International Journal of Applied Mathematics

Volume 37 No. 2 2024, 239–245

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

doi: http://dx.doi.org/10.12732/ijam.v37i2.8

GENERALIZATION OF A VARIANCE-GAMMA-DRIVEN INTEREST RATE DERIVATIVE

A. M. Udoye ^{1,§}, M. F. Salami ²

¹ Department of Mathematics Federal University Oye-Ekiti Ekiti, P.M.B. 373, NIGERIA

² Department of Mathematics
University of Arkansas-Pulaski Technical College
North Little Rock, Arkansas, AR 72118, USA

Abstract

We derive a generalized Vasicek short rate model under a variance gamma Lévy process by applying Itô lemma, and use the derived model to obtain a generalized interest rate derivative motivated by the variance gamma process.

MSC 2020: 91G30, 33E30

Key Words and Phrases: interest rates, Lévy process, variance gamma process, zero-coupon bond

1. Introduction

The Lévy processes have contributed to better modelling of phenomenon in different fields (Wei [17], Udoye & Ekhaguere [13], Udoye et al [14]). A variance gamma (VG) process is a type of Lévy process that was launched by Madan and Seneta [7] in order to take care of unexpected occurrences which can lead to inadequate modelling of a given phenomenon. The VG process

Received: October 18, 2023

© 2024 Diogenes Co., Sofia

is acquired by changing the time of an arithmetic Brownian motion using a gamma process. Seneta [10] and Rathgeber [8] highlighted certain aspects of the process. Since its introduction, it has been applied in different fields which include mathematical finance (Bayazit & Nolder [3], Seneta [11], and Udoye et al [12], [15]), and engineering (Salem [9]), etc. Moreover, Hoyyi [6] discussed the process under Monte-Carlo simulation with closed form method for European call option price valuation. Aguilar [1] discussed different pricing tools of the process, while Azmoodeh et al. [2] emphasized its optimal approximation under second Wiener chaos. Furthermore, Bee et al. [4] highlighted likelihood risk estimates for models of the process. Moreover, Fischer [5] discussed update on distribution theory of the process. This work generalizes the work of Udoye and Ekhaguere [13] who derived an extended Vasicek model under a VG process and used the derived expression to obtain an interest rate derivative driven by the VG process.

In what follows, Section 2 considers important definitions and tools needed in deriving our result. Section 3 concerns the results, while Section 4 concludes the work.

2. Mathematical Notion

DEFINITION 2.1. The dynamics of a Vasisek model [16] of an interest rate is given by

$$dr_t = \varpi(\beta - r_t)dt + \sigma dX_t,\tag{1}$$

where ϖ, β and σ denotes speediness of mean reversal, long-standing mean rate and volatility of the interest rate, while X_t denotes a Lévy process.

Definition 2.2. The dynamics of an interest rate derivative called zerocoupon bond price $P = P_t$ is given by

$$dP = r_t P dt + \sigma P dX_t, \tag{2}$$

where σ is the volatility of the interest rate while r_t is the interest rate at time t.

Lemma 2.1. (Itô formula for Lévy processes)

Let $X = X_t, t \ge 0$ be an n-dimensional Lévy process with characteristic triplet $(\mathbf{b}, \sigma^2, \nu)$ and a function $f \in C^{1,2}$ being a map $[0, T] \times \mathbb{R}^n \to \mathbb{R}$. Then,

$$f(t, X_t) = f(0, 0) + \int_0^t \frac{\partial f}{\partial s}(s, X_s) ds + \int_0^t \sum_{1 \le i \le n} \frac{\partial f}{\partial x_i}(s, X_{s-}) \mathbf{b}_i(t) dX_s^i$$
$$+ 0.5 \int_0^t \sum_{1 \le i, j \le n} \sigma_{ij}^2 \frac{\partial^2 f}{\partial x_i \partial x_j}(s, X_s) ds + \sum_{0 \le s \le t}^{\Delta X_s \ne 0} \left[f(s, X_{s-}) + \Delta X_s) - f(s, X_{s-}) - \sum_{1 \le i \le n} \Delta X_s^i \frac{\partial f}{\partial x_i}(s, X_{s-}) \right],$$

where $\Delta X_s = X_{s_+} - X_{s_-}$.

3. Results

To obtain our results, let an extended VG process be given by

$$X_t = \omega \lambda t + \theta [\lambda G_t + \rho t] + \widetilde{\sigma} \sqrt{\lambda G(t) + \rho t} Z, \tag{3}$$

where $\omega = \frac{1}{\kappa} \ln(1 - \theta \kappa - \frac{1}{2} \widetilde{\sigma}^2 \kappa)$, κ takes care of variance of the gamma process while θ and $\widetilde{\sigma}$ denote parameter for skewness and volatility, respectively, of the arithmetic Brownian motion used to obtain the VG process. G = G(t) and Z = Z(t) denote a gamma random variable and a Gaussian random variable, respectively. λ and ρ are deterministic parameters such that $0 \le \lambda$, $\rho \le 1$.

