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Abstract

In the proposed article, random matrices whose distribution coincides with
the Wishart distribution are considered. Their elements, which are dependent,
are represented as algebraic functions of independent random variables. The
densities of the independent random variables are also indicated. A Wishart
matrix construction is thus obtained. The present paper shows the relation-
ship between the proposed Wishart matrix construction and correlations and
partial correlations. The considered construction was also used to obtain a
factorization of the determinant of a correlation matrix.

Received: November 27, 2023 © 2024 Diogenes Co., Sofia



248

Math. Subject Classification: 62H10, 62H20

Key Words and Phrases: correlation, correlation matrix, covariance ma-
trix, partial correlation, Wishart distribution

1. Introduction

The covariance matrix plays a central role in almost all classical multivari-
ate statistics (see [1]), time series analysis (see [5]), spatial data analysis (see
[8]), machine learning(see [7]).

As Pourahmadi (see [18]) points out, finding a constraint-free and statis-
tically interpretable parameterization of a covariance matrix is an important
problem in statistics. His solution has implications for covariance matrix esti-
mation, especially for high-dimensional data in recent years, for which complex
constraints guaranteeing positive definiteness would cost a lot of computer
time.

A suitable parameterization would allow the representation of each ele-
ment of the sample covariance matrix as an algebraic function of a new set of
independent random variables. In this way, new properties of the distribution
of covariance matrices, known as the Wishart distribution, can be established.

Given the complex nature of the covariance matrix and the positive def-
initeness restriction, it is convenient to decompose Σ into two components,
capturing the “variance” by a diagonal matrix and the “dependence” by a
square matrix of order p. A decomposition is ideal if its “dependence” com-
ponent is unbounded and represents a statistically interpretable matrix. The
most commonly used decompositions are the variance-correlation, spectral,
and Cholesky decompositions, where their “dependence” components are cor-
relation, orthogonal, and lower triangular matrices, respectively. While the
entries of the first two matrices are always constrained, those of the latter are
unconstrained.

In the proposed article, random matrices whose distribution coincides with
the Wishart distribution are considered. Their elements, which are dependent,
are represented as algebraic functions of independent random variables. The
densities of the independent random variables are also indicated. A Wishart
matrix construction is thus obtained. The present paper shows the relation-
ship between the proposed Wishart matrix construction and correlations and
partial correlations. The considered construction was also used to obtain a
factorization of the determinant of a correlation matrix.

2. Wishart distribution

Consider the sequence of independently distributed Gaussian random vec-

tors (columns) ξi = (ξ1i, ξ2i, . . . , ξpi)
�, ξi ∈ R

p, i = 1, 2, . . . , n, with mean

vectors μi = (μ1i, μ2i, . . . , μpi)
� and the same covariance matrix Σ , s.t.
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ξi ∈ Np

(
μi,Σ

)
. We usually assume that n is greater than or equal to p.

The joint distribution of the elements of the p× p random matrix

W =

n∑
i=1

ξi
(
ξi
)�

,

is known as a Wishart non-central distribution, W ∈ Wp (n,Σ,M), where
M =

(
μ1, μ2, . . . , μn

)
is a matrix of dimension p × n. In the particular case,

when μi = (0, 0, . . . , 0)�, i = 1, 2, . . . , n, the distribution of the random ma-
trix W is known as a central Wishart distribution, W ∈ Wp (n,Σ). If the
random column vectors ξi, i = 1, 2, . . . , n form a matrix L =

(
ξ1, ξ2, . . . , ξn

)
of dimension p× n, then the square matrix W with size p can be written as

W = LL�,

and it is easy to deduce that with probability 1 the realizations of the random
matrixW are positive definite matrices. If n ≥ p then the Wishart distribution

Wp (n,Σ) has a density with respect to the Lebesgue measure in R
p(p+1)

2 . The
joint density of W ∈ Wp (n,Σ) has the form

fW (X) ∝ [det (X)]
n−p−1

2 e−
1
2
tr(Σ−1X)IA (X) ,

where X is a symmetric positive definite p × p matrix; det (.) is a determi-
nant; tr (.) is a trace functional; A is the set of all symmetric positive definite
matrices; IA (.) is the indicator function.

