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Abstract

We consider the uniform convexity of variable exponent Lebesgue spaces.
We establish that for all ε ∈ (0, 2) and all unit vectors u, v ∈ Lp(·) such

that ‖u− v‖Lp(·) ≥ ε we can take numbers δ (ε) = 1 −
(
1− ( ε2) pm

pm−1

) pS−1

pS if

1 < pm ≤ pS < 2 and δ (ε) = 1 − (1− ( ε2)pS) 1
pm if 2 ≤ pm ≤ pS < ∞ so that∥∥u+v

2

∥∥
Lp(·) ≤ 1 − δ (ε). A uniform convexity of variable Lebesgue space Lp(·)

is proven. Some correlations for functions describing uniform convexity and
uniform smoothness of Lp(·) spaces were established.
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1. Introduction (history and discussion)

In 1936, Jemes Clarkson introduced the notion of uniform convexity for
the norm of Banach spaces, [3]. From a geometrical point of view, uniform
convexity means: the center point of the cone base of the equable spherical
cone of the unit sphere of the Banach space lying inside its unit sphere and
can approach the surface of the sphere only if the radius of the cone base of
the spherical cone tends to zero. If we consider the central conic section of
the equable spherical cone, then the convexity condition can be reformulated
in terms of the plan geometry as follows: the midpoint of the diagonal of the
unit equilateral quadrilateral (rhombus) must be inside the point of the unit
circle and cannot approach the arc of the circle nisi the length of its diagonal
tends to be zero.

In 1940, R.P. Boas simplified the proof of the Jemes Clarkson results by
employing the Reisz convexity approach, [1]. In 1955 [5], Olof Hanner revisited
the J. Clarkson results and proved that inequality

(‖u‖Lp + ‖v‖Lp)
p + |‖u‖Lp − ‖v‖Lp |p ≤ ‖u+ v‖pLp

+ ‖u− v‖pLp ≤ 2
(‖u‖pLp + ‖v‖pLp

)
for p ∈ (1, 2), and

2
(‖u‖pLp + ‖v‖pLp

) ≤ ‖u+ v‖pLp

+ ‖u− v‖pLp ≤ (‖u‖Lp + ‖v‖Lp)
p + |‖u‖Lp − ‖v‖Lp |p

for p ∈ [2, ∞), where J. Clarkson denoted the norm of the real ‖u‖pLp the
function u : R → [0, 1] given by

‖u‖pLp =

∫
[0, 1]

|u (t)| dt.

In 1970 [6], K.O. Friedrichs rewrote J. Clarson’s inequality in the form∥∥∥∥u+ v

2

∥∥∥∥
p

Lp

+

∥∥∥∥u− v

2

∥∥∥∥
p

Lp

≤ max
{‖u‖pLp , ‖v‖pLp

}
for p ∈ [2, ∞) and for p ∈ (1, 2) K.O. Friedrichs wrote∥∥∥∥u+ v

2

∥∥∥∥
q

Lp

+

∥∥∥∥u− v

2

∥∥∥∥
q

Lp

≤ max
{‖u‖qLp , ‖v‖qLp

}
,

where q = p
p−1 . In 1990, J. Gao and K.S. Lau [17] introduced and studied

some functions describing the convexity and smoothness of Banach spaces. In
2006, H. Hanche-Olsen [10] using the Ball-Carlen-Lieb results (of 1994) [2]
further simplified the proof of uniform convexity of Lp, p ∈ (1, ∞) spaces. H.
Hanche-Olsen proved the converse statement: assume x and y are unit vectors
of Banach space X, and assume

