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Abstract

Some integrals involving hyperbolic functions are evaluated through clas-
sical integral transforms. Several integrals that have not appeared in the
classical tables of integrals are evaluated.
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1. Introduction

Consider a class of integrals of the form
AU, V) = / U(z)V(z)dz
0

cosh 2wz — cos 2am’
where U is a continuous function on (0,00), V(2) = 1, sinh 27z, coshmz or
sinhwz. The solutions for some special cases of A(a;U, V) are listed in the
classical tables of integrals and series [2, [3, [4] either in closed form or infinite

0<a<l, (1)
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series form. For instance, if V(z) = U(z) = 1, then the solution of A(a;1,1)
in closed form [2] p. 373] is

o dz 1
pr— —_ — 2 . 2
/0 cosh 27z — cos 2ar <2 a> CSC 2ma (2)

If U(z) = 2™, then the solution of A(a;22™, 1) in infinite series form [2, p.
381 is

/OO Z*Mdz o 2(2m!) Z sin 2kam 1 3
o cosh2mz — cos2am - (2m)2m+1 sin Qaﬂ L2m+1 2-

In this paper, the integrals of the form A(a; U, V') are evaluated for various
cases of U. These evaluations are done through classical integral transforms
such as Laplace, Fourier sine and cosine transforms [I]. The solutions of these
integrals are given in either closed-form or infinite series.

This paper is organized as follows. The main results are given in Section
2. The integrals of the form A(a;U, V) are evaluated for various values of U
in Section 3. The proof of main results are given in Section 4.

2. Main results

Suppose that U(z) is a continuous function on (O o0) and ¢t > 0, then the
Fourier sine transform and cosine transforms of U(z) a

re
2 o
Fs(t;U) = \/;/ U(z)sin ztdz and Fe(t;U) / z) cos ztdz.
0

The Laplace transform of U(z) on (0,00) is L(t;U) = / U(z)e *tdz, [1].
0

The following two theorems provide solutions of the integrals of the form
A(a; U, V) either in closed-form or infinite series.

THEOREM 2.1. Let f.(t) = @
(i) If L(a; f.) — L(1 — a; f.) exists, then
1 ﬁ(a;fc)_ﬁ(l_mfc) a#l
/oo Ul(z)dz B Vor sin 2am ’ 2 (4)
0

- Y 11 [ et
cosh 2wz — cos 2am 1 ¢ Fe(t,U)dt, a= :.
27 0 1—e"

Fs(t;U)

and fs(t) = T

(ii) If L(a; fs) exists, then

/°° U(z)sinh 2zm 1
dz =
o cosh2mz — cos2am o

(‘C(a; fs)+£(1_a; fs)) (5)
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t:U t; U
THEOREM 2.2. Let g4(t) = % and g.(t) = %-

(i) If L(a;9s) — L(1 — a; gs) exists, then
/ U(z)sinh zm &
0

cosh 2wz — cos 2am

1 L(asgs) — L(1 —a;gs)

1
) a 2
2W/2m cos am 72 (6)
Ly et vy o
21 Jo 1+et S\H ’ A
(ii) If L(a;g.) exists, then
/OO U(z) cosh zm ds — 1 L(a;ge) + L(1—a;g.) 7)
o cosh2rz —cos2am 221 sin am ’
3. Examples

Several integrals of the form A(a, U, V') can be evaluated using main results
given in Section 2. Some of them are listed as examples in this section.

1 Te M
ExaMpLE 3.1. If U(z) = e for p > 0, then F¢(t,U) = —

2
Using (@) and (7)), we find for a # %

/°° 1 dz 1 yp+l-a)—¢p+a)
o cosh2rz —cos2am pu? + 22 2 sin 2am ’
& 1 dz 1
— (2, u+1/2
/0 cosh? 7wz 22 + p? 7r,u<( pt1/2)
and
e cosh zm dz 1
= 1—
/0 cosh 2mz — cos2am 22 + p2  4usinar (Blatp)+Blu+ )

where (.) is digamma function, {(.,.) is the Hurwitz zeta function and j(.)
is incomplete beta function, [2].

EXAMPLE 3.2. Let U(z) = 27%/? and 5 for u > 0. Using (@), we

z
(1 +2%)
obtain

/°° sinh 2z dz 1 ¢ §a . §1—a
o cosh2mz —cos2amzy/z /2 2’ 2’
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and

o sinh 2z7 zdz 1
/0 cosh 2wz — cos 2am (22 + p?)? a @ CZa+p+c@1-atp).