3. Decomposition of the Wishart distribution

It should be noted that the Wishart distributionWp (n,Σ) is a distribution
of a dependent random variables. However, the joint distribution of these
dependent random variables can be represented through the joint distribution
of certain functions of independent random variables (see [10],[11]). There the
authors show that a random matrix S with a Wishart distribution Wp (n, I)
coincides in distribution with a matrix V of the type (see [10])

V =

⎛
⎜⎜⎜⎝

τ1 ν12
√
τ1τ2 . . . ν1p

√
τ1τp

ν12
√
τ1τ2 τ2 . . . ν2p

√
τ2τp

...
...

. . .
...

ν1p
√
τ1τp ν2p

√
τ2τp . . . τp

⎞
⎟⎟⎟⎠ , (1)

where τ1, τ2, . . . , τp are independent and identically χ2-distributed random
variables with n degrees of freedom (n ≥ p). The set of random variables
{νij, 1 ≤ i < j ≤ p} and the set {τ1, τ2, . . . , τp} are also independent. The ran-
dom variables {νij, 1 ≤ i < j ≤ p} have a joint density

f{νij ,1≤i<j≤p} (X) = Cn,p (detX)
n−p−1

2 IA (X) , (2)
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where:

• Cn,p is a constant (see [19])

Cn,p =

[
Γ
(
n
2

)]p
π

p(p−1)
4

p∏
i=1

Γ
(
n−i+1

2

) , (3)

• the matrix

X =

⎛
⎜⎜⎜⎝

1 x12 . . . x1p
x12 1 . . . x2p
...

...
. . .

...
x1p x2p . . . 1

⎞
⎟⎟⎟⎠

is real symmetric,

• IA is the indicator function of the set A of all symmetric positive
definite matrices whose elements in the principle diagonal are all unity.

In fact, f{νij ,1≤i<j≤p} (X), which is a joint density of p(p+1)
2 random vari-

ables, can be considered defined not in R
p(p+1)

2 but in the set of symmetric
matrices of size p and denoted by

fM (X) = Cn,p(detX)
n−p−1

2 IA (X) , (4)

where

M =

⎛
⎜⎜⎜⎝

1 ν12 . . . ν1p
ν12 1 . . . ν2p
...

...
. . .

...
ν1p ν2p . . . 1

⎞
⎟⎟⎟⎠ . (5)

3.1. Decomposition of the random matrix with Wishart distribution.

If a random matrix S has a Wishart distribution Wp (n, I) , then it coin-
cides in distribution with a matrix V of (1), but the matrix V in turn has the
following decomposition

V =diag
(√

τ1,
√
τ2, . . . ,

√
τp
)
M diag

(√
τ1,

√
τ2, . . . ,

√
τp
)
. (6)

The distribution of the random symmetric matrix M with density fM (X) has
been denoted as Ψ (p, n) (see [10]).

If we interpret the Wishart distribution Wp (n,Σ) as the distribution of
the sample covariance matrix when the sample is taken from Gaussian mul-
tivariate distribution Np (0,Σ), then we can consider the distribution of M
as the distribution of the sample correlation matrix of the same Gaussian
distribution.
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The distribution of the random symmetric matrix M with density fM (X)
has been denoted as Ψ (p, n) (see [10]).

We can consider the representation (6) as a decomposition of the matrix
V. Like the decomposition (6), there are also several methods based on well-
known matrix decomposition. For instance, Banfield & Raftery, Celeux &
Govaert, Bensmail et al. use the spectral decomposition of the matrix (see
[2], [6], [4]). Another approach is to use the Cholesky decomposition of the
covariance matrix ( see [15], [16], [17]). Following Barnard et al. (see [3]) we
will refer to the decomposition in (6) as a separation strategy, as we separate
out the standard deviations and the correlations.

Further, the sets of random variables {νij, 1 ≤ i < j ≤ p} will be denoted
as {νij(p), 1 ≤ i < j ≤ p} and represented as symmetric matrices M (p), with
units on the main diagonal, for p = 2, 3, . . ..