‖x+ y‖ > 2− δ,
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we chose continuous linear functional ϕ ∈ X∗ with unit norm such that
Re (ϕ (x+ y)) > 2 − δ, then Re (ϕ (x)) > 1− δ and Re (ϕ (y)) > 1− δ, which
implies ‖x− y‖ < ε if positive number δ (ε) > 0 has been chosen according to
special “thin slices” restrictions. “Thin slices” restrictions demand: for any
ε ∈ (0, 2], there are some δ (ε) > 0 such that from ϕ ∈ X∗, ‖ϕ‖ = 1 follows
‖x− y‖ < ε for all

x, y ∈ {z ∈ X : ‖z‖ = 1 and Re (ϕ (z)) > 1− δ} .
In 1961, the variable exponent function Lebesgue spaces was introduced

by I. Tsenov in his study of problems of the best approximation in Lebesgue
spaces [13]. A fairly exhaustive review of the extensive literature on the sub-
ject of variable functional spaces can be found in the work of L. Diening, P.
Harjulehto, P. Hasto, and M. Ruzicka [4] which is up to date 2010. For some
new applications and development see articles by X.L. Fan, Q.H. Zhan, D.
Zhao [7, 8,], Y.Q. Fu. K. Ho and I. Sim [9, 11], the uniform convexity of

variable exponent Lebesgue spaces Lp(·) was mentioned by X.L. Fan, D. Zhao
[7] in 1988 and by Q.M. Zhou, X.P. Xue, B. Ge in 2010, [7].

Let Ω be a bounded connected domain in the Rn. Let P (Ω) be a subspace

of L1 (Ω) such that p (·) ∈ P (Ω), p (·) : Ω → (1, ∞). We denote pm

(
Ω̃
)
=

ess inf
x∈Ω̃

p (x) and pS

(
Ω̃
)

= ess sup
x∈Ω̃

p (x) for fixed Ω̃ ⊂ Ω. For measurable

functions f , we define a norm by

‖f‖Lp(·) = inf

{
λ > 0 : ρp

(
f

λ

)
≤ 1

}
,

where the functional ρp : L1 (Ω) → R is given by

ρp (f) =

∫
Ω
|f (x)|p(x) dx

for Ω ⊆ Rn. The variable exponent Lebesgue space Lp(·) (Ω) consists of all
measurable functions f such that ‖f‖Lp(·) < ∞.

For variable exponent Lebesgue spaces Lp(·) with 1 < pm ≤ pS < ∞, we
can prove a variant of the Holder inequality in the form∫

|f (x) g (x)| dx ≤
(
1 +

1

pm
− 1

pS

)
‖f‖Lp(·) ‖g‖Lq(·)

for all f ∈ Lp(·), g ∈ Lq(·), where the dual exponent function is given by

q (x) = p(x)
p(x)−1 . The Holder constant equals kHol = 1 + 1

pm
− 1

pS
.

A Banach space is said to be uniformly smooth if for all ε ∈ (0, 1) there
is δ (ε) > 0 such that condition

‖x+ y‖+ ‖x− y‖ ≤ 2 + ε ‖y‖
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holds for all x, y ∈ X so that ‖x‖ = 1 and ‖y‖ ≤ δ. The strong differentiability
of the Banach space norm is connected with the uniform smoothness of this
Banach space. The necessary condition of Frechet’s differentiability of the
norm is that the norm is uniformly smooth.

In the present article, we establish that for each ε ∈ (0, 2) and a pair of

unit vectors u, v ∈ Lp(·) such that ‖u− v‖Lp(·) ≥ ε there exists

δ (ε) = 1−
(
1−

(ε
2

) pm
pm−1

) pS−1

pS

if 1 < pm ≤ pS < 2 and δ = 1 − (1− ( ε2)pS) 1
pm , if 2 ≤ pm ≤ pS < ∞ such

that
∥∥u+v

2

∥∥
Lp(·) ≤ 1 − δ (ε). We also prove that Lp(·) is a uniformly smooth

Banach space. To show the nontriviality of these statements, we remind our
readers that classical L1 ([0, 1]) and L∞ ([0, 1]) are not uniformly convex or
uniformly smooth.