ExampLE 3.3. IfU(z) = ﬁ for p > 0, then Fs(t,U) = \/ge_“t.
Using (@), we find that

/ ° sinh z7 Iy
z
o cosh2mz — cos 2am p? + 22

1B8(u+a)—Bp+1—a)

1

)} 4 cosar i a7y

- Zy B Gl S

27
s 2u+2k+1)
! 0<zxl1
EXAMPLE 3.4. Let U(z) =< /1 — 22’ : in ).
0, z>1,
L cos Bz T
Using the solution of the integrals / ﬁdz = EJO(,B), [2, p. 435], and
0 —z
o
1
e “Jy(x)dr = ——— for o, 8 > 0, |2, p. 694], we find that
/1 1 dz
o cosh2mz — cos2am /1 — 22

1 1 oo 1 1 1
B 9 sin 271a 2k=o0 <\/(a+k)2+l \/(1—a+k)2+1> A7 3

N 2 o 2%k+1 1
7 k=0 (2h+1)2+4)3 “=w

where Jy(.) is the Bessel function of first kind of order zero.

4. Proof of main results

The proof of the main results requires the following infinite series repre-
sentations of mcot mx and 7 cscwx [2], for z £ 0,+£1,+2,. . .:

e}

meot e = Z azik (8)

k=—00
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and

e e}

TCSC L = Z (—1)*

k=—o00

1
x+k

(9)

4.1. Proof of Theorem 2.1. If V(2) = 1 and a # 3, then the integral
A(a;U,1) in () can be written by using elementary trigonometric addition
identities as follows:

Ala; U, 1) = m /OO U(2) (cot w(a — 2i) + cot m(a + i) d= (10

Applying the cotangent series found in (8), we find that

11 o = 1 1
Ala; U, 1) = — U
(a;0,1) 27rsin2a7r/0 (2) Z (a—zi—l—k+a+zi+k‘>

e —oo
27Tsm2a7r/ Z <a—zz+k 1—aizz—|—k
+a+zz—|—k 1—a—1iz+k‘> U(z)dz. (11)
After simplification, (LIl) becomes
Ala; U, 1) = 7lrs1n12a7r
x Z/ ( (a +ak‘+ k+ 2 (1 —1a_+al:)_2k+ z2> Ul(z)dz. (12)

The Fourier cosine transform of m‘;@% is \/ge_(‘”rk)t and applying convo-
lution theorem of Fourier cosine transform [I] in (I2]), we obtain

1 1 [e.e] 00
U — } : —(a+k)t _ —(1—a+k)t T U
Ala:U001) V27 sin 2am k:o/o (e ¢ ) c(t,U)dt. (13)

After simplification, yields that

AaU) = L [T e e ) 14
(@ )= \/ﬁstmr/ 1_ ot c(t,U)dt. (14)

Using the definition of Laplace transform, (@) can be easily found for a # %
Ifa= %, then

oo —at _ ,—(1—a)t
lim A(a;U,1) = lim L1 / C F(tU)dt.  (15)
0

a1 a—1 /2w sin 2am
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Now, applying L’hopital’s rule [5] in ([I5), gives

1 1 [ tet/?
A(1/27U71) :; o Jo 1—et

Fe(t,U)dt. (16)
Similarly, if V(z) = sinh 2z, then for 0 <a < 1
1 o
A(a; U, sinh 2zm) = % / U(z) (cotm(a — zi) —cotm(a + zi))dz.  (17)
0

Using the cotangent series in (§]), we arrive

A(a; U, sinh 2zm)

1 [ z z
:Ekzzo/o <(a+k)2+22+(1—a+k)2+22>U(Z)dZ' (18)

Using the convolution theorem of Fourier sine transform [1] and definition of
Laplace transform, entry (Bl can be easily obtained. This completes proof of
the theorem.

4.2. Proof of Theorem 2.2. If V(z) = sinhzm and 0 < a < 1, then the
integral A(a;U,sinh z7) can be written as

A(a; U, sinh zm)

1 [e.e]
= Teosar /0 U(z) (cscm(a — zi) — cscm(a + 21)) dz. (19)
Applying the cosecant series found in (@), gives
1 1
A(a; U, sinh zm) = —
27 cosam

’ kZ:O/O = <(a+k)2+z2 e —a+k)2+z2> v

Applying the convolution theorem of Fourier sine transform [I], we find

Ala; U h = L 1 —e—at —e i F U)d 20
. : t t.
(a; U, sinh z7) Wy /0 T o s(t,U) (20)

Now, using definition of Laplace transform, entry (@) can be easily found for
a # % Ifa = %, then using L’hopital’s rule in (20]), this gives

lim A(a; U,sinh L L [Pe- e_(l_“)t}_ o
. o _ ‘ .
al_f)n% (a; U, sinh ) o al_I)n% p— Cm/o T st,U)
11 © tet/2
- ‘ Fs(t,U)dt. (21)

_;\/271' 0 1+et
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Similarly, if V(z) = cosh zm and 0 < a < 1, then

1 o . .
/0 U(z) (csc(a — zi)m + csc(a + iz)m) dz.  (22)

A(a; U, cosh zmr) = loma
T

Using cosecant series found in (9)), gives
1

2w sinamw

oo
a+k l1—a+k
X —1)F U(2)dz.
/0 kzzo( ) <(a+k)2+z2 + (1—a+k)2+z2> (2)dz
Using convolution theorem of Fourier cosine transform and definition of Laplace
transform, entry (7)) can be easily found. This completes proof of the theorem.

A(a; U, cosh z) =
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