IJAM: Volume 38, No. 1 (2025)

DOI: 10.12732/ijam.v38i1.5

PROJECTIVE EIGENVALUE BOUNDS

 

P. Singh 1 , S. Singh 2, V. Singh 3

 

1 University of KwaZulu-Natal

Private Bag X54001, Durban, 4001

SOUTH AFRICA

2 University of South Africa

Department of Decision Sciences

PO Box 392 Pretoria, 0003

SOUTH AFRICA

3 University of KwaZulu-Natal

Private Bag X54001, Durban, 4001

SOUTH AFRICA

 

Abstract.  In this paper, we derive expressions for the bounds of the eigenvalues of real symmetric matrices. We use symmetric projection operators

and also consider situations when some of the eigenvalues may be known. These bounds are based on the trace of the matrix and its Frobenius norm.

They are relatively easy and inexpensive to compute.

 

Download paper from here

 

How to cite this paper?
DOI: 10.12732/ijam.v38i1.5
Source: 
International Journal of Applied Mathematics
ISSN printed version: 1311-1728
ISSN on-line version: 1314-8060
Year: 2025
Volume: 38
Issue: 1

References

[1] R. Bhatia, C. Davis, A better bound on the variance, Amer. Math. Monthly, 107 (2000), 353-357.

[2] A. Brauer, Limits for the characteristic roots of a matrix VII, Duke Math. J., 25 (1958), 583-590.

[3] H. Chaudhari, M. Crane, Cross-correlation dynamics and community structures of cryptocurrencies, Journal of Computational Science,
44 (2020).

[4] R.T. Gregory, D.L. Karney, A Collection of Matrices for Testing Computational Algorithms, Robert E. Krieger Publishing Company,
New York (1978).

[5] C. Gu, F. Xie, K. Zhang. A two-step matrix splitting iteration for computing the PageRank, Journal of Computational and Applied
Mathematics, 278 (2015), 19-28.

[6] R. Horn, C.A. Johnson, Matrix Analysis, Cambridge University Press, Cambridge (2012).

[7] E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley, Hoboken (1978).

[8] R. Sharma, R. Kumar, R. Saini, Note on bounds for eigenvalues using traces, arXiv:1409.0096v1, Functional Analysis (2014).

[9] P. Singh, V. Singh, S. Singh, New bounds for the maximal eigenvalues of positive definite matrices, International Journal of Applied
Mathematics, 35, No 5 (2022), 685-691; DOI:10.12732/ijam.v35i5.4.

[10] P. Singh, S. Singh, V. Singh, Results on bounds of the spectrum of positive definite matrices by projections, Aust. J. Math. Anal. Appl.
20, No 2 (2023), Art. 3, 10 pp.

[11] H. Wolkowicz, G.P.H. Styan, Bounds for eigenvalues using traces, Linear Algebra Appl., 29 (1980), 471-506.

 

·                IJAM

o                 Home

o                 Contents

o                 Editorial Board

 (c) 2025, Diogenes Co, Ltd.https://www.diogenes.bg/ijam/