2. Basic properties of variable exponent Lebesgue spaces

Many basic properties of variable exponential Lebesgue spaces Lp(·) were
investigated by X. L. Fan, and D. Zhao [7]. The Lebesgue spaces Lp(·) belong
to the Banach spaces, if 1 < pm ≤ pS < ∞ then Lp(·) is reflexive Banach space

with its dual Lq(·), q (x) = p(x)
p(x)−1 .

Definition 2.1. A Banach space X is called a uniformly convex if for
each ε ∈ (0, 2] there are some δ (ε) > 0 such that from

‖x− y‖ ≥ ε

follows
1

2
‖x+ y‖ ≤ 1− δ

for all unit vectors x, y ∈ X.

In case the exponential function is constant and larger one, i.e. p (x) =
p > 1, we have an explicit expression for general parallelogram inequality [3]
in the form

(‖u+ v‖r + ‖u− v‖r)m ≤ 2r(m−1) (‖u‖m + ‖v‖m)r

that holds for all elements u, v ∈ Lp and for all 1 < m ≤ p ≤ r so that
r

r−1 ≤ m ≤ r.

Assume p (·) : Ω → [2, ∞) , p ∈ P (Ω) , Ω ⊆ Rn then we have an analog
of parallelogram restriction in the integral form

ρ (u+ v) + ρ (u− v) ≥ 2 (ρ (u) + ρ (v)) ,
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u, v ∈ Lp(·), this parallelogram condition guarantees the uniform convexity of
the variable Lebesgue space Lp(·) as we are going to prove in next lemma.

Lemma 2.1. Let 2 ≤ pm ≤ pS < ∞, pm = inf
x∈Ω

p (x), pS = sup
x∈Ω

p (x), then

Lp(·) is uniformly convex space.

P r o o f. Let u, v ∈ Lp(·).
For a pair of complex numbers z1 and z2, we define a function

d = |z1 + z2|t + |z1 − z2|t .
Straightforwardly, we have

|z1 + z2|t + |z1 − z2|t ≥ 2
(|z1|t + |z2|t

)
.

We put z1 = ũ (x), z2 = ṽ (x) and integrate∫
Ω |ũ (x) + ṽ (x)|p(x) dx+

∫
Ω |ũ (x)− ṽ (x)|p(x) dx

≥ 2
(∫

Ω |ũ (x)|p(x) dx+
∫
Ω |ṽ (x)|p(x) dx

)
for ũ, ṽ ∈ Lp(·). Now, denoting ũ = (u+v)

2 and ṽ = (u−v)
2 , obtain∫

Ω |u (x)|p(x) dx+
∫
Ω |v (x)|p(x) dx

≥ 2
(∫

Ω

∣∣u+v
2

∣∣p(x) dx+
∫
Ω

∣∣u−v
2

∣∣p(x) dx) .
Since vectors u and v are unit, i.e., ‖u‖Lp(·) = 1 = ‖v‖Lp(·) we have∫

Ω

∣∣∣∣u+ v

2

∣∣∣∣
p(x)

dx+

∫
Ω

∣∣∣∣u− v

2

∣∣∣∣
p(x)

dx ≤ 1,

from the assumption ‖u− v‖ ≥ ε, we obtain∫
Ω

∣∣∣∣u+ v

2

∣∣∣∣
p(x)

dx ≤ 1−
(ε
2

)pS
,

assume δ (ε) = 1− (1− ( ε2)pS) 1
pm , so we conclude∥∥∥∥u+ v

2

∥∥∥∥
Lp(·)

≤ 1− δ.

�

Lemma 2.2. Let mes (Ω) < ∞. Let 1 < pm ≤ pS < 2, pm = inf
x∈Ω

p (x),

pS = sup
x∈Ω

p (x), then Lp(·) is uniformly convex space.
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P r o o f. Applying Clarkson inequality [3], we have

(∫
Ω

∣∣∣∣u (x) + v (x)

2

∣∣∣∣
p(x)

dx

) (pS−1)
p2
S

+

(∫
Ω

∣∣∣∣u (x)− v (x)

2

∣∣∣∣
p(x)

dx

) (pS−1)
p2
S ≤ 1

with q (x) = p(x)
p(x)−1 . Proceeding similarly to Lemma 2, we obtain∫

Ω

∣∣∣∣u+ v

2

∣∣∣∣
q(x)

dx ≤ 1−
(ε
2

) pm
pm−1

and taking

δ (ε) = 1−
(
1−

(ε
2

) pm
pm−1

) pS−1

pS
,

we have ∥∥∥∥u+ v

2

∥∥∥∥
Lp(·)

≤ 1− δ (ε) .

