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Abstract

We derive a generalized Vasicek short rate model under a variance gamma
Lévy process by applying [t6 lemma, and use the derived model to obtain a
generalized interest rate derivative motivated by the variance gamma process.
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1. Introduction

The Lévy processes have contributed to better modelling of phenomenon
in different fields (Wei [17], Udoye & Ekhaguere [13], Udoye et al [14]). A
variance gamma (VG) process is a type of Lévy process that was launched by
Madan and Seneta [7] in order to take care of unexpected occurrences which
can lead to inadequate modelling of a given phenomenon. The VG process
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is acquired by changing the time of an arithmetic Brownian motion using a
gamma process. Seneta [10] and Rathgeber [8] highlighted certain aspects of
the process. Since its introduction, it has been applied in different fields which
include mathematical finance (Bayazit & Nolder [3], Seneta [11], and Udoye et
al [12], [15]), and engineering (Salem [9]), etc. Moreover, Hoyyi [6] discussed
the process under Monte-Carlo simulation with closed form method for Euro-
pean call option price valuation. Aguilar [I] discussed different pricing tools of
the process, while Azmoodeh et al. [2] emphasized its optimal approximation
under second Wiener chaos. Furthermore, Bee et al. [4] highlighted likelihood
risk estimates for models of the process. Moreover, Fischer [5] discussed up-
date on distribution theory of the process. This work generalizes the work of
Udoye and Ekhaguere [13] who derived an extended Vasicek model under a VG
process and used the derived expression to obtain an interest rate derivative
driven by the VG process.

In what follows, Section 2 considers important definitions and tools needed
in deriving our result. Section 3 concerns the results, while Section 4 concludes
the work.

2. Mathematical Notion

DEFINITION 2.1. The dynamics of a Vasisek model [16] of an interest rate
is given by
d"f’t ZW(,B—Tt)dt+UdXt, (1)
where w, 8 and o denotes speediness of mean reversal, long-standing mean
rate and volatility of the interest rate, while X; denotes a Lévy process.

DEFINITION 2.2. The dynamics of an interest rate derivative called zero-
coupon bond price P = P, is given by

dP = Ttpdt + O'PdXt, (2)

where o is the volatility of the interest rate while r; is the interest rate at time
t.

LEMMA 2.1. (Ito formula for Lévy processes)
Let X = X;,t > 0 be an n-dimensional Lévy process with characteristic
triplet (b, o?,v) and a function f € C*? being a map [0,T] x R — R. Then,
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F(t, X4) = £(0,0) /8 (s, Xs) ds+/ >3 8st b;(t)d X!

0 1<i<n
AX#£0
+05/ f 3de+Z[sX8_
0 1<ij<n 0<s<t

+AX,) - - ) AXI )}7

1<i<n

where AX, = X, — X

3. Results

To obtain our results, let an extended VG process be given by

Xt = wAt + 0[AG + pt] + 5/ AG(t) + ptZ, (3)

1 1. .
wherew = —In(1 — 6k — 50%), k takes care of variance of the gamma process
K
while 8 and & denote parameter for skewness and volatility, respectively, of the
arithmetic Brownian motion used to obtain the VG process. G = G(t) and
Z = Z(t) denote a gamma random variable and a Gaussian random variable,
respectively. A and p are deterministic parameters such that 0 < A\, p < 1.

THEOREM 3.1. The generalized Vasicek model driven by a VG process is
given by
A
re =roe” T+ B(1 —e T + O'(w (1—e ™
w

9P —wt —w(t—s)
+—(1—e™) +0A > AG(s)e

0<s<t
+o Z AV AG(s) + pse‘w(t_s)Z>,
0<s<t
where AXy = X,, — X,_.where AG(s) = G(s1) — G(s_).

