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Abstract

In the proposed article, random matrices whose distribution coincides with
the Wishart distribution are considered. Their elements, which are dependent,
are represented as algebraic functions of independent random variables. The
densities of the independent random variables are also indicated. A Wishart
matrix construction is thus obtained. The present paper shows the relation-
ship between the proposed Wishart matrix construction and correlations and
partial correlations. The considered construction was also used to obtain a
factorization of the determinant of a correlation matrix.
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1. Introduction

The covariance matrix plays a central role in almost all classical multivari-
ate statistics (see [I]), time series analysis (see [0]), spatial data analysis (see
[8]), machine learning(see [7]).

As Pourahmadi (see [18]) points out, finding a constraint-free and statis-
tically interpretable parameterization of a covariance matrix is an important
problem in statistics. His solution has implications for covariance matrix esti-
mation, especially for high-dimensional data in recent years, for which complex
constraints guaranteeing positive definiteness would cost a lot of computer
time.

A suitable parameterization would allow the representation of each ele-
ment of the sample covariance matrix as an algebraic function of a new set of
independent random variables. In this way, new properties of the distribution
of covariance matrices, known as the Wishart distribution, can be established.

Given the complex nature of the covariance matrix and the positive def-
initeness restriction, it is convenient to decompose X into two components,
capturing the “variance” by a diagonal matrix and the “dependence” by a
square matrix of order p. A decomposition is ideal if its “dependence” com-
ponent is unbounded and represents a statistically interpretable matrix. The
most commonly used decompositions are the variance-correlation, spectral,
and Cholesky decompositions, where their “dependence” components are cor-
relation, orthogonal, and lower triangular matrices, respectively. While the
entries of the first two matrices are always constrained, those of the latter are
unconstrained.

In the proposed article, random matrices whose distribution coincides with
the Wishart distribution are considered. Their elements, which are dependent,
are represented as algebraic functions of independent random variables. The
densities of the independent random variables are also indicated. A Wishart
matrix construction is thus obtained. The present paper shows the relation-
ship between the proposed Wishart matrix construction and correlations and
partial correlations. The considered construction was also used to obtain a
factorization of the determinant of a correlation matrix.

2. Wishart distribution

Consider the sequence of independently distributed Gaussian random vec-
tors (columns) & = (£1¢,£2Z-,...,§pi)T, & e RP, i =1,2,...,n, with mean
vectors u' = (,uli,,ugi,...,,upi)T and the same covariance matrix X , s.t.
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3= N, (,ui,E). We usually assume that n is greater than or equal to p.
The joint distribution of the elements of the p X p random matrix

w=> (),
=1

is known as a Wishart non-central distribution, W € W, (n, X, M), where
M= (,ul,,uz, . ,u”) is a matrix of dimension p x n. In the particular case,
when z¢ = (0,0,... ,O)T, i =1,2,...,n, the distribution of the random ma-
trix W is known as a central Wishart distribution, W € W, (n,X). If the

random column vectors &%, ¢ = 1,2,...,n form a matrix L = (51,52, e ,5”)
of dimension p X n, then the square matrix W with size p can be written as
W =LL",

and it is easy to deduce that with probability 1 the realizations of the random

matrix W are positive definite matrices. If n > p then the Wishart distribution
p(p+1)

W, (n,X) has a density with respect to the Lebesgue measure in R~ 2~ . The
joint density of W € W, (n,X) has the form

n—p—1 _
Fw (X) o [det (X)) 72 2 "L (X)),
where X is a symmetric positive definite p X p matrix; det (.) is a determi-
nant; tr (.) is a trace functional; A is the set of all symmetric positive definite
matrices; 4 (.) is the indicator function.