�

3. Uniform convexity of variable exponent Lebesgue spaces

X. Fan and D. Zhao showed the uniform convexity of Lp(·) (Ω) applying
the theory of spaces with the Luxemburg norm and the following lemma.

Lemma 3.1. (Fan and Zhao [7]) Let 1 < pm ≤ pS < ∞, then for each
fixed ε ∈ (0, 1), there exists δ (ε) ∈ (0, 1) such that the inequality(

1 + α

2
τ

)p(x)−p(ε)

≤ (1− δ (ε))

2

(
1 + τp(αx)−p(ε)

)
holds for all 0 ≤ τ and all α ∈ [0, ε].

A straightforward application of the Fan-Zhao lemma yields the following
theorem.

Theorem 3.1. (Fan and Zhao [7]) Let 1 < pm ≤ pS < ∞ then Lp(·) (Ω)
is uniformly convex.

If the exponential function is constant the Fan-Zhao theorem easily follows
from the parallelogram inequalities. In the general situation, we have the
following theorem.
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Theorem 3.2. Let ε ∈ (0, 2) and u, v ∈ Lp(·) such that ‖u‖Lp(·) = 1 =
‖v‖Lp(·) and ‖u− v‖Lp(·) ≥ ε. Then, the inequality∥∥∥∥u+ v

2

∥∥∥∥
Lp(·)

≤ 1− δ (ε)

holds with δ (ε) = 1 −
(
1− ( ε2) pm

pm−1

) pS−1

pS if 1 < pm ≤ pS < 2; and with

δ (ε) = 1− (1− ( ε2)pS) 1
pm if 2 ≤ pm ≤ pS < ∞.

P r o o f. The statement of the theorem follows from Lemmas 2.1 and 2.2.
Employing the convexity argument, we obtain that assume Ω ⊂ Rn,mes (Ω)

< ∞, then the estimate

‖f‖Lp(·) ≤ mes (Ω) + 1

holds for all u ∈ Lp(·). �

We are going to use the Harald Hanche-Olsen ideas to present an alterna-
tive qualitative proving of Theorem 3.2.

Lemma 3.2. (analog of the H. Hanche-Olsen) Let (Ω, μ) be a probability
space. Let p (·) ∈ P (Ω), p (·) : Ω → (1, ∞), 1 < pm ≤ pS < ∞, then for each
fixed ε ∈ (0, 1), there exists δ (ε) ∈ (0, 1) such that the inequality

‖z − 1‖Lp(·) < ε

holds for all functions z ∈ L1 such that ‖z‖Lp(·) = 1 and Re
∫
Ω zdμ > 1− δ.

P r o o f. We introduce the function

ϕ (u) = |u|p(·) − 1 + p (·) (1−Re (u)) .

So, for each ε ∈ (0, 1), there are some numbers a > 1 such that from

{|u− 1| ≥ ε follows |u− 1|p(·) ≤ aϕ (u). We calculate∫
Ω |z − 1|p(·) dμ =

∫
Ω\{w∈Ω : |z−1|<ε} |z − 1|p(·) dμ

+
∫
{w∈Ω : |z−1|<ε} |z − 1|p(·) dμ≤ εpm + aδpS ,

therefore, taking δ = εpm
apS

we obtain the inequality ‖z − 1‖Lp(·) < 2p
−1
m ε, which

proves the lemma. �

Now, we present another proof of Theorem 3.2 employing the analog of
the H. Hanche-Olsen lemma.
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P r o o f. Let u, v ∈ Lp(·), ‖u‖Lp(·) = 1 = ‖v‖Lp(·) such that ‖u+ v‖Lp(·) >

