-
sults are useful for matrices of large dimensions, as they may be employed
a starting values, in various numerical schemes to determine accurately
the remaining eigenvalues of interest.
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