P r oo f. Applying Ité’s lemma on equation (1) and evaluating, it follows
that

t
Ty =roe T+ B(1 — e ) + a/ e =t=s)gx, .
0
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From equation (3)),

dX; = wAdt + ONAG, + Opdt + A/ AG(t) + ptZ. (5)
Thus,
t t
/ e 94X, = w)\/ e 7t=5) ds 4+ O Z AG(s)e” =9
0 0 0<s<t
t
+6p / e ™ ds +5 > AVAG(s) + pse = 7
0 0<s<t
WA e (t=5)7¢
=Z(1-e")+0p [7] + 6 Z AG(s)
“ “ 0 0<s<t
x e”@=s) L5 Z AVAG(s) + pse =9 7.
0<s<t
Hence, the result follows. O

THEOREM 3.2. The generalized zero-coupon bond price driven by a VG
process is given by

P(t,T) = exp < — <_?TO(6_WT —e Y + BT —t] + g(e_WT

A Al
_ e—wt) + &[T _ t] + &(_(e—wT _ e—wt))
w w w
0
+ 2Py
w w w

X > Y AG(s)e M 405 Y DA

t<u<T 0<s<t t<u<T 0<s<t (6)

a0p (i(e_WT —e ") + obA

x /AG(s) + pse W) Z 4 GwA[T — t] + 00p[T — 1]

+o0X Y AGu)+05 > AVAG(u) + puZ

t<u<T t<u<T
O'2 ~
-5 > (MAG(u) + 5AVAG(u) + puZ)2>>.
t<u<T

P r o o f. From the dynamics of a zero-coupon bond price given by equa-

tion (2I),
dP = rPdt + o PdX;.
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OF oF 1
E = O, % = ; ThllS,

From Itd’s lemma, F(t,z) = Inz,

1
dln P = (rydt + 0dX;) — 502(dXt)2
1
= rydt + odX; — 5a2<dXt, dX;),

where dX; is given by equation (B)). Moreover,

(dX)? = (OAAG, + FA/AG(t) + ptZ)>.
This implies that
dIn P = rydt + o(wAdt + ONAG + Opdt + AN/ AG(t) + ptZ)

1
- 502(9)\AGt + GAVAG(t) + ptZ)>2.

With P(T,T) = 1, integrating gives

T T T
InP(t,T) = —</ rydu + UW)\/ du + 09p/ du
t t t
+o0x Y AGu)+05 > AVAG(u) + puZ

t<u<T t<u<T

7 > (MAG(u) +5AVAG(u) + puZ)2>
2 t<u<T
=— <_?r0(e_WT —e T+ BT —t] + g(e_WT —e ™

oW oW (i Lﬁp

+—[T -1+ (el —e ™)) +

w w

1 Lop(i(e—wT . e—wt)) + of )\ Z Z AG(S)

w w
t<u<T 0<s<t

x e~ ®Us) 4 o5 Z Z AVAG(s) + pse” =8z

t<u<T 0<s<t

+ owA[T —t] + obp[T — t] + oA Z AG(u)

t<u<T
+o0 Z AV AG(u) + puZ

t<u<T

_ "; S (MAG(u) + 5AVAGw) + puZ)2>.

t<u<T

[T -1
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Thus,
InP(t,T)=— _—To(e_WT —e Y+ BT —t] + é(e_wT
’ w w
ot oW B owA 1 op o
e )+—w r t]+—w (w(e e ™)
otp 0p 1, r
+ —[T —t]+ —(=(e —e ™)) + ofA
w w \w
x Y > AG)e T 405 Y YA
t<u<T 0<s<t t<u<T 0<s<t

x /AG(s) + pse ) Z 4 gw[T — t] + o0p[T — 1]

+o0X Y AGu)+05 Y AVAG(u) + puZ

t<u<T t<u<T

o? ~
-5 > (MAG(u) + 5AVAG(u) + puZ)2>.
t<u<T
Hence, the result in equation (@) follows by taking exponential of the sides of
the equation. O

4. Conclusion

The generalized version of Vasicek model driven by a variance gamma
process and its corresponding interest rate derivative have been derived. These
provide a wider atmosphere for different phenomenon to be captured in a
financial instrument.
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