3. Decomposition of the Wishart distribution

It should be noted that the Wishart distribution W, (n, X) is a distribution
of a dependent random variables. However, the joint distribution of these
dependent random variables can be represented through the joint distribution
of certain functions of independent random variables (see [10],[I1]). There the
authors show that a random matrix S with a Wishart distribution W, (n,I)
coincides in distribution with a matrix V of the type (see [10])

1 V12+4/T1T2 ... le«/TlTp

vV — V194/T179 T cee Vop/T2Tp (1)

Vip\/T1Tp V2p\/T2Tp ... Tp
where 71,79,...,7, are independent and identically x2-distributed random
variables with n degrees of freedom (n > p). The set of random variables
{vij,1 <i < j < p} and the set {71, 7,...,7,} are also independent. The ran-
dom variables {v;;,1 < i < j < p} have a joint density

n—p—1

Tivgacicj<py (X) = Cpp(det X) 2 14 (X)), (2)
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where:

e (), p is a constant (see [19])

P
o ) "
P p(p-1) P . ’
T H T (n—22+1)
i=1
e the matrix

Iz T1p

T2 1 T2

X = , Y

Tip Top ... 1

is real symmetric,

e [, is the indicator function of the set A of all symmetric positive

definite matrices whose elements in the principle diagonal are all unity.

In fact, f{,,; 1<i<j<p) (X), which is a joint density of @ random vari-
p(p+1)

ables, can be considered defined not in R~ 2~ but in the set of symmetric
matrices of size p and denoted by

n—p—1
S (X) = G p(det X) 727 14 (X)), (4)
where
1 1245 2 le
V12 1 NN )
M=| T (5)
I/1p I/2p e 1

3.1. Decomposition of the random matrix with Wishart distribution.

If a random matrix S has a Wishart distribution W), (n,I) , then it coin-
cides in distribution with a matrix V of (1), but the matrix V in turn has the
following decomposition

V:diag(\/T_l,\/vT,...,@)Mdiag(\/ﬁ,\/T_,...,\/ﬁ). (6)

The distribution of the random symmetric matrix M with density fa (X) has
been denoted as ¥ (p,n) (see [10]).

If we interpret the Wishart distribution W, (n,3) as the distribution of
the sample covariance matrix when the sample is taken from Gaussian mul-
tivariate distribution N, (0,X), then we can consider the distribution of M
as the distribution of the sample correlation matrix of the same Gaussian
distribution.
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The distribution of the random symmetric matrix M with density fa (X)
has been denoted as ¥ (p,n) (see [10]).

We can consider the representation (6l) as a decomposition of the matrix
V. Like the decomposition (@), there are also several methods based on well-
known matrix decomposition. For instance, Banfield & Raftery, Celeux &
Govaert, Bensmail et al. use the spectral decomposition of the matrix (see
[2], [6], [4]). Another approach is to use the Cholesky decomposition of the
covariance matrix ( see [15], [16], [17]). Following Barnard et al. (see [3]) we
will refer to the decomposition in (6l as a separation strategy, as we separate
out the standard deviations and the correlations.

Further, the sets of random variables {v;;,1 < i < j < p} will be denoted
as {vi;j(p),1 <i < j < p} and represented as symmetric matrices M (p), with
units on the main diagonal, for p =2,3,....

3.2. Recurrence relation for the matrices M(p—1) and M (p).

A recurrence relation is found (see [10],[I1]) for the matrices M (p—1)
eV(p—1,n—1)and M (p) €V (p,n). There the authors proved the following
theorem:

THEOREM 3.1. Let n1,7m2,...,1mp—1 be independent and identically dis-
tributed random variables with density:

23 (n—3)
fm' (x) = Cn(l - ) I(—Ll) (‘T)v (7)
where
r(3)
Cn = —=—Ar1~ (8)
VT (554
and I(_y 1y (z) is the indicator function of the interval (—1,1), n € Z, n >
p. Let the random matrix M(p—1) € ¥ (p—1,n—1) and the both sets

1,12, ..., Np—1 and M (p — 1) be independent. Then the random matrix M (p)
with entries, obtained by the formulas

v (p) = nj—1, 2<j<p
vij (p) = Mi—1mj—1 9)
+Vz'—17j—1(P—1)\/1—773_1\/1—77]2-_17 2<i<j=p

has a joint distribution ¥ (p,n).