3.2. Recurrence relation for the matrices M(p−1) and M (p).

A recurrence relation is found (see [10],[11]) for the matrices M (p−1)
∈ Ψ(p− 1, n − 1) andM (p)∈Ψ(p, n). There the authors proved the following
theorem:

Theorem 3.1. Let η1, η2, . . . , ηp−1 be independent and identically dis-
tributed random variables with density:

fηi (x) = Cn

(
1− x2

) 1
2
(n−3)

I(−1,1) (x) , (7)

where

Cn =
Γ
(
n
2

)
√
πΓ
(
n−1
2

) (8)

and I(−1,1) (x) is the indicator function of the interval (−1, 1), n ∈ Z, n ≥
p. Let the random matrix M (p− 1) ∈ Ψ(p− 1, n − 1) and the both sets
η1, η2, . . . , ηp−1 andM (p− 1) be independent. Then the random matrixM (p)
with entries, obtained by the formulas

ν1j (p) = ηj−1, 2 ≤ j ≤ p

νij (p) = ηi−1ηj−1 (9)

+ νi−1,j−1(p− 1)
√

1− η2i−1

√
1− η2j−1, 2 ≤ i < j ≤ p

has a joint distribution Ψ(p, n).

The statement in Theorem 3.1 gives a construction for obtaining random
matrices M (p) with a distribution Ψ (p, n).
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3.3. Representation of the entries of the matrix M (p).

The next theorem gives recurrent relations between the dependent random
variables νij(p) (see [10], [11]). Let

ηi (p−m) , for p = 2, 3, . . . , 0 ≤ m ≤ p− 2, 1 ≤ i ≤ p−m− 1 (10)

be independent random variables with densities in the interval (−1, 1)

fηi(p−m) (x) = Cn,m

(
1− x2

) 1
2
(n−3−m)

I(−1,1) (x) , (11)

where

Cn,m =
Γ
(
n−m
2

)
√
πΓ
(
n−m−1

2

) =
1

B
(
1
2 ,

n−m−1
2

) (12)

and I(−1,1) (x) is the indicator function of the interval (−1, 1), n ∈ Z, n ≥ p.
We consequently introduce the random variables:

ν1j (s) = ηj−1 (s) , 2 ≤ j ≤ s

νij (s) = ηi−1 (s) ηj−1 (s) (13)

+ νi−1,j−1(s− 1)
√

1− η2i−1 (s)
√

1− η2j−1 (s), 2 ≤ i < j ≤ s,

for s = 2, 3, . . . , p.

Theorem 3.2. The random matrix

M (p) =

⎛
⎜⎜⎜⎝

1 ν12 (p) . . . ν1p (p)
ν12 (p) 1 . . . ν2p (p)

...
...

. . .
...

ν1p (p) ν2p (p) . . . 1

⎞
⎟⎟⎟⎠ , (14)

with entries from (13), has distribution Ψ(p, n) for p = 2, 3, . . . .

The dependent random variables νij (p), 1 ≤ i < j ≤ p can be represented
through independent ηi (p−m) from (10) as follows (see [14]).

Theorem 3.3. For the entries νij (p) of a random matrix M (p) ∈ Ψ(p, n)
hold relations:

νij(p) = ηi−1(p)ηj−1(p) (15)

+

i∑
m=2

{
ηi−m(p−m+ 1)ηj−m(p−m+ 1)

×
m−1∏
k=1

√
1− η2i−k(p − k + 1)

√
1− η2j−k(p − k + 1)

}
,

for 1 ≤ i < j ≤ p, where η0(p) = 1, ν0j(p) = 1, 1 ≤ j ≤ p, p = 1, 2, . . . .
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It can be shown that the independent random variables ηi(p−m) of (10)
have in fact a Beta distribution in the interval (−1, 1)

ηi (p−m) ∈ Beta (αm, αm)

where αm = n−m−1
2 .

The family of distributionsWp (n,Σ), Σ positive definite, can be generated

from Wp (n, I) and p × p matrices for which AA� = Σ i.e. W = ASA� ∈
Wp (n,Σ). In the role of matrix A can be taken Σ

1
2 .

4. One factorization of the determinant of a matrix M (p) ∈ Ψ(p, n)

If we have one realization of the random variables ηi(p − m) and this
realization is denoted by ηi(p −m), p = 2, 3, . . . , 0 ≤ m ≤ p − 2, 1 ≤ i ≤
p−m− 1, then with the real numbers ηi(p −m), p=2, 3, . . ., 0 ≤ m ≤ p − 2,
1 ≤ i ≤ p − m − 1 we can get one realization M(p) of the random matrix
M(p). Indeed, with the numbers

νij(p) = ηi−1(p))ηj−1(p) (16)

+ νi−1,j−1(p− 1)
√

1− η2i−1(p)
√

1− η2j−1(p)),

1 ≤ i < j ≤ p, we get the non-random matrix M(p). This matrix is a
symmetric positive definite with all diagonal elements equal to 1. The positive
definiteness of M(p) follows from Lemma 1 (see [11]). We will reformulate
this Lemma 1 in terms of real numbers ηi(p), 1 ≤ i ≤ p − 1 and νij(p − 1),
2 ≤ i < j ≤ p− 1.