Theorem 3.1. The generalized Vasicek model driven by a VG process is given by

$$r_{t} = r_{0}e^{-\varpi t} + \beta(1 - e^{-\varpi t}) + \sigma\left(\frac{\omega\lambda}{\varpi}(1 - e^{-\varpi t})\right) + \frac{\theta\rho}{\varpi}(1 - e^{-\varpi t}) + \theta\lambda \sum_{0 \le s \le t} \Delta G(s)e^{-\varpi(t-s)} + \widetilde{\sigma} \sum_{0 \le s \le t} \Delta\sqrt{\lambda G(s) + \rho s}e^{-\varpi(t-s)}Z\right),$$

$$(4)$$

where $\Delta X_s = X_{s_{+}} - X_{s_{-}}$.where $\Delta G(s) = G(s_{+}) - G(s_{-})$.

 ${\bf P}$ r o o f. Applying Itó's lemma on equation (1) and evaluating, it follows that

$$r_t = r_0 e^{-\varpi t} + \beta (1 - e^{-\varpi t}) + \sigma \int_0^t e^{-\varpi (t-s)} dX_s.$$

From equation (3),

$$dX_t = \omega \lambda dt + \theta \lambda \Delta G_t + \theta \rho dt + \widetilde{\sigma} \Delta \sqrt{\lambda G(t) + \rho t} Z. \tag{5}$$

Thus,

$$\int_{0}^{t} e^{-\varpi(t-s)} dX_{s} = \omega \lambda \int_{0}^{t} e^{-\varpi(t-s)} ds + \theta \lambda \sum_{0 \leq s \leq t} \Delta G(s) e^{-\varpi(t-s)}$$

$$+ \theta \rho \int_{0}^{t} e^{-\varpi(t-s)} ds + \widetilde{\sigma} \sum_{0 \leq s \leq t} \Delta \sqrt{\lambda G(s) + \rho s} e^{-\varpi(t-s)} Z$$

$$= \frac{\omega \lambda}{\varpi} (1 - e^{-\varpi t}) + \theta \rho \left[\frac{e^{-\varpi(t-s)}}{\varpi} \right]_{0}^{t} + \theta \lambda \sum_{0 \leq s \leq t} \Delta G(s)$$

$$\times e^{-\varpi(t-s)} + \widetilde{\sigma} \sum_{0 \leq s \leq t} \Delta \sqrt{\lambda G(s) + \rho s} e^{-\varpi(t-s)} Z.$$

Hence, the result follows.

THEOREM 3.2. The generalized zero-coupon bond price driven by a VG process is given by

$$P(t,T) = \exp\left(-\left(\frac{-r_0}{\varpi}(e^{-\varpi T} - e^{-\varpi t}) + \beta[T - t] + \frac{\beta}{\varpi}(e^{-\varpi T} - e^{-\varpi t})\right) + \frac{\sigma\omega\lambda}{\varpi}[T - t] + \frac{\sigma\omega\lambda}{\varpi}\left(\frac{1}{\varpi}(e^{-\varpi T} - e^{-\varpi t})\right) + \frac{\sigma\theta\rho}{\varpi}[T - t] + \frac{\sigma\theta\rho}{\varpi}\left(\frac{1}{\varpi}(e^{-\varpi T} - e^{-\varpi t})\right) + \sigma\theta\lambda$$

$$\times \sum_{t \leq u \leq T} \sum_{0 \leq s \leq t} \Delta G(s)e^{-\varpi(u - s)} + \sigma\tilde{\sigma} \sum_{t \leq u \leq T} \sum_{0 \leq s \leq t} \Delta$$

$$\times \sqrt{\lambda G(s) + \rho s}e^{-\varpi(u - s)}Z + \sigma\omega\lambda[T - t] + \sigma\theta\rho[T - t]$$

$$+ \sigma\theta\lambda \sum_{t \leq u \leq T} \Delta G(u) + \sigma\tilde{\sigma} \sum_{t \leq u \leq T} \Delta\sqrt{\lambda G(u) + \rho u}Z$$

$$-\frac{\sigma^2}{2} \sum_{t \leq u \leq T} (\lambda\theta\Delta G(u) + \tilde{\sigma}\Delta\sqrt{\lambda G(u) + \rho u}Z)^2\right).$$
(6)