The statement in Theorem [B.1] gives a construction for obtaining random
matrices M (p) with a distribution ¥ (p, n).
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3.3. Representation of the entries of the matrix M (p).

The next theorem gives recurrent relations between the dependent random
variables v;;(p) (see [10], [11]). Let

be independent random variables with densities in the interval (—1,1)

2\ 3 (n—3-m)
Fritp—m) (z) = Cn,m(l - )2 I 1) (), (11)
where
_ () 12)
VAT (=30~ B (L2
and I(_; ;) () is the indicator function of the interval (—1,1), n € Z, n > p.
We consequently introduce the random variables:

Cn,m

vij(s)=mj—1(s), 2<j<s
vij () = ni—1 (8) mj—1 (s) (13)

+ Vi1 j-1(s — 1)\/1 —n? (3)\/1 - 7]?_1 (s), 2<i<j<s,

fors=23,...,p.

THEOREM 3.2. The random matrix

1 viz(p) .. Uip (p)
1% 1 S Vo
M (p) = 12:(11) — 2 :(p) 7 (14)
vip(p) vp(p) ... 1

with entries from (I3), has distribution ¥ (p,n) for p =2,3,... .

The dependent random variables v;; (p), 1 <i < j < p can be represented
through independent 7; (p — m) from (0] as follows (see [14]).

THEOREM 3.3. For the entries v;; (p) of a random matrix M (p) € ¥ (p,n)
hold relations:

vij(p) = ni—1(p)n;-1(p) (15)

+ Z {Th'—m(p -—m+ 1)77j—m(p —m+ 1)

m=2

m—1
< [T /1-n o —k+ D\ 1=02 (0 — ke + 1)},
k=1

for 1 <i<j<p, whereno(p) =1, p;(p) =1,1<j<p,p=12,... .
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It can be shown that the independent random variables n;(p—m) of (1)
have in fact a Beta distribution in the interval (—1,1)

n; (p —m) € Beta (qm, )
where o, = ”_Tm_l
The family of distributions W), (n, ), X positive definite, can be generated
from W, (n,I) and p x p matrices for which AAT =X je. W=ASAT ¢

W, (n, X). In the role of matrix A can be taken .

4. One factorization of the determinant of a matrix M (p) € ¥ (p,n)

If we have one realization of the random variables n;(p — m) and this
realization is denoted by 7;(p —m), p =2,3,... ,0<m<p-2, 1<i<
p —m — 1, then with the real numbers 7;(p — m), p=2,3,...,0<m <p—2,
1 <i<p-—m—1we can get one realization M(p) of the random matrix
M(p). Indeed, with the numbers

7ij(p) = 0;—1(p))Nj-1(p) (16)

+ Vi 1,]1 _1\/1_7711 \/1_77]1

1 <i < j < p, we get the non-random matrix M(p). This matrix is a
symmetric positive definite with all diagonal elements equal to 1. The positive
definiteness of M(p) follows from Lemma 1 (see [11]). We will reformulate
this Lemma 1 in terms of real numbers 7;(p), 1 < i < p—1 and 7;;(p — 1),
2<i<j<p-—1.

LEMMA 4.1. If M(p) is a non-random matrix with entries given in (I6),
then we have:

det(M(p)= (1~ 720)) (1 = T(p)) - (1= 72 (3))det (M(p — 1))

By consequently applying the last equality to M(p), M(p—1), ... , M (2)
we get:

det (M(p)) = (1 =71 (p)) (L =73(p)) ... (L =72_1(p))
x(1-7(p-1)(1-mp-1)...(1 -7 s(p—1))

x (1-71(3)) (1= (3))
x (1-77(2).
Thus for det (M(p)) we have:
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THEOREM 4.1. For the determinant of the matrix M(p) the following
factorization holds:

det (M H H 1—772 p—m)). (17)

Consequently,
det (M(p)) > 0, (18)
taking into account the inequalities —1 < 7; (p — m) < 1,
p=23,..., 0<m<p—-2, 1<i<p—m-—1.