2 − δ. If ũ = u+v
‖u+v‖

Lp(·)
, then there exists an element ṽ ∈ Lq(·) such that

ũṽ = |ũ|p(·) = |ṽ|q(·) so that ‖ũ‖Lp(·) = 1 = ‖ṽ‖Lq(·) . We have∫
Ω
|u+ v|p(·) ṽdμ = ‖u+ v‖Lp(·)

∫
Ω
ũṽdμ = ‖u+ v‖Lp(·) > 2− δ.

Now, we writeRe
∫
Ω vṽdμ ≤ 1 so that Re

∫
Ω uṽdμ > 1−δ. We choose δ as in

the H. Hanche-Olsen lemma and obtain ‖u− ũ‖Lp(·) ≤ ε and ‖v − ũ‖Lp(·) ≤ ε,
thus ‖u− v‖Lp(·) < 2ε, which proves uniform convexity of variable Lebesgue

spaces Lp(·). �

4. Uniform smoothness of variable exponent Lebesgue spaces

Now, we consider the uniform smoothness of variable Lebesgue spaces,
which is in some way a dual approach to uniform convexity.

Definition 4.1. A Banach space X is called a uniformly smooth if for
each ε > 0 there are some δ (ε) > 0 such that, for all x, y ∈ X, from ‖x‖ = 1
and ‖y‖ ≤ δ follows

‖x+ y‖+ ‖x− y‖ ≤ 2 + ε ‖y‖ .

If the norm of the Banach space is differentiable then the identity

lim
‖y‖→0

1

‖y‖
(∥∥∥∥x+ y

2

∥∥∥∥+
∥∥∥∥x− y

2

∥∥∥∥− ‖x‖
)

= 0

must hold for all x, y ∈ X.

Definition 4.2. Let X be a Banach space. A function defined by

γX (τ) = sup

{‖x+ y‖+ ‖x− y‖
2

− 1 : ‖x‖ = 1, ‖y‖ = τ

}

is called the modulus of smoothness of the norm of the Banach space X.

Remark 4.1. In the theory of variable exponent Lebesgue spaces, the
letter ρ stands for p (·)-modular of the Lp(·)-space.

Straightforwardly, a Banach space is uniformly smooth if and only if

lim
τ→0

γX(τ)
τ = 0.

Now, we are going to prove the theorem from the analysis of abstract
Banach spaces.
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Theorem 4.1. (Lindenstrauss) Let X be a separable reflexive Banach
space thenX is uniformly convex if and only if its dualX∗ is uniformly smooth.

P r o o f. First, assume the Banach space X is uniformly convex and show
that its dual X∗ is uniformly smooth. Let τ > 0, ζ > 0 and a pair of unit
functionals x∗, y∗ ∈ X∗, then there exists ε (τ) ∈ [0, 1] such that∥∥∥∥x∗ + τy∗

2

∥∥∥∥
X∗

+

∥∥∥∥x∗ − τy∗

2

∥∥∥∥
X∗

− 1

≤ τε− inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥
X

: ‖x− y‖X < 2ε

}
+ ζ,

indeed, we can choose vectors x (τ) , y (τ) ∈ X∗ so that the inequalities

〈x∗ + τy∗, x (τ)〉 ≥ ‖x∗ + τy∗‖X∗ − ζ

and
〈x∗ − τy∗, y (τ)〉 ≥ ‖x∗ − τy∗‖X∗ − ζ

be satisfied. So, we put

ε (τ) =

∥∥∥∥x (τ) + y (τ)

2

∥∥∥∥
X

∈ [0, 1]

and ∥∥∥∥x (τ) + y (τ)

2

∥∥∥∥
X

≤ 1− inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥
X

: ‖x− y‖X < 2ε

}
,

and obtain ∥∥∥x∗+τy∗
2

∥∥∥
X∗

+
∥∥∥x∗−τy∗

2

∥∥∥
X∗

≤ 1
2 (〈x∗ + τy∗, x (τ)〉+ 〈x∗ − τy∗, y (τ)〉) + ζ

= 1
2 (〈x∗, x (τ) + y (τ)〉+ τ 〈y∗, x (τ)− y (τ)〉) + ζ

≤ 1− inf
{
1− ∥∥x+y

2

∥∥
X

: ‖x− y‖X < 2ε
}
+ τε (τ) + ζ.