Lemma 4.1. If M(p) is a non-random matrix with entries given in (16),
then we have:

det
(
M(p)

)
=
(
1− η21(p)

)(
1− η22(p)

)
. . .
(
1− η2p−1(p)

)
det
(
M(p − 1)

)
.

By consequently applying the last equality to M(p), M(p−1), . . . , M (2)
we get:

det
(
M(p)

)
=
(
1− η21(p)

) (
1− η22(p)

)
. . .
(
1− η2p−1(p)

)
× (1− η21(p− 1)

) (
1− η22(p − 1)

)
. . .
(
1− η2p−2(p− 1)

)
. . .

× (1− η21 (3)
) (

1− η22 (3)
)

× (1− η21 (2)
)
.

Thus for det
(
M(p)

)
we have:
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Theorem 4.1. For the determinant of the matrix M(p) the following
factorization holds:

det
(
M(p)

)
=

p−2∏
m=0

p−m−1∏
i=1

(
1− η2i (p−m)

)
. (17)

Consequently,

det
(
M(p)

)
> 0, (18)

taking into account the inequalities −1 < ηi (p−m) < 1,

p = 2, 3, . . . , 0 ≤ m ≤ p− 2, 1 ≤ i ≤ p−m− 1.

The last inequalities easily follow from definition of the density function of
ηi (p−m) in (11). The positive definiteness of M(p) we can deduce using the
Sylvester’s criterion, i.e.

det
(
M(k)

)
> 0, for k = 1, 2, 3, . . . , p

(here det (M (1)) = 1).

5. A connection between partial correlations and one construction
of the Wishart matrix

Here the relationship between the partial correlations and the presented
Wishart matrix decomposition will be shown. We will use the same notations
as in the paper of Joe (see [12]). Let R = (ρij) be a d-dimensional positive
definite correlation matrix. The diagonal elements are all 1. R can be pa-
rameterized following Joe (see [12]) in terms of ρi,i+1 for i = 1, . . . , d− 1 and
the partial correlations ρj,j+k|j+1...j+k−1 for j = 1, . . . , d− k, k = 2, . . . , d− 1.
We could also write ρj,j+1 = ρj,j+k|j+1...j+k−1 with k = 1 since the indices
j + 1, . . . , j + k − 1 form an empty set if k = 1. In Anderson (see [1]) it can
be found the definition of partial correlations

ρij|kL =
ρij|L − ρik|Lρjk|L√(
1− ρ2ik|L

)(
1− ρ2jk|L

) , (19)

where i, j, k are distinct integers in 1, 2, . . . , d and L is a subset of {1, . . . , d} \
{i, j, k}. From (19) we get

ρij|L = ρik|Lρjk|L + ρij|kL

√(
1− ρ2ik|L

)(
1− ρ2jk|L

)
. (20)

Compare formula (20) and formula (16) we see that the values of ηi−1 (p),
ηj−1 (p) and νi−1,j−1 (p− 1) have the same relations as values of ρik|L, ρjk|L
and ρij|kL. More precisely let p = d. It is easily to see that the non-random
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matrix M (p), has the properties of some correlation matrix R = (ρij) i.e.

there exists a suitable correlation matrix R = (ρij) such that M (p) ≡ (ρij).

From the construction (16) of M (p) we have:

M (p) =

⎛
⎜⎜⎜⎝

1 ν12(p) . . . ν1p(p)
ν12(p)

... Δ(p− 1)
ν1p(p)

⎞
⎟⎟⎟⎠ . (21)

The symmetric (p− 1)-dimensional square matrix Δ (p− 1) has the form(
(Δ (p− 1))ij

)
, where

(Δ(p− 1))ij=

⎧⎪⎪⎨
⎪⎪⎩
ν1i(p)ν1j(p) + νi−1,j−1(p−1)

√
1− ν21i(p)

√
1− ν21j(p),

2 ≤ i < j ≤ p,

1, i = j.