The last inequalities easily follow from definition of the density function of
7; (p —m) in (). The positive definiteness of M(p) we can deduce using the
Sylvester’s criterion, i.e.

det (M(k)) > 0, fork=1,2,3,....p
(here det (M (1)) = 1).

5. A connection between partial correlations and one construction
of the Wishart matrix

Here the relationship between the partial correlations and the presented
Wishart matrix decomposition will be shown. We will use the same notations
as in the paper of Joe (see [12]). Let R = (p;;) be a d-dimensional positive
definite correlation matrix. The diagonal elements are all 1. R can be pa-
rameterized following Joe (see [12]) in terms of p; ;41 for i =1,...,d — 1 and
the partial correlations p; ;i p)jt1. jyr—1 for j=1,....d—k, k=2,...,d—1.
We could also write pjj+1 = pjjtr|j+1. j+k—1 With k& = 1 since the indices
j+1,...,j+k—1form an empty set if £ = 1. In Anderson (see [1]) it can
be found the definition of partial correlations

Pij|L — Pik|LPjk|L

JO-) (1)

where i, j, k are distinct integers in 1,2,...,d and L is a subset of {1,...,d}\
{i,7,k}. From (19) we get

Pij|L = Pik|LPjk|L T pz‘j|kL\/<1 - P?ML) (1 - P?ML)- (20)

Compare formula (20) and formula (6] we see that the values of 7;_ (p),
M;—1 (p) and D;—1 ;-1 (p — 1) have the same relations as values of pi|r,, pji|L
and p;;xr- More precisely let p = d. It is easily to see that the non-random

(19)

PijlkL =
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matrix M (p), has the properties of some correlation matrix R = (p;;) i.e.
there exists a suitable correlation matrix R = (p;;) such that M (p) = (p;;).
From the construction (I8]) of M (p) we have:

1 Via(p)... 7ip(p)
712(p)
: A(p—1)
V1p(p)
The symmetric (p — 1)-dimensional square matrix A (p — 1) has the form
<(A (p— 1))2-]-), where

U1i(p)715(p) + Vi1, -1(p— 1)\/1— 73:(p) \/1— ﬁ%j(p%
(A(p_l))ij: 2<i< g <p,
1, i=j.
In terms of R using (20) with £ = 1 and L empty set we get:

L pi2-..p1p
P12
R = . )
¥(p—1)
P1p

Tp-1)= (’Y(p = 1)2-]-),

p1ip1j + pijl\/(l - ) (1 - P%j), 2<i1<j<p,

v(p — 1)ij =
1, =i
Consequently, the matrix of partial correlations
L pagjp - popl1
1 e p3p|1
1

coincides with the matrix M (p — 1). The same is true for

1 psapn2 p3spiz oo P3pli2
L pasjie oo+ papi2
1 : =M(p—2)
Pp—1,p|12

1
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and so on. Finally we have that the matrix

1 pegripnzek—1  Prki22.k—1 - Phpli2. k-1
1 PhA1k42(12. k=1 -+ Pktlp|12..k—1

1 : (22)

Pp—1,p|12..k—1
1

coincides with the matrix M (p —k+1), k = 1,2,...,p—1. For k =p—1
from (22]) we get