Therefore, we have

γX∗ (τ)

≤ − inf
{
1− ∥∥x+y

2

∥∥
X

: ‖x− y‖X < 2ε
}
+ τε (τ) + ζ

≤ ζ + sup
ε∈[0, 1]

{
τε (τ)− inf

x, y

{
1− ∥∥x+y

2

∥∥
X

: ‖x− y‖X < 2ε
}}

,

so
γX∗ (τ)

≤ sup
ε∈[0, 1]

{
τε (τ)− inf

x, y

{
1−

∥∥∥∥x+ y

2

∥∥∥∥
X

: ‖x− y‖X < 2ε

}}
since ζ > 0 can be arbitrarily small.
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Thus, for any ε̃ > 0 we take

τ <

(
inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥
X

: ‖x− y‖X < 2ε̃

})−1

,

then from
γX∗ (τ)

τ

≤ sup
ε̃∈[0, 1]

{
ε̃− τ−1inf

x, y

{
1−

∥∥∥∥x+ y

2

∥∥∥∥
X

: ‖x− y‖X < 2ε̃

}}
τ→0−→ 0.

Thus, X∗ is uniformly smooth.

Second, assume X∗ is uniformly smooth and show that X is uniformly
convex. Let ε ∈ (0, 1) and let x, y ∈ X be unit vectors such that

∥∥x−y
2

∥∥ ≥ ε.
Then, we choose a pair of unit linear functionals x∗, y∗ ∈ X∗ such that

〈x∗, x+ y〉 ≥ ‖x+ y‖ − 2ζ

and

〈y∗, x− y〉 ≥ ‖x+ y‖ − 2ζ.

For all τ ≥ 0, we have

γX∗ (τ) ≥
∥∥∥x∗+τy∗

2

∥∥∥
X∗

+
∥∥∥x∗−τy∗

2

∥∥∥
X∗

− 1

≥ 1
2 (〈x∗ + τy∗, x〉+ 〈x∗ − τy∗, y〉)− 1

= 1
2 (〈x∗, x+ y〉+ τ 〈y∗, x− y〉)− 1

≥ ∥∥x+y
2

∥∥
X
+ τ

∥∥x−y
2

∥∥
X
− 1− 2ζ

≥ − (1 + ∥∥x+y
2

∥∥
X

)
+ τε− 2ζ,

so, we deduce

γX∗ (τ) +

(
1 +

∥∥∥∥x+ y

2

∥∥∥∥
X

)
≥ τε− 2ζ.

Since X∗ is uniformly smooth we have that there exists τ̃ > 0 such that

γX∗ (τ)

τ
≤ ε

2

for all τ < τ̃ , so that

δ = inf
x, y

{
1−

∥∥∥∥x+ y

2

∥∥∥∥
X

: ‖x− y‖ < 2ε

}
≥ ε

2
τ > 0,

and for such δ we have 1
2 ‖x+ y‖ ≤ 1 − δ, which prove uniform convexity of

X. �

Now, we can formulate the theorem about the uniform smoothness of
variable Lebesgue space.
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Theorem 4.2. (uniform smoothness of Lp(·)) Let 1 ≤ pm ≤ pS < ∞,

pm = inf
x∈Ω

p (x), pS = sup
x∈Ω

p (x) then Lp(·) is uniformly smooth space.