In terms of R using (20) with k = 1 and L empty set we get:

R =

⎛
⎜⎜⎜⎝

1 ρ12 . . . ρ1p
ρ12
... γ(p − 1)

ρ1p

⎞
⎟⎟⎟⎠ ,

γ (p− 1) ≡
(
γ(p− 1)ij

)
,

γ(p− 1)ij =

⎧⎨
⎩ρ1iρ1j + ρij|1

√(
1− ρ21i

) (
1− ρ21j

)
, 2 ≤ i < j ≤ p,

1, i = j.

Consequently, the matrix of partial correlations⎛
⎜⎜⎜⎝

1 ρ23|1 . . . ρ2p|1
1 . . . ρ3p|1

. . .
...
1

⎞
⎟⎟⎟⎠

coincides with the matrix M (p− 1). The same is true for⎛
⎜⎜⎜⎜⎜⎜⎝

1 ρ34|12 ρ35|12 . . . ρ3p|12
1 ρ45|12 . . . ρ4p|12

1
...

. . . ρp−1,p|12
1

⎞
⎟⎟⎟⎟⎟⎟⎠

= M (p− 2)
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and so on. Finally we have that the matrix⎛
⎜⎜⎜⎜⎜⎜⎝

1 ρk,k+1|12...k−1 ρk,k+2|12...k−1 . . . ρk,p|12...k−1

1 ρk+1,k+2|12...k−1 . . . ρk+1,p|12...k−1

1
...

. . . ρp−1,p|12...k−1

1

⎞
⎟⎟⎟⎟⎟⎟⎠

(22)

coincides with the matrix M (p− k + 1), k = 1, 2, . . . , p − 1. For k = p − 1
from (22) we get(

1 ρp−1,p|12...p−2

ρp−1,p|12...p−2 1

)
=

(
1 ν12 (2)

ν12 (2) 1

)
= M (2) .

5.1. One factorization of the determinant of a correlation matrix.

The equality in Lemma 4.1 we can rewrite in terms of elements of M (p)
and R = (ρij):

det
(
M(p)

)
=
(
1− η21(p)

)(
1− η22(p)

)
. . .
(
1− η2p−1(p)

)
det
(
M(p − 1)

)
,

det(R)=
(
1− ρ212

)(
1− ρ213

)
. . .
(
1− ρ21p

)
det

⎛
⎜⎜⎜⎝

1 ρ23|1 . . . ρ2p|1
1 . . . ρ3p|1

. . .
...
1

⎞
⎟⎟⎟⎠

=
(
1− ρ212

) (
1− ρ213

)
. . .
(
1− ρ21p

) (
1− ρ223|1

)
. . .
(
1− ρ22p|1

)

× det

⎛
⎜⎜⎜⎜⎜⎜⎝

1 ρ34|12 ρ35|12 . . . ρ3p|12
1 ρ45|12 . . . ρ4p|12

1
...

. . . ρp−1,p|12
1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

After finite number iteration we get:

det (R) =
(
1− ρ212

) (
1− ρ213

)
. . .

(
1− ρ21p

)
(
1− ρ223|1

) (
1− ρ224|1

)
. . .

(
1− ρ22p|1

)
(
1− ρ234|12

)(
1− ρ235|12

)
. . .
(
1− ρ23p|12

)
. . . . . .(
1− ρ2p−1,p|12...p−2

)
.

This result coincides with the result of Kurowicka and Cooke (see [13]) Theo-
rem 3.2 in the case of canonical vine on p elements.
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5.2. A joint density of the partial correlations.

A next application of our four theorems will be the proof of Theorem 5 of
Joe (see [12]).

According to the consideration on page 2182 of Joe the joint distribution of(
ρ12, ρ23, ρ13|2

)
coincides with the distribution of independent not-identically

Beta distributed respectively B (α1,α1), B (α1,α1), B (α2,α2), where α1 =
α2 +

1
2 . If we choose

α1 =
n− 1

2
, α2 =

n− 2

2
,

the joint distribution of
(
ρ12, ρ23, ρ13|2

)
coincides with the distribution of

(η1 (3) , η2 (3) , η1 (2)).

