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Abstract

We derive a generalized Vasicek short rate model under a variance gamma
Lévy process by applying Itô lemma, and use the derived model to obtain a
generalized interest rate derivative motivated by the variance gamma process.
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1. Introduction

The Lévy processes have contributed to better modelling of phenomenon
in different fields (Wei [17], Udoye & Ekhaguere [13], Udoye et al [14]). A
variance gamma (VG) process is a type of Lévy process that was launched by
Madan and Seneta [7] in order to take care of unexpected occurrences which
can lead to inadequate modelling of a given phenomenon. The VG process
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is acquired by changing the time of an arithmetic Brownian motion using a
gamma process. Seneta [10] and Rathgeber [8] highlighted certain aspects of
the process. Since its introduction, it has been applied in different fields which
include mathematical finance (Bayazit & Nolder [3], Seneta [11], and Udoye et
al [12], [15]), and engineering (Salem [9]), etc. Moreover, Hoyyi [6] discussed
the process under Monte-Carlo simulation with closed form method for Euro-
pean call option price valuation. Aguilar [1] discussed different pricing tools of
the process, while Azmoodeh et al. [2] emphasized its optimal approximation
under second Wiener chaos. Furthermore, Bee et al. [4] highlighted likelihood
risk estimates for models of the process. Moreover, Fischer [5] discussed up-
date on distribution theory of the process. This work generalizes the work of
Udoye and Ekhaguere [13] who derived an extended Vasicek model under a VG
process and used the derived expression to obtain an interest rate derivative
driven by the VG process.

In what follows, Section 2 considers important definitions and tools needed
in deriving our result. Section 3 concerns the results, while Section 4 concludes
the work.

2. Mathematical Notion

Definition 2.1. The dynamics of a Vasisek model [16] of an interest rate
is given by

drt = �(β − rt)dt+ σdXt, (1)

where �,β and σ denotes speediness of mean reversal, long-standing mean
rate and volatility of the interest rate, while Xt denotes a Lévy process.

Definition 2.2. The dynamics of an interest rate derivative called zero-
coupon bond price P = Pt is given by

dP = rtPdt+ σPdXt, (2)

where σ is the volatility of the interest rate while rt is the interest rate at time
t.

Lemma 2.1. (Itô formula for Lévy processes)
Let X = Xt, t ≥ 0 be an n-dimensional Lévy process with characteristic

triplet (b, σ2, ν) and a function f ∈ C1,2 being a map [0, T ]×R
n → R. Then,
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f(t,Xt) = f(0, 0) +

∫ t

0

∂f

∂s
(s,Xs)ds +

∫ t

0

∑
1≤i≤n

∂f

∂xi
(s,Xs−)bi(t)dX

i
s

+ 0.5

∫ t

0

∑
1≤i,j≤n

σ2
ij

∂2f

∂xi∂xj
(s,Xs)ds +

ΔXs �=0∑
0≤s≤t

[
f(s,Xs−

+ΔXs)− f(s,Xs−)−
∑

1≤i≤n

ΔXi
s

∂f

∂xi
(s,Xs−)

]
,

where ΔXs = Xs+ −Xs− .

3. Results

To obtain our results, let an extended VG process be given by

Xt = ωλt+ θ[λGt + ρt] + σ̃
√

λG(t) + ρtZ, (3)

where ω =
1

κ
ln(1− θκ− 1

2
σ̃2κ), κ takes care of variance of the gamma process

while θ and σ̃ denote parameter for skewness and volatility, respectively, of the
arithmetic Brownian motion used to obtain the VG process. G = G(t) and
Z = Z(t) denote a gamma random variable and a Gaussian random variable,
respectively. λ and ρ are deterministic parameters such that 0 ≤ λ, ρ ≤ 1.

Theorem 3.1. The generalized Vasicek model driven by a VG process is
given by

rt = r0e
−�t + β(1− e−�t) + σ

(
ωλ

�
(1− e−�t)

+
θρ

�
(1− e−�t) + θλ

∑
0≤s≤t

ΔG(s)e−�(t−s)

+ σ̃
∑

0≤s≤t

Δ
√

λG(s) + ρse−�(t−s)Z

)
,

(4)

where ΔXs = Xs+ −Xs− .where ΔG(s) = G(s+)−G(s−).

P r o o f. Applying Itó’s lemma on equation (1) and evaluating, it follows
that

rt = r0e
−�t + β(1− e−�t) + σ

∫ t

0
e−�(t−s)dXs.
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From equation (3),

dXt = ωλdt+ θλΔGt + θρdt+ σ̃Δ
√
λG(t) + ρtZ. (5)

Thus, ∫ t

0
e−�(t−s)dXs = ωλ

∫ t

0
e−�(t−s)ds+ θλ

∑
0≤s≤t

ΔG(s)e−�(t−s)

+ θρ

∫ t

0
e−�(t−s)ds+ σ̃

∑
0≤s≤t

Δ
√

λG(s) + ρse−�(t−s)Z

=
ωλ

�
(1− e−�t) + θρ

[
e−�(t−s)

�

]t
0

+ θλ
∑

0≤s≤t

ΔG(s)

× e−�(t−s) + σ̃
∑

0≤s≤t

Δ
√

λG(s) + ρse−�(t−s)Z.