P r o o f. Since the space Lq(·) with q (x) = p(x)
p(x)−1 is uniformly convex,

Lp(·) is uniformly smooth by the Lindenstrauss theorem. �

5. Some functions describing uniform smoothness of variable
exponent Lebesgue spaces

Finally, we consider some functions related to so-called moduli of convexity
and smoothness of the Banach spaces.

For ε ∈ [0, 1], we introduce functions

M (x, ε) = inf {max {‖x+ y‖ , ‖x− y‖} : ‖y‖ = ε}
and

m (x, ε) = sup {min {‖x+ y‖ , ‖x− y‖} : ‖y‖ = ε}
for all x, y ∈ X, ‖x‖ = 1, ‖y‖ = ε.

For all x, y ∈ X, ‖x‖ = 1, ‖y‖ = ε, ε ∈ [0, 1], we denote values

α1 (ε) = inf {M (x, ε) : ‖x‖ = 1} ,
α2 (ε) = sup {M (x, ε) : ‖x‖ = 1}

and

β1 (ε) = inf {m (x, ε) : ‖x‖ = 1} ,
β2 (ε) = sup {m (x, ε) : ‖x‖ = 1} .

Theorem 5.1. (J. Gao and K.S. Lau) Let ε ∈ [0, 1], then

α1 (ε) ≤ α2 (ε) ≤ β2 (ε)

and

α1 (ε) ≤ β1 (ε) ≤ β2 (ε) .

A similar theorem was proven by J. Gao and K.S. Lau in [17].

Theorem 5.2. Let Lp(·) (Ω) , μ (Ω) = 1, and let ε ∈ [0, 1]. Then, the
following estimates are true:

1) if 2 ≤ pm ≤ pS < ∞, then

(1 + εpS)
1

pm ≤ α1 (ε) ,

α1 (ε) ≤ (1 + εpm)
1
ps ,

α2 (ε) ≤ (1 + εpm)
1

pm ,
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(
(1 + ε)pS + (1− ε)pm

2

) 1
pS ≤ β1 (ε) ,

(
(1 + ε)pm + (1− ε)pS

2

) 1
pm ≥ β2 (ε) ;

2) if 1 < pm ≤ pS < 2, then

α1 (ε) ≥
(
(1 + ε)pm + (1− ε)pS

2

) 1
pS

,

β2 (ε) ≤
(
(1 + ε)pS + (1− ε)pm

2

) 1
pm

,

β1 (ε) ≥ (1 + εpS )
1

pm ,

β2 (ε) ≤ (1 + εpm)
1
pS .

P r o o f. 1) Assume u, v ∈ Lp(·), ‖u‖Lp(·) = 1, ‖v‖Lp(·) = ε with
2 ≤ pm ≤ pS < ∞, we have

2 (1 + εpS ) ≤ ∫Ω |u (x) + v (x)|p(x) dx+
∫
Ω |u (x)− v (x)|p(x) dx

≥ 2 (max {‖u+ v‖ , ‖u− v‖})pS ,
so, (1 + εpS )

1
pm ≤ α1 (ε). Applying parallelogram inequality, we obtain α1 (ε) ≤

(1 + εpm)
1
ps .

For arbitrary small ζ > 0, there is an estimate

(1 + ζ)
1
ps < 1 + 2psζ,

we take a number δ ∈ (0, 1), so that∫
B(δ)

|u (x)|p(x) dx < εpmζpm

and denote

v (x) ≡
{

εδ
− 1

pm , |x| ≤ δ,
0, |x| ≥ δ,

we calculate

ρ (u+ v)

≤ 1 +
∫
B(δ)

∣∣∣u (x) + εδ
− 1

pm

∣∣∣p(x) dx
≤ 1 +

∫
B(δ) ε

pmδ−1
∣∣∣1 + ε−1δ

1
pm u (x)

∣∣∣p(x) dx
≤ 1 + εpmδ−1

∫
B(δ)

∣∣∣1 + ε−1δ
1

pm u (x)
∣∣∣p(x) dx
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and
ρ (u+ v)

≤ 1 + εpmδ−1

(
δ

1
pS + ε−1δ

1
pS

(∫
B(δ) |u (x)|p(x) dx

) 1
pS

)pm

≤ 1 +
(
1 + ε ζε

)pS
εpm = 1 + εpm (1 + ζ)pS .