P r o o f. From the dynamics of a zero-coupon bond price given by equation (2),

$$dP = r_t P dt + \sigma P dX_t.$$

From Itô's lemma,
$$F(t,x) = \ln x$$
, $\frac{\partial F}{\partial t} = 0$, $\frac{\partial F}{\partial x} = \frac{1}{x}$. Thus,
$$d \ln P = (r_t dt + \sigma dX_t) - \frac{1}{2}\sigma^2 (dX_t)^2$$
$$= r_t dt + \sigma dX_t - \frac{1}{2}\sigma^2 \langle dX_t, dX_t \rangle,$$

where dX_t is given by equation (5). Moreover,

$$(dX_t)^2 = (\theta \lambda \Delta G_t + \widetilde{\sigma} \Delta \sqrt{\lambda G(t) + \rho t} Z)^2.$$

This implies that

$$d \ln P = r_t dt + \sigma(\omega \lambda dt + \theta \lambda \Delta G_t + \theta \rho dt + \widetilde{\sigma} \Delta \sqrt{\lambda G(t) + \rho t} Z) - \frac{1}{2} \sigma^2 (\theta \lambda \Delta G_t + \widetilde{\sigma} \Delta \sqrt{\lambda G(t) + \rho t} Z)^2.$$

With P(T,T) = 1, integrating gives

$$\begin{split} \ln P(t,T) &= - \bigg(\int_t^T r_u du + \sigma \omega \lambda \int_t^T du + \sigma \theta \rho \int_t^T du \\ &+ \sigma \theta \lambda \sum_{t \leq u \leq T} \Delta G(u) + \sigma \widetilde{\sigma} \sum_{t \leq u \leq T} \Delta \sqrt{\lambda G(u) + \rho u} Z \\ &- \frac{\sigma^2}{2} \sum_{t \leq u \leq T} (\lambda \theta \Delta G(u) + \widetilde{\sigma} \Delta \sqrt{\lambda G(u) + \rho u} Z)^2 \bigg) \\ &= - \bigg(\frac{-r_0}{\varpi} (e^{-\varpi T} - e^{-\varpi t}) + \beta [T - t] + \frac{\beta}{\varpi} (e^{-\varpi T} - e^{-\varpi t}) \\ &+ \frac{\sigma \omega \lambda}{\varpi} [T - t] + \frac{\sigma \omega \lambda}{\varpi} \Big(\frac{1}{\varpi} (e^{-\varpi T} - e^{-\varpi t}) \Big) + \frac{\sigma \theta \rho}{\varpi} [T - t] \\ &+ \frac{\sigma \theta \rho}{\varpi} \Big(\frac{1}{\varpi} (e^{-\varpi T} - e^{-\varpi t}) \Big) + \sigma \theta \lambda \sum_{t \leq u \leq T} \sum_{0 \leq s \leq t} \Delta G(s) \\ &\times e^{-\varpi (u - s)} + \sigma \widetilde{\sigma} \sum_{t \leq u \leq T} \sum_{0 \leq s \leq t} \Delta \sqrt{\lambda G(s) + \rho s} e^{-\varpi (u - s)} Z \\ &+ \sigma \omega \lambda [T - t] + \sigma \theta \rho [T - t] + \sigma \theta \lambda \sum_{t \leq u \leq T} \Delta G(u) \\ &+ \sigma \widetilde{\sigma} \sum_{t \leq u \leq T} \Delta \sqrt{\lambda G(u) + \rho u} Z \\ &- \frac{\sigma^2}{2} \sum_{t \leq u \leq T} (\lambda \theta \Delta G(u) + \widetilde{\sigma} \Delta \sqrt{\lambda G(u) + \rho u} Z)^2 \bigg). \end{split}$$

Thus,

$$\ln P(t,T) = -\left(\frac{-r_0}{\varpi}(e^{-\varpi T} - e^{-\varpi t}) + \beta[T - t] + \frac{\beta}{\varpi}(e^{-\varpi T} - e^{-\varpi t})\right) + \frac{\sigma\omega\lambda}{\varpi}[T - t] + \frac{\sigma\omega\lambda}{\varpi}\left(\frac{1}{\varpi}(e^{-\varpi T} - e^{-\varpi t})\right) + \frac{\sigma\theta\rho}{\varpi}[T - t] + \frac{\sigma\theta\rho}{\varpi}\left(\frac{1}{\varpi}(e^{-\varpi T} - e^{-\varpi t})\right) + \sigma\theta\lambda$$