Hence, the result follows. �

Theorem 3.2. The generalized zero-coupon bond price driven by a VG
process is given by

P (t, T ) = exp

(
−

(−r0
�

(e−�T − e−�t) + β[T − t] +
β

�
(e−�T

− e−�t) +
σωλ

�
[T − t] +

σωλ

�

( 1
�
(e−�T − e−�t)

)
+

σθρ

�
[T − t] +

σθρ

�

( 1
�
(e−�T − e−�t)

)
+ σθλ

×
∑

t≤u≤T

∑
0≤s≤t

ΔG(s)e−�(u−s) + σσ̃
∑

t≤u≤T

∑
0≤s≤t

Δ

×
√

λG(s) + ρse−�(u−s)Z + σωλ[T − t] + σθρ[T − t]

+ σθλ
∑

t≤u≤T

ΔG(u) + σσ̃
∑

t≤u≤T

Δ
√

λG(u) + ρuZ

− σ2

2

∑
t≤u≤T

(λθΔG(u) + σ̃Δ
√

λG(u) + ρuZ)2
))

.

(6)

P r o o f. From the dynamics of a zero-coupon bond price given by equa-
tion (2),

dP = rtPdt+ σPdXt.
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From Itô’s lemma, F (t, x) = lnx,
∂F

∂t
= 0,

∂F

∂x
=

1

x
. Thus,

d lnP = (rtdt+ σdXt)− 1

2
σ2(dXt)

2

= rtdt+ σdXt − 1

2
σ2〈dXt, dXt〉,

where dXt is given by equation (5). Moreover,

(dXt)
2 = (θλΔGt + σ̃Δ

√
λG(t) + ρtZ)2.

This implies that

d lnP = rtdt+ σ(ωλdt+ θλΔGt + θρdt+ σ̃Δ
√
λG(t) + ρtZ)

− 1

2
σ2(θλΔGt + σ̃Δ

√
λG(t) + ρtZ)2.

With P (T, T ) = 1, integrating gives

lnP (t, T ) = −
(∫ T

t
rudu+ σωλ

∫ T

t
du+ σθρ

∫ T

t
du

+ σθλ
∑

t≤u≤T

ΔG(u) + σσ̃
∑

t≤u≤T

Δ
√

λG(u) + ρuZ

− σ2

2

∑
t≤u≤T

(λθΔG(u) + σ̃Δ
√

λG(u) + ρuZ)2
)

= −
(−r0

�
(e−�T − e−�t) + β[T − t] +

β

�
(e−�T − e−�t)

+
σωλ

�
[T − t] +

σωλ

�

( 1
�
(e−�T − e−�t)

)
+

σθρ

�
[T − t]

+
σθρ

�

( 1
�
(e−�T − e−�t)

)
+ σθλ

∑
t≤u≤T

∑
0≤s≤t

ΔG(s)

× e−�(u−s) + σσ̃
∑

t≤u≤T

∑
0≤s≤t

Δ
√
λG(s) + ρse−�(u−s)Z

+ σωλ[T − t] + σθρ[T − t] + σθλ
∑

t≤u≤T

ΔG(u)

+ σσ̃
∑

t≤u≤T

Δ
√

λG(u) + ρuZ

− σ2

2

∑
t≤u≤T

(λθΔG(u) + σ̃Δ
√

λG(u) + ρuZ)2
)
.
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Thus,

lnP (t, T ) = −
(−r0

�
(e−�T − e−�t) + β[T − t] +

β

�
(e−�T

− e−�t) +
σωλ

�
[T − t] +

σωλ

�

( 1
�
(e−�T − e−�t)

)
+

σθρ

�
[T − t] +

σθρ

�

( 1
�
(e−�T − e−�t)

)
+ σθλ

×
∑

t≤u≤T

∑
0≤s≤t

ΔG(s)e−�(u−s) + σσ̃
∑

t≤u≤T

∑
0≤s≤t

Δ

×
√

λG(s) + ρse−�(u−s)Z + σωλ[T − t] + σθρ[T − t]

+ σθλ
∑

t≤u≤T

ΔG(u) + σσ̃
∑

t≤u≤T

Δ
√

λG(u) + ρuZ

− σ2

2

∑
t≤u≤T

(λθΔG(u) + σ̃Δ
√

λG(u) + ρuZ)2
)
.

Hence, the result in equation (6) follows by taking exponential of the sides of
the equation. �

4. Conclusion

The generalized version of Vasicek model driven by a variance gamma
process and its corresponding interest rate derivative have been derived. These
provide a wider atmosphere for different phenomenon to be captured in a
financial instrument.
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