Therefore, we have the inequalities

ρ (u+ v) ≤ 1 + εpm (1 + 2pSζ)

and

ρ (u− v) ≤ 1 + εpm (1 + 2pSζ) ,

so, the inequality

max {‖u+ v‖ , ‖u− v‖} ≤ (1 + εpm (1 + 2pSζ))
1

pm

holds for all small ζ > 0. We obtain the estimate

α2 (ε) ≤ (1 + εpm)
1

pm .

Applying parallelogram inequalities, straightforwardly, we deduce(
(1 + ε)pS + (1− ε)pm

2

) 1
pS ≤ β1 (ε) ,

hence

(min {‖u+ v‖ , ‖u− v‖})pS ≥ (1 + ε)pS + (1− ε)pm

2
.

Similarly, we have(
(1 + ε)pm + (1− ε)pS

2

) 1
pm ≥ β2 (ε) .

2) We assume u, v ∈ Lp(·), ‖u‖Lp(·) = 1, ‖v‖Lp(·) = ε with 1 < pm ≤ pS <
2. Applying parallelogram inequalities, we have

α1 (ε) ≥
(
(1 + ε)pm + (1− ε)pS

2

) 1
pS

.

Since ‖u‖Lp(·) = 1 we can take σ ∈ (0, 1) so that∫
B(σ)

|u (x)|p(x) dx =

∫
Ω\B(σ)

|u (x)|p(x) dx =
1

2
.

We define a function

v (x) ≡
{ −εu (x) , |x| ≤ σ,

εu (x) , |x| > σ,
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so that ‖v‖Lp(·) = ε. We calculate

ρ (u+ v)

=
∫
B(σ) |u (x) + v (x)|p(x) dx+

∫
Ω\B(σ) |u (x) + v (x)|p(x) dx

=
∫
B(σ) (1− ε)p(x) |u (x)|p(x) dx

+
∫
Ω\B(σ) (1 + ε)p(x) |u (x)|p(x) dx

≤ (1−ε)pm+(1+ε)pS

2 .

Similarly, we estimate

ρ (u− v) ≤ (1− ε)pm + (1 + ε)pS

2
.

Straightforwardly, we write

β2 (ε) ≤
(
(1 + ε)pS + (1− ε)pm

2

) 1
pm

.

Next, we can write

β2 (ε) ≤ (1 + εpm)
1
pS

by the parallelogram inequalities.
We will prove that

β1 (ε) ≥ (1 + εpS )
1

pm .

Indeed, for each small, ζ > 0 there is a δ ∈ (0, 1) such that∫
B(δ)

|u (x)|p(x) dx < ζ

and ∫
Ω
|u (x)|p(x) dx ≥ 1− ζ.

We define a function

v (x) ≡
{

εθ
− 1

pm , |x| ≤ θ,
0, |x| ≥ δ,

and calculate

ρ (u+ v)

=
∫
Ω |u (x) + v (x)|p(x) dx

=
∫
B(δ)

∣∣∣u (x) + εδ−
1

pm

∣∣∣p(x) dx+
∫
Ω |u (x)|p(x) dx

≥ 1− ζ +
∫
B(δ)

∣∣∣u (x) + εδ−
1

pm

∣∣∣p(x) dx.
Next, we have ∫

B(δ)

∣∣∣u (x) + εδ
− 1

pm

∣∣∣p(x) dx ≥
(
ε− ζ

1
pS

)pS
,
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so that

ρ (u+ v) ≥ 1− ζ +
(
ε− ζ

1
pS

)pm
and

ρ (u− v) ≥ 1− ζ +
(
ε− ζ

1
pS

)pm
,

therefore, we obtain β1 (ε) ≥ (1 + εpS )
1

pm . �
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