Indeed, from (11) the distribution of ηi (p−m) is Beta
(
n−m−1

2 , n−m−1
2

)
and ηi (p−m), p = 2, 3, . . . , 0 ≤ m ≤ p − 2, 1 ≤ i ≤ p −m − 1 are inde-
pendent random variables. Consequently (η1(3), η2(3), η1(2)) are independent
beta distributed random variables respectively

Beta

(
n− 1

2
,
n− 1

2

)
, Beta

(
n− 1

2
,
n− 1

2

)
, Beta

(
n− 2

2
,
n− 2

2

)
.

It is evident that(
ρ12, ρ23, ρ13|2

) d
= (η1 (3) , η2 (3) , η1 (2)) .

On the other hand using (13) we have

(ν12 (3) , ν13 (3) , ν12 (2)) ≡ (η1 (3) , η2 (3) , η1 (2)) .

Finally, we get

(ν12 (3) , ν13 (3) , ν12 (2))
d
= (η1 (3) , η2 (3) , η1 (2)) (23)

d
=
(
ρ12, ρ23, ρ13|2

)
.

Let us consider the joint distribution of (ρ12, ρ23, ρ13). From (20) with k = 2
and L empty and (23) we get

(ρ12, ρ23, ρ13)
d
=

(
ρ12, ρ23, ρ12ρ23 + ρ13|2

√(
1− ρ212

) (
1− ρ223

))
d
=

(
η1 (3) , η2 (3) , η1 (3) η2 (3) + η1 (2)

√(
1− η21 (3)

)(
1− η22 (3)

))
d
=

(
ν12 (3), ν13 (3), ν12 (3) ν13 (3)+ν12 (2)

√(
1− ν212(3)

)(
1− ν213(3)

))
d
= (ν12 (3) , ν13 (3) , ν23 (3)) .

It is easy to see by induction in the general case that:
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Theorem 5.1. For the joint distributions of the random vectors below
hold:

(ρ12, ρ23, . . . , ρd−1,d, ρ13|2, ρ24|3, . . . , ρd−2,d|d−1,

ρ14|23, ρ25|34, . . . , ρd−3,d|d−2,d−1, . . . , ρ1,d|2,3,...,d−1)

d (η1 (d) , . . . , ηd−1 (d) , η1 (d− 1) , η2 (d− 1) , . . . , ηd−2 (d− 1) ,

η1 (d− 2) , . . . , ηd−3 (d− 2) , . . . , η1 (2))

and
(ρ12, ρ23, . . . , ρd−1,d, ρ13, ρ24, . . . , ρd−2,d, . . . , ρ1d)

d (ν12 (d) , . . . , ν1d (d) , ν23 (d) , . . . , ν2d (d) , . . . , νd−1,d (d)) .
(24)

Now we will formulate a result of Harry Joe (see [12]):

Theorem 5.2. If αk = αd−1 + 1
2 (d− 1− k) , k = 1, . . . , d − 1 and

ρi,i+k|i+1...i+k−1 is Beta (αk, αk) on (−1, 1) for 1 ≤ i < i + k ≤ d, then the
joint density of (ρij) becomes

c−1
d

(
det (rij)1≤i,j≤d

)αd−1−1

on the set of correlation matrices (rij), where the normalizing constant cd is

2

d−1∑

k=1
(2αd−1−2+d−k)(d−k)

×
d−1∏
k=1

[
B

(
αd−1 +

1

2
(d− 1− k) , αd−1 +

1

2
(d− 1− k)

)]d−k

.

If αd−1 = 1 and αk = 1
2 (d+ 1− k) for k = 1, . . . , d − 2 leading to uniform

joint density for {ρij, i < j}, then normalizing constant is

cd = 2

d−1∑

k=1
(d−k)2

×
d−1∏
k=1

[
B

(
1

2
(d− k + 1) ,

1

2
(d− k + 1)

)]d−k

= 2

d−1∑

k=1
k2

×
d−1∏
k=1

[
B

(
1

2
(k + 1) ,

1

2
(k + 1)

)]k
,

and the recursion is

cd = cd−1 × 2(d−1)2 ×
[
B

(
d

2
,
d

2

)]d−1

.