( 1 Pp—1,p[12...p—2 > _ ( _ 1 V12 (2) > :M(Z).
Pp—1,p|12..p—2 1 V12 (2) 1

5.1. One factorization of the determinant of a correlation matrix.

The equality in Lemma [T we can rewrite in terms of elements of M (p)
and R = (pz'j)3

det(M(p))=(1 =7 (1)) (1 = 73(p)) - .- (1 = o1 (p))det (M(p — 1)) ,

L pagjn - poppt
1 e p3p‘1
det(R)=(1— p%Q) (1- p%?,) (1= p%p) det . :
1
= (1=pd) (1= pda) o (1= p2) (1= pBa) - (1= i)
1 p3ape psspiz - P3pl12
L pasjie oo pappi2
x det 1 :
Pp—1,p|12
1

After finite number iteration we get:
det(R)=(1-pf))  (1-pfs) ... (1-piy)

2 2 2
(1 - P23\1) (1 - P24\1) e (1 - P2p|1)
(1 - P§4\12> (1 - P§5|12> e (1 - P§p|12>

2
(1 a pp—l,p\12mp—2) :

This result coincides with the result of Kurowicka and Cooke (see [13]) Theo-
rem 3.2 in the case of canonical vine on p elements.
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5.2. A joint density of the partial correlations.

A next application of our four theorems will be the proof of Theorem 5 of
Joe (see [12]).

According to the consideration on page 2182 of Joe the joint distribution of
(plg, 023, p13‘2) coincides with the distribution of independent not-identically
Beta distributed respectively B (a1,01), B (a1,01), B(ag,a2), where a; =
a9 + % If we choose
n—1 n—2

2 , Qg = 2 ;
the joint distribution of (plg, 023, p13‘2) coincides with the distribution of
(m (3),m2(3) ,m (2)).

Indeed, from () the distribution of n; (p —m) is Beta (2=5=1, n=m=1)
and n;(p—m),p=2,3,..., 0<m<p-—2, 1<i<p—m-—1areinde-
pendent random variables. Consequently (71(3),72(3),71(2)) are independent
beta distributed random variables respectively

n—1n-1 n—1n-1 n—2n—2
B B B .
eta( 5 5 >, eta< 5 5 >, eta< 5 5 >

It is evident that

o] =

d
(P12, P23, p1312) = (M (3) ;M2 (3) ,m (2)) .
On the other hand using (I3]) we have
(12 (3), 713 (3),112(2)) = (1 (3),m2 (3) , 11 (2)) -
Finally, we get

(12 (3) , 113 (3) ,v12(2))

I~

(m (3),m2(3),m (2)) (23)

< (012,P237013\2) .

Let us consider the joint distribution of (p12, p23, p13). From (20) with k& = 2
and L empty and (23] we get

d
(P12, P23, P13) = <Pl2,023,012023 + P13)2 \/(1 - P%z) (1 - P%3)>

e

Do (3)m B3+ m ()17 @) (-5 3)))
)13 (3)

Il

m (3
<V12 ( V12 (3) vi3 (3) +v12 (2)\/(1 - V122(3)) (1 - V123(3))>

3
2 (115 (3) , 115 (3) , 123 (3)) -

It is easy to see by induction in the general case that:
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THEOREM b5.1. For the joint distributions of the random vectors below
hold:

(P12, P23 -+ + s Pd—1,d> P13]25 P24|35 - - +  Pd—2,d|d—15

P14)235 P25|345 - - - s Pd—3,d|d—2,d—15 - - - apl,d|2,3,...,d—1)
(m(d),.sna—1(d),m(d—=1),m2(d—=1),...,m4-2(d—1),
m(d—2),...,n9-3(d—2),...,n1(2))

[ISH

and
(/7127 P235 -5 Pd—1,d> P13, 245+ -+ 5 Pd—2,d> - - - 7p1d)

g (V12 (d) y ey V1d (d) , 923 (d) y oy Vog (d) yeesVd—1,d (d)) . (24)

Now we will formulate a result of Harry Joe (see [12]):

THEOREM 5.2. Ifar = g1 +5(d—1—-k) , k =1,...,d—1 and
Pijitkli+1..itk—1 15 Beta(ag, o) on (=1,1) for 1 < i < i+ k < d, then the
joint density of (p;;) becomes

1 ad,1—1
cy (det (Tij)lgi,jgd)

on the set of correlation matrices (r;;), where the normalizing constant cq is

[

df (201 —2+d—k)(d—Fk)
k=1

X H[ <ad 1+ 1(d—l—k),ad_1+%(d—1—/c)>r_k.

