IJAM: Volume 37, No. 3 (2024)

DOI: 10.12732/ijam.v37i3.6

 

PROPERTIES OF THE UNIFORM

CONVEXITY AND UNIFORM

SMOOTHNESS OF VARIABLE

EXPONENT LEBESGUE SPACES

 

Mykola Yaremenko

 

Physico-Mathematical Department

The National Technical University of Ukraine

“Igor Sikorsky Kyiv Polytechnic Institute”

37, Prospect Beresteiskyi (former Peremohy)

Kyiv – 03056, UKRAINE

 

Abstract.  We consider the uniform convexity of variable exponent Lebesgue spaces. We establish that for all $\varepsilon \in (0,2)$  and all unit vectors $u, v \in L^{p(.)}$ such that

$||u-v|| _ L^{p(.)}$  we can take numbers $\delta(\varepsilon) = … $ if …. and …. so that  ….

A uniform convexity of variable Lebesgue space $ L^{p(.)}$  is proven. Some correlations for functions describing uniform convexity and uniform smoothness of spaces $ L^{p(.)}$  were established.

 

 

Download paper from here

 

How to cite this paper?
DOI: 10.12732/ijam.v3
7i3.6
Source: 
International Journal of Applied Mathematics
ISSN printed version: 1311-1728
ISSN on-line version: 1314-8060
Year: 202
4
Volume: 3
7
Issue: 3

 

References

[1] R.P. Boas, Some uniformly convex spaces, Bull. Amer. Math. Soc., 46, 304-311 (1940).

[2] K. Ball, E.A. Carlen, and E.H. Lieb, Sharp uniform convexity and smoothness

inequalities for trace norms, Invent. Math., 115, No 3 (1994), 463–482.

[3] A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc., 40, No 3 (1936), 396–414.

[4] L. Diening, P. Harjulehto, P. Hasto, M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, 2017, Springer, Heidelberg (2011).

[5] O. Hanner, On the uniform convexity of Lp and lp, Ark. Mat., 3 (1956), 239–244.

[6] K.O. Friedrichs, On Clarkson’s inequalities, Comm. Pure Appl. Math., 23, 603–607 (1970).

[7] X.L. Fan and D. Zhao, On the spaces Lp(x) and Wm,p(x), Journal of Mathematical Analysis & Applications, 263, 424-446 (2001).

[8] X.L. Fan, Q.H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problems, Nonlinear Anal., 52 (2003), 1843–1852.

[9] Y.Q. Fu, The principle of concentration compactness in Lp(x) spaces and its application, Nonlinear Anal., 71, No 5-6 (2009), 1876–1892.

[10] H. Hanche-Olsen, On the uniform convexity of Lp, Proc. Amer. Math. Soc., 134 (2006), 2359–2362.

[11] K. Ho and I. Sim, Existence results for degenerate p(x)-Laplace equations with Leray-Lions type operators, Sci. China Math., 60, 133–146 (2017).

[12] J.R. Ringrose, A note on uniformly convex spaces, J. London Math. Soc., 34 (1959), 92.

[13] I.V. Tsenov, Generalization of the problem of best approximation of a function in the space Ls, Uch. Zap. Dagestan. Gos. Univ., 7 (1961), 25–37.

[14] S. Ai and J. Li, Optimization in Bochner Spaces, arXiv Preprint arXiv:2303.16367 (2023).

[15] Y. Zhang, L. Huang, D. Yang, W. Yuan, New ball Campanato-type function spaces and their applications, The Journal of Geometric Analysis, 32 (2022).

[16] S. Wang, J. Zhou, Another proof of the boundedness of Calderon–Zygmund singular integrals on generalized Orlicz spaces, Bulletin des Sciences Mathematiques, 179 (2022).

[17] J. Gao, K.S. Lau, On the geometry of spheres in normed linear spaces, J. Austral. Math. Soc. Ser., A 48 (1990), 101–112.

 

 

·        IJAM

 

(c) 2024, Diogenes Co, Ltd.https://www.diogenes.bg/ijam/