P r o o f. (Sketch of proof) Using (3), (4) and (5) for the joint density
function of random variables

(ν12 (d) , . . . , ν1d (d) , ν23 (d) , . . . , ν2d (d) , . . . , νd−1,d (d)) ,
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we get:

fM ((rij)) =

(
Γ
(
n
2

))d−1

π
d(d−1)

4

d−1∏
i=1

Γ
(
n−i
2

)(det (rij))n−d−1
2 IA ((rij)) . (25)

On the other hand, substituting

αk =
n− k

2
, k = 1, . . . , d− 1,

we get the same expression

αk = αd−1 +
1

2
(d− 1− k) , k = 1, . . . , d− 1

as in Joe (see [12]). With new values αk, k = 1, . . . , d− 1 the joint density in
(25) becomes

fM ((rij)) =

(
Γ
(
αd−1 +

d−1
2

))d−1

π
d(d−1)

4

d−1∏
k=1

Γ (αk)

(det (rij))
αd−1−1IA ((rij)) . (26)

If we have randomized value ρi,i+k|i+1...i+k−1 as Beta (αk, αk) on (−1, 1) for 1 ≤
1≤i<i+k≤d, and suppose independence of ρi,i+k|i+1...i+k−1 for 1 ≤ i < i+k ≤ d,
then taking into account (24) we get that the joint density of

(ρ12, ρ23, . . . , ρd−1,d, ρ13, ρ24, . . . , ρd−2,d, . . . , ρ1,d)

coincides with the joint density of

(ν12 (d) , . . . , ν1d (d) , ν23 (d) , . . . , ν2d (d) , . . . , νd−1,d (d))

given in (25), i.e. the joint density of

(ρ12, ρ23, . . . , ρd−1,d, ρ13, ρ24, . . . , ρd−2,d, . . . , ρ1,d)

is

c−1
d

(
det (rij)1≤i,j≤d

)αd−1−1

where

c−1
d =

(
Γ
(
αd−1 +

d−1
2

))d−1

π
d(d−1)

4

d−1∏
k=1

Γ (αk)

.

To prove Theorem 5.2 we need to establish the identity(
Γ
(
αd−1 +

d−1
2

))d−1

π
d(d−1)

4

d−1∏
k=1

Γ (αk)

(27)
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=

{
2

d−1∑

k=1

(2αd−1−2+d−k)(d−k)

×
d−1∏
k=1

[
B

(
αd−1 +

1

2
(d− 1− k) , αd−1 +

1

2
(d− 1− k)

)]d−k}−1

.

Using the properties of the Beta function

B (p, q) =
Γ (p) Γ (q)

Γ (p+ q)
, p > 0, q > 0

and Γ (p) = (p− 1) Γ (p− 1) for p > 1, it is easy to verify (27). �

Corollary 5.1. Let R = (ρij) be a d-dimensional correlation matrix
generated in Theorem 5.2. Let τ1, τ2, . . . , τd be independent identically dis-
tributed random variables with n degrees of freedom. Suppose the sets of ran-
dom variables {ρij, 1 ≤ i < j ≤ d} and {τ1, τ2, . . . , τd} are independent. The
random matrix

A = diag (
√
τ1,

√
τ2, . . . ,

√
τd)R diag (

√
τ1,

√
τ2, . . . ,

√
τd)

has the Wishart distribution Wd (n, I) under the conditions of Theorem 5.2
and assuming αd−1 =

s
2 , where s is positive integer. Here n = s+ d− 1.

P r o o f. According to Theorem 5.1 we have that the joint density of

(ρ12, ρ23, . . . , ρd−1,d, ρ13, ρ24, . . . , ρd−2,d, . . . , ρ1d)

coincides with the joint density of

(ν12 (d) , . . . , ν1d (d) , ν23 (d) , . . . , ν2d (d) , . . . , νd−1,d (d))

given in (25). From Theorem 3.2 follows that the sequence

(ρ12, ρ23, . . . , ρd−1,d, ρ13, ρ24, . . . , ρd−2,d, . . . , ρ1,d)

has a distribution Ψ (d, n). Using equality

V = diag (
√
τ1,

√
τ2, . . . ,

√
τd) M diag (

√
τ1,

√
τ2, . . . ,

√
τd)

and (1), (6) we can conclude that the matrix A has a Wishart distribution
Wd (n, I). �

From the above considerations it is easy to obtain the Joe’s result (a) on
page 2183 ( see [12]) about the volume of the set of the d-dimensional positive

definite correlation matrices in
(d
2

)
dimensional space.