If ag1 =1 and o = l(d—l— 1—k) fork =1,...,d — 2 leading to uniform
joint density for {pij, i < j}, then normalizing constant is

R [o (b duken)]
11 (Losntasn)]"

and the recursion is

2 d d\1!
Cq = Cqg—1 X 2(d 1) X |:B <§,§>:|

P roof. (Sketch of proof) Using ([B), {@) and (B for the joint density
function of random variables

(1/12(d),...,I/ld(d),V23(d),...,ng(d),...,ljd_Ld(d)),
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we get:

On the other hand, substituting
n—=k
2 Y

. —

we get the same expression
1

ak:ad_1+§(d—1—k‘), k‘zl,,d—l

as in Joe (see [12]). With new values ay, k = 1,...,d — 1 the joint density in
[5) becomes

(T (s +251))"

P (rg) = "= (det (g} L ((rip)) . (26)
I ()

If we have randomized value p; ;4 kji+1..i+k—1 as Beta (g, ax) on (—1,1) for 1 <
1<i<#th<d, and suppose independence of p; ;1 g|i+1...i+k—1 for 1 <i <i+k <d,
then taking into account (24]) we get that the joint density of

(p127 P23, -5 Pd—1,d> P13, P24y« - -5 Pd—2,d> - - - 7Pl,d)

coincides with the joint density of

(1/12 (d) yeeeyV1d (d) , V23 (d) yeeeyUoq (d) yoeny Vd—l,d (d))
given in (25)), i.e. the joint density of

(p127 P23y -5 Pd—1,d> P13, P24y -+ -5 Pd—2,d> - - - 7Pl,d)
is
ad_l—l
-1
c; (det (Tij)lgi,jgd)

where

_ d—1
L (F(aw+ )
d d(d—1) d=1 '
m 4[] T (o)
k=1

To prove Theorem we need to establish the identity

(P (oa-s + 951"

d(d—1) d=1
75 1T ()
k=1
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{ df (201 —24d—k)(d—k)
= { Qk=1

d—1

d—kN —1
><H[B<ad_1+%(d—l—k),ad_l—i—%(d—l—k))} } .

k=1
Using the properties of the Beta function
I'(p)T (q)
I'(p+aq)’
and I'(p) =(p—1)T'(p—1) for p > 1, it is easy to verify (27]). O

B (p,q) = p>0,g>0

COROLLARY 5.1. Let R = (p;;) be a d-dimensional correlation matrix
generated in Theorem Let 11,79,...,74 be independent identically dis-
tributed random variables with n degrees of freedom. Suppose the sets of ran-
dom variables {p;j,1 <i < j <d} and {71, 72,...,7q} are independent. The
random matrix

A =diag (\/T1,\/T2, .. ,/Td) R diag (\/T1, /T2, .., \/Td)

has the Wishart distribution Wy (n,I) under the conditions of Theorem
and assuming ag_1 = 5, where s is positive integer. Here n = s +d — 1.

P r oo f. According to Theorem [5.1] we have that the joint density of

(P127 P23, -5 Pd—1,d> P13, 245+ -+ Pd—2,ds - - - 7Pld)

coincides with the joint density of

(1/12 (d) yeeeyV1d (d) , V23 (d) yeeeyUoq (d) yoeny Vd—l,d (d))
given in (25). From Theorem follows that the sequence

(p127 P23, -5 Pd—1,d> P13, P24y - - -5 Pd—2,d> - - - 7Pl,d)

has a distribution ¥ (d,n). Using equality
V =diag (\/T1, VT2, -, /Td) M diag (\/T1, /T2, ,\/Td)
Wy (TL, I). (]
From the above considerations it is easy to obtain the Joe’s result (a) on

page 2183 ( see [12]) about the volume of the set of the d-dimensional positive
definite correlation matrices in (g) dimensional space.