$$\times \sum_{t \leq u \leq T} \sum_{0 \leq s \leq t} \Delta G(s)e^{-\varpi(u - s)} + \sigma\tilde{\sigma} \sum_{t \leq u \leq T} \sum_{0 \leq s \leq t} \Delta$$

$$\times \sqrt{\lambda G(s) + \rho s}e^{-\varpi(u - s)}Z + \sigma\omega\lambda[T - t] + \sigma\theta\rho[T - t]$$

$$+ \sigma\theta\lambda \sum_{t \leq u \leq T} \Delta G(u) + \sigma\tilde{\sigma} \sum_{t \leq u \leq T} \Delta\sqrt{\lambda G(u) + \rho u}Z$$

$$- \frac{\sigma^2}{2} \sum_{t \leq u \leq T} (\lambda\theta\Delta G(u) + \tilde{\sigma}\Delta\sqrt{\lambda G(u) + \rho u}Z)^2 \right).$$

Hence, the result in equation (6) follows by taking exponential of the sides of the equation. \Box

4. Conclusion

The generalized version of Vasicek model driven by a variance gamma process and its corresponding interest rate derivative have been derived. These provide a wider atmosphere for different phenomenon to be captured in a financial instrument.

References

- [1] J.P. Aguilar, Some pricing tools for the variance-gamma model, *Int. J. Theor. Appl. Finance*, **23** (2020), 2050025.
- [2] E. Azmoodeh, P. Eichelsbacher and C. Thäle, Optimal variance-gamma approximation on the second Wiener chaos, *J. Funct. Anal.*, **282** (2022), Art. 109450.
- [3] D. Bayazit and C.A. Nolder, Malliavin calculus for Lévy markets and new sensitivities, *Quantitative Finance*, **13**, No 8 (2013), 1257-1287.
- [4] M. Bee, M.M. Dickson and F. Santi, Likelihood-based risk estimation for variance-gamma models, *Stat. Method. Appl.*, **27** (2018), 69-89.
- [5] A. Fischer, R.E. Gaunt and A. Sarantsev, The variance-gamma distribution: A review, arXiv:2303.05615v1 (2023).

- [6] A. Hoyyi, A, Abdurakman, D. Rosach, Variance-gamma process with Monte-Carlo simulation and closed form approach for European call option price determination, *Media Statistika*, 14, No 2 (2022), 183-193.
- [7] D.B. Madan and E. Seneta, The variance gamma (V.G.) model for share market returns, *The Journal of Business*, **63**, No 4 (1990), 511-524.
- [8] A.W. Rathgeber, S. Johannes and S. Stöckl, Modelling share returns an empirical study on the variance gamma model, *J. Econ. Finance*, **40** (2016), 653-682.
- [9] M.B. Salem, G. Deloux, and Fouladirad, Modelling and prognostics of system degradation using variance gamma process, Proceedings of the 30th European Society and Reliability Conference & the 15th Probabilistic Safety Assessment and Management Conference, Singapore (2020), 886-2893.
- [10] E. Seneta, Fitting the variance-gamma model to financial data, J. Appl. Probab., 41 (2004), 177-187.
- [11] E. Seneta, The early years of the variance-gamma process. In: M.C. Fu, R.A. Jarrow, J.J. Yen and R.J. Elliot (Eds), *Advances in Mathematical Finance*, Birkhauser, Boston (2007), 3-19.
- [12] A.M. Udoye, L.S. Akinola, M.N. Annorzie and Y. Yakubu, Sensitivity analysis of variance Gamma parameters for interest rate derivatives, *IAENG Journal of Applied Mathematics*, **52**, No 2 (2022), 492-499.
- [13] A.M. Udoye and G.O.S. Ekhaguere, Sensitivity analysis of a class of interest rate derivatives in a Lévy market, *Palestine Journal of Mathematics*, 11, No 2 (2022), 159-176.
- [14] A.M. Udoye, C.P. Ogbogbo and L.S. Akinola, Jump-diffusion process of interest rates and the Malliavin calculus, *International Journal of Applied Mathematics*, 34, No 1 (2021), 183-202; doi:10.12732/ijam.v34i1.10.
- [15] A.M. Udoye, Y. Yakubu, E.O. Adeyefa, E.O. Ogbaji and L.S. Akinola, Ornstein-Uhlenbeck operator for correlated random variables, *IAENG International Journal of Computer Science*, 48, No 4 (2021), 925-929.
- [16] O.A. Vasicek, An equilibrium characterization of the term structure, *Journal of Financial Economics*, **5** (1977), 177-188.
- [17] C. Wei, Parameter estimation for discretely observed Cox-ingersoll-Ross model with small Lévy noises, *Engineering Letters*, **27**, No 3 (2019), 631-638.