RANDOM CORRELATION MATRICES . . . 261

Corollary 5.2. The Lesbegue volume of the set of
(d
2

)
correlation ma-

trices in
(d
2

)
-dimensional space is:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

π
d2−1

4

(d−1)/2∏

m=1
Γ(2m)

2
(d−1)2

4 Γd−1( d+1
2 )

, if d is odd,

π
d(d−2)

4

2
3d2−4d

4 Γd( d
2)

(d−2)/2∏

m=1
Γ(2m)

Γd−1(d)
, if d is even.

(28)

P r o o f. Let αd−1 = 1, then the joint density in (26) becomes(
Γ
(
1 + d−1

2

))d−1

π
d(d−1)

4

d−1∏
k=1

Γ
(
1 + 1

2 (d− 1− k)
)(det (rij))0IA ((rij)) . (29)

Thus we have a uniform distribution over the d × d correlation matrices de-
pending on

(d
2

)
values rij , 1 ≤ i < j ≤ d. Consequently the volume V of all

correlation matrices in
(d
2

)
Euclidian space coincides with the reciprocal value

of the coefficient in (29), i.e.

V =

π
d(d−1)

4

d−1∏
k=1

Γ
(
d−k+1

2

)
(
Γ
(
d+1
2

))d−1
.

It is easy to find that V is equal to (28). �

Example. When d = 3 the volume of correlation matrix

R =

⎛
⎝ 1 x y

x 1 z
y z 1

⎞
⎠ ,

where
−1 < x < 1, −1 < y < 1, −1 < z < 1, (30)

and
det (R) > 0, i.e. 1− x2 − y2 − z2 + 2xyz > 0

is equal to π2

2 . If we compare the volume of the figure depicted by the points
(x, y, z) satisfying (30), and the volume of a ball inscribed in a cube (−1, 1)×
(−1, 1) × (−1, 1), we get 3π

8 , that is greater than 1, i.e. the volume of our
figure is bigger then the volume of the inscribed ball.

Let us consider the Joe’s construction of random correlation matrices (see
[12], Theorem 5.2). On the constant αd−1 we have only the constraint αd−1 >
0. If we put the condition αd−1 =

l
2 where l is a positive integer we get:
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Corollary 5.3. Let R = (ρij) be a d-dimensional correlation matrix.
Under the conditions of Theorem 5.2 and supposing αd−1 of the form

αd−1 =
l

2
, (31)

where l is a positive integer then R
d
=M, where M is the matrix in (5).

P r o o f. Using Theorem 3.1, Theorem 3.2, Theorem 3.3, Theorem 5.1,
Theorem 5.2 it is easy to conclude that conditions (31) and

αk = αd−1 +
1

2
(d− 1− k) , k = 1, . . . , d− 1

are sufficient to get the coincidence of the joint distribution of (ρij) and the
joint distribution of M from (5). �

Finally, we will give an example connected with the above consideration.

Example. Let ξ11, ξ21, ξ12, ξ22, ξ13, ξ23 be independent N (0, 1). Con-
sider the correlation matrix of the random vectors ζ1 = (ξ11, ξ12, ξ13), ζ2 =
(ξ21, ξ22, ξ23). Then the correlation matrix of ζ1 and ζ2 is

R =

(
1 ρ12
ρ12 1

)
=

(
1 ξ11ξ21+ξ12ξ22+ξ13ξ23√

ξ211+ξ212+ξ213
√

ξ221+ξ222+ξ223
. 1

)

≡ M =

(
1 ν12
ν12 1

)
.

According to equality (4) we get

fM

((
1 x12
x12 1

))

=

⎧⎪⎪⎨
⎪⎪⎩
C3,2

⎛
⎝det

(
1 x12

x12 1

) 3−2−1
2

⎞
⎠ , −1 ≤ x12 ≤ 1,

0 , otherwise.

(32)

In this case the set of all positive definite matrices coincide with the set of
all random variables with values in (−1, 1). On the other hand the random
variable ρ12 has uniform distribution, consequently ρ12 is uniformly distributed
on the interval (−1, 1).

6. Conclusions

In the article, a decomposition of a matrix with a Wishart distribution
Wp (n,Σ) by independent random variables on which the distributions are
found is considered. The relation of this decomposition to correlations and
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partial correlations is shown. A similar decomposition can also be applied to
a generalized Wishart distribution (with non-integer degrees of freedom).

The proposed recurrence relation between matrices with a Wishart distri-
bution can be used to generate matrices with this distribution.
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results with him.
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