RANDOM CORRELATION MATRICES ... 261

COROLLARY 5.2. The Lesbegue volume of the set of (g) correlation ma-
trices in (g) -dimensional space is:

( (d—1)/2

21 I'(2m)
T4 (d_’;‘;l , if d is odd,
2 p (431)
(28)
2_ (d-2)/2
i) 23d 4d_pd(%) mH:1 I'(2m) ‘ '
(77 FT() , ifd is even.
Proof. Let ag_1 =1, then the joint density in (26]) becomes
d—1
r(1+41 0
- 5_1( z)) (det (riz))"La ((ri5)) - (29)
(d-1)

i [[T(1+35(d—1—k))
k=1

Thus we have a uniform distribution over the d x d correlation matrices de-
pending on (g) values 75,1 <4 < j < d. Consequently the volume V' of all
correlation matrices in (g) Euclidian space coincides with the reciprocal value
of the coefficient in ([29), i.e.

d(d—1) d=1 _
P T (g

d—1
(T (%)
It is easy to find that V is equal to (28)). O

Example. When d = 3 the volume of correlation matrix

1 =z y
R=| 21 z |,
y 2z 1
where
—l<z<l, —l<y<l, -1<z<1, (30)
and

det (R) > 0, ie. 1—2? —y* — 22+ 22y2 > 0

2

is equal to %&-. If we compare the volume of the figure depicted by the points
(z,vy, z) satisfying ([B0), and the volume of a ball inscribed in a cube (—1,1) x
(=1,1) x (=1,1), we get %’T, that is greater than 1, i.e. the volume of our
figure is bigger then the volume of the inscribed ball.

Let us consider the Joe’s construction of random correlation matrices (see
[12], Theorem [5.2]). On the constant ag_; we have only the constraint ag_1 >

0. If we put the condition oy 1 = % where [ is a positive integer we get:
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COROLLARY 5.3. Let R = (p;;) be a d-dimensional correlation matrix.
Under the conditions of Theorem and supposing ag_1 of the form
l

Qg1 = 57 (31)

where [ is a positive integer then R =M, where M is the matrix in ().

P r o o f. Using Theorem B.I] Theorem B.2], Theorem [B.3], Theorem [G.1]
Theorem it is easy to conclude that conditions (BII) and

1
ak:ad_l—l——(d—l—k), k=1,...,d—1

2
are sufficient to get the coincidence of the joint distribution of (p;;) and the
joint distribution of M from (). O

Finally, we will give an example connected with the above consideration.

Example. Let &1,&21,&19,82,&13,&3 be independent A (0,1). Con-
sider the correlation matrix of the random vectors (; = (£11,&12,&13), (2 =
(&21,&22,&23). Then the correlation matrix of ¢; and (s is

1 1 £11821+812822 48138023
R = ( P12 > = ml+s%2+s%31¢s§1+s§2+s§3

pr2 1

ZM:< 1 >
V12 1

According to equality () we get

1 =z
()

1 ’ 32
C3,2 | det ( 2 ) , —1< x5 <1, (32)
T12 1

0, otherwise.

In this case the set of all positive definite matrices coincide with the set of
all random variables with values in (—1,1). On the other hand the random
variable p1o has uniform distribution, consequently p19 is uniformly distributed
on the interval (—1,1).

6. Conclusions

In the article, a decomposition of a matrix with a Wishart distribution
W, (n, %) by independent random variables on which the distributions are
found is considered. The relation of this decomposition to correlations and
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partial correlations is shown. A similar decomposition can also be applied to
a generalized Wishart distribution (with non-integer degrees of freedom).

The proposed recurrence relation between matrices with a Wishart distri-
bution can be used to generate matrices with this distribution.
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